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The multiperiod model: introduction

In this chapter we will have a closer look at multiperiod discrete-time

models.

We will

B define all necessary concepts for risk-neutral pricing and replication,

B focus on the binomial model, and

B discuss Black-Scholes’ formula in a discrete time setting.
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Model setup



Model setup

B Trading periods: t ∈ {0, . . . ,T} for some 0 < T <∞.

B Market consisting of d + 1 assets:

• asset 0 is consider as a riskless bond,

• assets 1, . . . d are risky assets.

B The price at time t of the riskless bond is a function of t and given

by S0
t = (1 + r)t , where r > −1 denotes the risk-free interest rate.

B The price of asset k ∈ {1, . . . , d} at time t is modelled by a

non-negative random variable Sk
t , defined on a probability space

(Ω,F ,P).
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Model setup

B Let F := (Ft)t=0,...,T be a filtration on (Ω,F ,P). This means all Ft

are sub-sigma-algebras of F and Fs ⊆ Ft ⊆ F for all s ≤ t. We call

the space (Ω,F ,F,P) a filtered probability space.

B For our model we choose {∅,Ω} = F0 ⊆ F1 ⊆ . . . ⊆ FT = F .

B We assume that for every t ∈ {0, . . . ,T} the random vector

S t = (S0
t , St)

ᵀ = (S0
t ,S

1
t , . . . ,S

d
t )ᵀ is Ft-measurable.

Interpretation.

B The σ-algebra Ft represents all the information available up to time t.

It is natural to assume Fs ⊆ Ft for any s ≤ t, since there is no loss of

information over time.

B We assume that St is Ft-measurable. This means that the prices at

time t of all risky assets are based only on information up to time t.
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Adaptedness and predictability

We call an indexed family of random variables a stochastic process.

Definition. Let (Ω,F ,F,P) be a filtered probability space.

B A stochastic process Z = (Zt)t=0,...,T is called F-adapted if Zt is

Ft-measurable for every t = 0, . . . ,T .

B A stochastic process Y = (Yt)t=1,...,T is called F-predictable if Yt is

Ft−1-measurable for every t = 1, . . . ,T .

In our model, the price process S =
(
S t

)
t=0,...,T

is F-adapted.
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Trading strategies



Trading strategy: definition

Definition. An Rd+1-valued process ξ = (ξ0, ξ)ᵀ = (ξ0, ξ1, . . . , ξd)ᵀ is

called a trading strategy if it is F-predictable.

In other words, ξkt is Ft−1-measurable for every t ∈ {1, . . . ,T} ,
k ∈ {0, . . . , d}.

Interpretation.

B ξkt represents the number of shares of asset k held during the tth

trading period between times t − 1 and t.

B ξkt S
k
t−1 denotes the amount invested in the kth asset at time t − 1,

while ξkt S
k
t is the resulting value at time t.

B Predictability of the strategy represents the fact that any investment

must be allocated at the beginning of each trading period, without

anticipating future prices.
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Self-financing strategy

Definition. A trading strategy ξ ∈ Rd+1 is called self-financing if

ξt · S t = ξt+1 · S t for every t = 1, . . . ,T − 1.

This means that for every t ∈ {1, . . . ,T − 1}

d∑
k=0

ξkt S
k
t =

d∑
k=0

ξkt+1S
k
t or rewritten

d∑
k=0

(ξkt+1 − ξkt )Sk
t = 0.

Interpretation.

B The portfolio of a self-financing strategy is rearranged in such a way

that its present value is preserved.

B Any change in the portfolio value is due to price fluctuations of the

assets and not to some external factors.
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Self-financing strategy - Example

Consider the case of d = 1, i.e. we have only one risky asset.

The self financing condition can thus be written at t = 1 as:

ξ1 · S1 = ξ2 · S1,

which is equivalent to:

ξ0
1S

0
1 + ξ1

1S
1
1 = ξ0

2S
0
1 + ξ1

2S
1
1 .

ξ0
1S

0
1 + ξ1

1S
1
1 represent the value of the trading strategy (portfolio) just

before trading while ξ0
2S

0
1 + ξ1

2S
1
1 represent the value of the trading

strategy (portfolio) immediately after trading.

Intuitively, with no exogenous infusion or withdrawal of money, the

purchase of a new asset must be financed by the sale of an old one.
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Discounted price process

To compare prices at different trading times, we have to consider

discounted values.

Using the riskless asset as a numéraire, we define the discounted price

process X = (X t)0≤t≤T = (X 0
t ,Xt)

ᵀ
0≤t≤T by

X 0
t =

S0
t

S0
t

≡ 1 , and

X k
t =

Sk
t

S0
t

=
Sk
t

(1 + r)t
for k ∈ {1, . . . d} ,

for all t ∈ {0, . . . ,T}.
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Value process: definition

The (discounted) value process V = (Vt)t∈{0,...,T} of a trading strategy ξ

is given by

V0 = ξ1 · X 0 and Vt = ξt · X t for t = 1, . . . ,T .

Vt represents the portfolio value at the end of the tth trading period.
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Value process - Example

Consider the case d = 1 and T = 3. The (discounted) value process can

thus be written as:

V0 = ξ0
1X

0
0 + ξ1

1X
1
0 ,

V1 = ξ0
1X

0
1 + ξ1

1X
1
1 ,

V2 = ξ0
2X

0
2 + ξ1

2X
1
2 ,

V3 = ξ0
3X

0
3 + ξ1

3X
1
3 .
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Arbitrage Opportunities



Arbitrage opportunity: definition

A self-financing trading strategy ξ is called an arbitrage opportunity if the

corresponding value process V satisfies

V0 ≤ 0, VT ≥ 0 P-a.s. and P[VT > 0] > 0.

The market model is arbitrage-free if no such arbitrage opportunity exists.

The market is arbitrage-free if and only if there are no arbitrage

opportunities for each single trading period.
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Martingale: definition

Definition. Let (Ω,F ,F,P) be a filtered probability space. Then a

stochastic process M = (Mt)t=0,...,T is called a (P,F)-martingale if

B M is F-adapted,

B EP[|Mt |] <∞ for every t ∈ {0, . . . ,T},

B EP [Mt | Fs ] = Ms , for all 0 ≤ s ≤ t ≤ T .

Interpretation. The best prediction given the information up until now is

exactly the current value. This is our definition of a ‘fair game’.

Note: Since we usually work with a given filtration F, most of the time we

will drop F and only say ‘P-martingale’. If there is no ambiguity, we can

also drop P and just say ‘martingale’. However, be aware that the

martingale property depends on the probability measure and the filtration!
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Conditional Expectation

Given a random variable X with E[X ] <∞ and a σ-algebra A ⊂ F , the

conditional expectation E [X |A] is the almost surely unique random

variable such that:

B E[X |A] is A-measurable,

B E[X1B ] = E[E[X |A]1B ] for any B ∈ A.

The second condition is thus equivalent to saying that the integrals over

any element of A coincide.

When A = F0 = {∅,Ω}, i.e. the trivial σ-algebra, then E[X |A] = E[X ].
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Conditional Expectation: Continued

We can also talk about the conditional expectation given another random

variable: E[X |Y ].

In this case, E[X |Y ] is again a random variable that is only dependent on

Y , i.e. E[X |Y ] = g(Y ) for some function g ( the randomness is only

inherited from Y ).

If E[X |Y ] = g(Y ) then E[X |Y = y ] = g(y). This can also be written

formally in discrete time as:

E(X | Y = y) =
∑
x

xP(X = x | Y = y)

=
∑
x

x
P(X = x ,Y = y)

P(Y = y)
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Conditional Expectation: Example 1

Example. Consider U and Y two independent random variables such that

U ∼ U [0, 1] and Y ∼ U [−1, 1]. With X = U(Y + 1), we have that:

E[X |Y ] = E[U(Y + 1)|Y ] = (Y + 1)E[U] =
1

2
(Y + 1).
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Conditional Expectation: Example 2

Example. Let X and Y be two random variables such that:

Y =

1 with probability 1/3,

2 with probability 2/3,

and

X |Y =

Y with probability 1/4,

2Y with probability 3/4,
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Conditional Expectation: Example 2 (continued)

Conditional expectation of X given Y = y is a number which depends on

y :

B If Y = 1 then X |(Y = 1) =

1 with probability 1/4,

2 with probability 3/4,

B If Y = 2 then X |(Y = 2) =

2 with probability 1/4,

4 with probability 3/4,

This gives:

E[X |Y = 1] = 1× 1

4
+ 2× 3

4
=

7

4
,

E[X |Y = 2] = 2× 1

4
+ 4× 3

4
=

14

4
.
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Conditional Expectation: Example 2 (continued)

Therefore:

E[X |Y = y ] =

7/4 if y = 1,

14/4 with if y = 2,

which shows that E[X |Y = y ] is a number depending on y .

On the other hand, the above implies:

E[X |Y ] =

7/4 if Y = 1 (probability 1/3),

14/4 if Y = 2 (probability 2/3),

which is equivalent to:

E[X |Y ] =

7/4 (probability 1/3),

14/4 (probability 2/3).

Thus, E[X |Y ] is a random variable with randomness inherited only from

Y .
19/86



One-period binomial model

Example. (One-period binomial model) Consider a one-period binomial

model with two assets, a risk-free and a risky asset.

B Let Ω = {ωu, ωd}, where ωu and ωd represent the event of an up and

down price movement of the risky asset, respectively.

B Denote the initial price of the risk-free asset by B0 = 1 and the

interest rate by r > 0, that means B1 = (1 + r)B0.

B Denote the initial price of the risky asset by S0 > 0 and the future

price by the random variable S1 : Ω→ R.

B Let d < 0 < u and let p ∈ (0, 1) be the probability of an up

movement,

p = P[{ωu}] = P[S1 = (1 + u)S0] = 1− P[S1 = (1 + d)S0].
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One period binomial model

The riskfree asset moves according to the figure below.

B0 B1 = (1 + r)B0
1

The 1 above the arrow indicates that this happens with certainty. So

P[B = (1 + r)B0] = 1. In contrast, S1 is a random variable on Ω and can

move up and down with probabilities p and (1− p), respectively.

S1(ωu) = (1 + u)S0

S0

S1(ωd) = (1 + d)S0

p

1− p
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One-period binomial model

Exercise. (Martingales in the one-period binomial model) Consider the

model from above.

a) Let r = 0 and let the probability of an up-movement of the risky

asset be p = 1
3 . For which of the following choices of S0, u, and d is

the discounted price process a martingale?

B S0 = 100, u = 0.2, d = −0.1,

B S0 = 50, u = 0.2, d = −0.6,

B S0 = 150, u = 0.3, d = −0.15.

B S0 = 100, u = 0.3, d = 0.1.

b) Pick the two which are not martingales under P defined by p = 1
3 . For

each of them can you find another measure P∗ defined by a different

up-movement probability p∗ such that (St)t=0,1 is a P∗-martingale?

Hint: For the first one it is possible and you should get p∗ = 3
4 . For

the second it is not possible.
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Martingale measure: definition

Definition. A probability measure P∗ on (Ω,F) is called a martingale

measure if the discounted price process (Xt)t=0,··· ,T is a P∗-martingale,

EP∗ [Xt ] <∞ and

EP∗ [X k
t | Fs ] = X k

s for 0 ≤ s ≤ t ≤ T , k = 1, . . . , d .

Definition. We call two probability measures P and P∗ on (Ω,F)

equivalent if for any set A ⊆ F we have

P[A] = 0 if and only if P∗[A] = 0 .

In this case, we write P ∼ P∗.
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Fundamental theorem of asset pricing

On a filtered probability space (Ω,F ,F,P), denote by P the set of all

martingale measures, which are equivalent to P, that is

P = {P∗ : F → [0, 1] | P∗ is a martingale measure and P∗ ∼ P}.

Theorem. (Fundamental theorem of asset pricing, FTAP) A market

model is free of arbitrage if and only if the set P of all equivalent

martingale measures is not empty.
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One-period binomial model

Consider again the one-period binomial market with one risk-free and one

risky asset.

B0 = 1 B1 = (1 + r)B0
1

S1(ωu) = (1 + u)S0

S0

S1(ωd) = (1 + d)S0

p

1− p

Corollary. This market is arbitrage-free if, and only if, d < r < u.

Compare this result to the exercise above.
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Binomial Model

Proof. According to the FTAP, the no arbitrage condition is equivalent to

the existence of an equivalent martingale measure P∗. Hence, we need to

find a measure P∗ ∼ P such that EP∗

[
S1
B1
| F0

]
= EP∗

[
S1
B1

]
= S0.

In this one-period binomial model, this means we search for a measure P∗

identified by (p∗, 1− p∗) such that

p∗
S0(1 + u)

1 + r
+ (1− p∗)

S0(1 + d)

1 + r
= S0 .

This is equivalent to

p∗(1 + u) + (1− p∗)(1 + d) = 1 + r .
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Binomial Model

Solving for p∗ we arrive at

p∗ =
r − d

u − d
.

We want that P∗ ∼ P. Since p > 0 we must also require p∗ > 0 (and of

course the same for (1− p∗)). In other words, we require that

d < r < u .

This concludes the proof.
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Free lunch

We also have a stronger version of arbitrage which is called free lunch.

Definition. A portfolio ξ ∈ Rd+1 is called a free lunch if ξ · S0 < 0 and

ξ · S1 ≥ 0 P-a.s.. If no such strategy exists, we say that the market model

satisfies the no-free-lunch condition (NFL).

Theorem Consider a market model with n ∈ N possible future states

described by Ω = {ω1, . . . , ωn} with P[{ωk}] > 0 for all k = 1, . . . , n.

Then, the following are equivalent,

1. The market model satisfies the (NFL) condition.

2. There exists a martingale measure P∗.

Notice: In contrast to the FTAP, here we have no statement about the

equivalence of the risk-neutral measure P∗ and the underlying measure P.
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No free lunch in the binomial model

Exercise. Show that in the one-period binomial model with one riskless

and one risky asset, there is no free lunch if, and only if, d ≤ r ≤ u.

Hint: Start as before in the corollary. Then argue that, since we do not

require equivalence, we do not need strict inequalities.
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Two-period binomial model

Example. (Two-period Model) Consider a two-period model consisting of

a riskless and a risky asset with dynamics

B0 = 1 B1 = (1 + r)B0 B2 = (1 + r)2B0
1 1

S2(ωuu) = 300

S1(ωu) = 200

S2(ωud) = 150

S0 = 100

S2(ωdu) = 60

S1(ωd) = 50

S2(ωdd) = 20

pu

pd

puu

pud

pdu

pdd
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Two-period binomial model

Find the martingale measure P∗, so that there is no arbitrage in both

trading periods. For simplicity assume that r = 0, so that Bt = 1 for

t = 0, 1, 2.

Hence, we want to a measure P∗, such that

S0 = EP∗ [S1] and S1 = EP∗ [S2 | F1] .

In the binomial model, this translates to solving the following systems of

equations (remember that all probabilities need to sum up to 1),

100 = 200p∗u + 50p∗d ⇐⇒ p∗u =
1

3
, p∗d =

2

3
,

200 = 300p∗uu + 150p∗ud ⇐⇒ p∗uu =
1

3
, p∗ud =

2

3
,

50 = 60p∗du + 20p∗dd ⇐⇒ p∗du =
3

4
, p∗dd =

1

4
.
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Two-period binomial model

Finally, the martingale measure is given by

P∗[{ωuu}] = p∗up
∗
uu =

1

9
, P∗[{ωud}] = p∗up

∗
ud =

2

9
,

P∗[{ωdu}] = p∗dp
∗
du =

1

2
, P∗[{ωdd}] = p∗dp

∗
dd =

1

6
.

Remark. Notice that in the two-period binomial model

Ω = {ωuu, ωud, ωdu, ωdd}. We use ωu and ωd to clarify at which of the two

possible states we are at time t = 1. However, ωu, ωd are not in Ω per se.
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Contingent claims



European Options

Definition A European call option on the stock S is a contract which

gives the holder of the option the right but not the obligation to buy the

stock at a fixed time in the future (called exercise time or maturity) T for

a fixed price, called the strike price K .

The payoff of a call option is given by (ST − K )+ = max(0, ST − K ).

Definition A European put option on the stock S is a contract which

gives the holder of the option the right but not the obligation to sell the

stock at a fixed time in the future (called exercise time or maturity) T for

a fixed price, called the strike price K .

The payoff of a call option is given by (K − ST )+ = max(0,K − ST ).
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Attainable payoffs

Definition A contingent claim CT with maturity T is said to be

attainable (or replicable) if there exists a self-financing strategy ξ whose

terminal portfolio value coincides with CT , that is

CT = ξT · ST P-a.s.

In this case, the trading strategy ξ is called replicating strategy for CT .

CT is attainable if and only if its corresponding discounted claim

HT = CT

(1+r)T
can be written as

HT = ξT · XT = VT = V0 +
T∑
t=1

ξt · (Xt − Xt−1) ,

for a self-financing trading strategy ξ with value process V .

In this case, we say that the discounted claim HT is attainable with the

replicating strategy ξ.
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Attainable payoffs: Two period model example

Example. (Two-period Model) Consider a two-period model consisting of

a riskless and a risky asset with dynamics

B0 = 1 B1 = (1 + r)B0 B2 = (1 + r)2B0
1 1

S2(ωuu)

S1(ωu)

S2(ωud)

S0

S2(ωdu)

S1(ωd)

S2(ωdd)

pu

pd

puu

pud

pdu

pdd
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Attainable payoffs: Two period model example

An option C would then follow the following process:

C2(ωuu)

C1(ωu)
(ξ0

2,u ,ξ
1
2,u)

C2(ωud)

C0

(ξ0
1 ,ξ

1
1)

C2(ωdu)

C1(ωd)
(ξ0

2,d ,ξ
1
2,d )

C2(ωdd)

pu

pd

puu

pud

pdu

pdd

with ξ denoting the replicating strategy of C .
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Attainable payoffs: Two period model example

The replicating strategy (ξ1, ξ2) must satisfy the following:

1. The self-financing property ξ1 · S1 = ξ2 · S1:

ξ0
1 · B1 + ξ1

1 · S1(ωu) = ξ0
2 · B1 + ξ1

2 · S1(ωu),

ξ0
1 · B1 + ξ1

1 · S1(ωd) = ξ0
2 · B1 + ξ1

2 · S1(ωd),

2. The replicating property C2 = ξ2 · S2:

ξ0
2,u · B2 + ξ1

2,u · S2(ωuu) = C2(ωuu),

ξ0
2,u · B2 + ξ1

2,u · S2(ωud) = C2(ωud),

ξ0
2,d · B2 + ξ1

2,d · S2(ωdu) = C2(ωdu),

ξ0
2,d · B2 + ξ1

2,d · S2(ωdd) = C2(ωdd).
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Value process: Characterisation

Theorem. Let HT be a discounted, attainable contingent claim. Then

HT is integrable with respect to any equivalent martingale measure, that

means

EP∗ [HT ] <∞ for all P∗ ∈ P.

Moreover, for every P∗ ∈ P the value process associated with the

replicating strategy of HT can be written as

Vt = EP∗ [HT | Ft ] P-a.s. for t = 0, . . . ,T .

Hence, V is a non-negative P∗-martingale for every equivalent martingale

measure P∗ ∈ P.
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Arbitrage-free prices



Arbitrage-free prices

The goal is to price a discounted contingent claim HT without introducing

arbitrage in the market. If HT is attainable, then the discounted initial

investment needed for replicating HT ,

ξ1 · X 0 = V0 = EP∗ [HT ] for P∗ ∈ P ,

can be interpreted as the unique discounted arbitrage-free price for HT .

If HT is not attainable, than there is no unique arbitrage-free price for HT .
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Arbitrage-free prices

Let HT be a discounted contingent claim. Then a real number π(HT ) ≥ 0

is an arbitrage-free price for HT if there exists an adapted stochastic

process X d+1 such that

X d+1
0 = π(HT ),

X d+1
t ≥ 0 for t = 1, . . . ,T − 1,

X d+1
T = HT ,

and such that the enlarged market model with price process(
X 0, . . . ,X d ,X d+1

)
is arbitrage-free.
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Arbitrage-free prices

A priori, the claim HT could have more than one arbitrage-free price.

Denote by Π(HT ) the set of all arbitrage-free prices for HT ,

Π(HT ) = {π(HT ) ∈ R | π(HT ) is an arbitrage-free price for HT}.

Theorem. Let HT be a discounted contingent claim. Then, the set

Π(HT ) is non-empty and given by

Π(HT ) = {EP∗ [HT ] | P∗ ∈ P such that EP∗ [HT ] <∞}.

The lower and upper bounds of Π(HT ) are

πHmin = inf
P∗∈P

EP∗ [HT ] and πHmax = sup
P∗∈P

EP∗ [HT ].
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Attainable Claims: Characterisation

Theorem. Consider an arbitrage-free primary market model and a

discounted contingent claim HT such that HT ≥ 0. Then the following

assertions hold.

1. If HT is attainable, then Π(HT ) consists of the unique element V0,

where V denotes the value process corresponding to the replicating

strategy of HT .

2. If HT is not attainable, then the set of arbitrage-free price is an open

interval of the form Π(HT ) = (πHmin, π
H
max).
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Law of one Price

Under the assumption of no arbitrage opportunities, two portfolios with

same payoff at time T , must have the same value at any prior time.

If at some point, one portfolio is cheaper than the other, then one could

go long the cheaper portfolio and short the more expensive portfolio. At

time T , the overall portfolio will have value zero. Therefore, the profit we

made is riskless which violates the assumption of no arbitrage.
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Put-Call Parity

The Put-Call Parity is an important relationship between the price of a put

and call option on the same underlying with the same maturity and strike

price.

Consider two portfolios:

B P1: Long K bonds and one call, short one put,

Vt(P1) = KBt + Ct − Pt ,

B P2: Long one share, Vt(P2) = St ,

where the bonds have maturity T and the call and the put have both

strike K and maturity T .

At time T , one can observe that K + (ST − K )+ − (K − ST )+ = ST .

This implies that VT (P1) = VT (P2).

From the law of one price we get that the value of the portfolios must be

the same at any point in time:

KBt + Ct − Pt = St 44/86



Attainable claims: binomial model

Example. Consider again the one-period binomial model with the

following dynamics

B0 B1 = (1 + r)B0
1

S1(ωu) = (1 + u)S0

S0

S1(ωd) = (1 + d)S0

p

1− p

Recall that the market is arbitrage-free if, and only if, d < r < u.
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Attainable claims: binomial model

Recall that the unique equivalent martingale measure P∗ is given by

P∗({ωu}) = p∗ =
r − d

u − d
and P∗({ωd}) = 1− p∗ =

u − r

u − d
.

Consider a European call option on this stock with strike price K > 0. So

the payoff if given by C call
1 = (S1 − K )+.

We want to find an arbitrage-free price of this claim, π(C call
1 ), so we want

to price this call option.
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Attainable claims: binomial model

We know by the previous theorem that arbitrage-free prices are given by

the expectation of the discounted claim. Since we have a unique

equivalent martingale measure P∗, we get the unique price

π(C call
1 ) = EP∗

[
C call

1

1 + r

]
= p∗

C call
1 (ωu)

1 + r
+ (1− p∗)

C call
1 (ωd)

1 + r

=
1

1 + r

(
r − d

u − d
((1 + u)S0 − K )+ +

u − r

u − d
((1 + d)S0 − K )+

)
.

This is the price of a European call option on that particular asset. So we

conclude that the European call option must have an attainable payoff.

Later, we will indeed derive its replicating strategy.
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Attainable claims: binomial model

To round up this example, let us plug in some values. Let S0 = 100,

S1(ωu) = 120 and S1(ωd) = 80, and assume the strike price is K = 110.

Hence, u = 0.2 and d = −0.2. Suppose the interest rate is r = 0.05. We

check that indeed d < r < u, so that the market is arbitrage-free.

Finally, we can calculate the price of the call option as

π(C call
1 ) =

1

1.05

(
0.05− (−0.2)

0.2− (−0.2)
(120− 110)+ +

0.2− 0.05

0.2− (−0.2)
(80− 110)+

)
=

1

1.05

(
5

8
10 + 0

)
≈ 5.95 [CHF] .

Exercise. Using the same procedure, calculate the price of a put option on

the same asset with the same strike price K . You should get

π(Cput) ≈ 10.71 CHF. Check your result with the put-call parity!
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Complete Markets



Complete markets

A (multiperiod) arbitrage-free market model is called complete if every

contingent claim is attainable.

From the previous theorem, it follows that in a complete market model

every contingent claim has a unique arbitrage-free price.

Theorem. An arbitrage-free market model is complete if and only if there

exists just one equivalent martingale measure, that means |P| = 1.
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Replicating strategies: binomial model

Example. Let us once again consider the one-period binomial model with

the following dynamics

B0 B1 = (1 + r)B0
1

S1(ωu) = (1 + u)S0

S0

S1(ωd) = (1 + d)S0

p

1− p

So now we know that this market is arbitrage-free and complete if, and

only if, d < r < u.

As promised, we will now derive a replicating strategy.
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Replicating strategies: binomial model

Let C call
1 = (S1 − K )+ be the payoff of the call option on the underlying

risky asset with strike price K > 0.

To replicate C call
1 , we need to determine a replicating strategy

ξ = (ξ0, ξ1)ᵀ satisfying

(S1 − K )+ = ξ0B1 + ξ1S1 = ξ0(1 + r) + ξ1S1 .

Since we only have two states of the world, ω1, ω2, we get a system of two

equations,

(S1(ωu)− K )+ = ξ0(1 + r) + ξ1S1(ωu) ,

(S1(ωd)− K )+ = ξ0(1 + r) + ξ1S1(ωd) ,

or, when plugging in the model specifications,

(S0(1 + u)− K )+ = ξ0(1 + r) + ξ1S0(1 + u) ,

(S0(1 + d)− K )+ = ξ0(1 + r) + ξ1S0(1 + d) .
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Replicating strategies: binomial model

Again in words: we search for numbers ξ0, ξ1. They represent how much

we have invested in the risk-free asset and in the risky asset, respectively.

We want to choose these numbers such that our portfolio replicates the

payoff profile of the call option.

Solving the above system, we get the following replicating strategy

ξ0 =
(1 + u)(S0(1 + d)− K )+ − (1 + d)(S0(1 + u)− K )+

(1 + r)(u − d)
,

ξ1 =
(S0(1 + u)− K )+ − (S0(1 + d)− K )+

S0(u − d)
.

Notice that ξ0 ≤ 0.

This means, in order to replicate a call option, we have to borrow money

at the risk-free rate.
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Replicating strategies: binomial model

The unique arbitrage-free price of Ccall is then given by

π(C call
1 ) =

(
ξ0

ξ1

)
·

(
B0

S0

)
= ξ0 + ξ1S0

=
1

1 + r

(
r − d

u − d
((1 + u)S0 − K )+ +

u − r

u − d
((1 + d)S0 − K )+

)
.

Notice that this formula indeed coincides with the one from the attainable

payoffs section, which we derived via π(C call
1 ) = EP∗

[
Ccall

1
1+r

]
.
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Two-period binomial model

Example. Consider the following two-period reconnecting binomial model

consisting of a riskless and a risky asset with undiscounted dynamics given

by

B0 = 1 B1 = 1.1 B2 = 1.21
1 1

S2(ωuu) = 144

S1(ωu) = 120

S0 = 100 S2(ωud) = S2(ωdu) = 84

S1(ωd) = 70

S2(ωdd) = 49

pu

pd

pu

pd

pu

pd

Here u = 0.2, d = −0.3, and r = 0.1.
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Two-period binomial model

First, we want to exclude arbitrage from the market. So we need to

construct an equivalent martingale measure P∗.

As before, we solve the following system of equations. Remember that all

probabilities need to sum up to 1 and do not forget to discount (here

r 6= 0).

Here, since u and d stay constant through both periods, the probabilities

will be the same (hence the difference in notation compared to the first

two-period binomial tree we saw!). Indeed,

1.1 · 100 = 120p∗u + 70p∗d ⇐⇒ p∗u =
4

5
, p∗d =

1

5
,

1.1 · 120 = 144p∗u + 84p∗d ⇐⇒ p∗u =
4

5
, p∗d =

1

5
,

1.1 · 70 = 84p∗u + 49p∗d ⇐⇒ p∗u =
4

5
, p∗d =

1

5
.
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Two-period binomial model

Finally, the equivalent martingale measure P∗ is defined by

P∗[{ωuu}] = p∗up
∗
u =

16

25
, P∗[{ωud}] = p∗up

∗
d =

4

25
,

P∗[{ωdu}] = p∗dp
∗
u =

4

25
, P∗[{ωdd}] = p∗dp

∗
d =

1

25
.

Since this is the unique equivalent martingale measure, the market model

is arbitrage-free and complete.

Technical note: Notice that in our reconnecting tree, the events ωud and

ωdu lead via different paths to the same result S2 = 84. Depending on

whether or not we want to know the path, we could have identified

S2 = 84 by just one event ω. However, the underlying probabilities stay

the same, just the notation changes,

P∗[S2 = 84] = P∗[{ω}] = P∗[{ωud} ∪ {ωdu}] =
4

25
+

4

25
=

8

25
.
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Two-period binomial model

Example. Now we consider a European call option on this asset with

strike price K = 100. Hence, the payoff is given by C2 = (S2 − 100)+.

For simplicity we can draw the payoff diagram.

C2(ωuu) = (144− 100)+ = 44

C1(ωu)

C0 C2(ωud) = C2(ωdu) = (84− 100)+ = 0

C1(ωd)

C2(ωdd) = (49− 100)+ = 0

p∗u

p∗d

p∗u
p∗d

p∗u
p∗d
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Two-period binomial model

Since the market is complete, the discounted claim H2 = C2
(1+r)2 is

attainable and its arbitrage-free price is equal to

π(H2) = EP∗ [H2] =
∑
ω∈Ω

H2(ω)P∗[{ω}]

= H2(ωuu)P∗[{ωuu}] + 2H2(ωud)P∗[{ωud}] + H2(ωdd)P∗[{ωdd}]

=
44

1.21
· 16

25
+ 0 + 0 =

400

11
· 16

25
=

256

11
= 23.27 .

Exercise. Calculate the price of a European put option on the same asset

with a strike price of K = 120. Notice, the strike is different, so you

cannot use the put-call parity! If K = 100 the price would be ≈ 5.9174,

this is too easy! You should get ≈ 11.8678.
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T-period binomial model



T-period binomial model

Finally, we want to generalise the binomial model to T periods.

Consider a market model with one riskless and one risky asset in which

trading is executed at time t ∈ {0, 1, . . . ,T}.

B The riskless asset has price at time t given by Bt = (1 + r)t , where

r > −1 denotes the risk-free interest rate.

B The risky asset has initial price S0 > 0 and at time t its price is given

by a non-negative random variable St defined on a probability space

(Ω,F ,P), which we will explicitly define later.

B Suppose that the simple return Rt of the tth trading period can only

take the values

Rt =
St − St−1

St−1
∈ {d , u},

where, as before, d < 0 < u. Notice, this is the same idea as before.

At each time, St can either move up, St(1 + u), or down, St(1 + d).
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T-period binomial model: model setup

To formalise the model, it is useful to think of the binomial tree not as

outcomes but as paths.

We notice that each path can be uniquely represented by the number of

up and down movements when starting from S0. In general,

St(ω) = S0 · (1 + u)jt(ω)(1 + d)t−jt(ω) ,

where jt(ω) is the number of up-moves in a total of t moves, when the

event ω occurs.

So what are the events ω ∈ Ω?
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Model setup: probability space

Let Ω = {−1, 1}T = {ω = (y1, . . . , yT ) | ∀k : yk ∈ {−1, 1}} be the

sample space.

For ω = (y1, . . . , yT ) ∈ Ω define the projection on the tth coordinate of ω

by Yt(ω) = yt .

Using this notation, we can rewrite the simple return as

Rt(ω) =
St(ω)− St−1(ω)

St−1(ω)
= (1 + d)

1− Yt(ω)

2
+ (1 + u)

1 + Yt(ω)

2
− 1

=
1

2

(
d(1− Yt(ω)) + u(1 + Yt(ω))

)
=

u, if Yt(ω) = 1,

d , if Yt(ω) = −1.
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Model setup: probability space

The price process of the risky asset can be written as

St = S0

t∏
s=1

(1 + Rs).

The discounted price process is of the form

Xt =
St
Bt

= S0

t∏
s=1

1 + Rs

1 + r
=

S0

(1 + r)t

t∏
s=1

(1 + Rs).
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Model setup: probability space

The filtration F = (Ft)0≤t≤T is usually defined by

Ft = σ(Ss | 0 ≤ s ≤ t) := σ (S0, . . . ,St) = σ (X0, . . . ,Xt)

for all t = 0, . . . ,T . These Ft are called σ-algebras generated by the

random variables S0,S1, . . . ,St .

F0 is the trivial sigma field, F := FT coincides with the power set of Ω.

The random variables Yt , Rt are Ft-measurable for any trading time.

Fix any probability measure P on (Ω,F) with P [{ω}] > 0 for all ω ∈ Ω.

The above model is called the Cox-Ross-Rubinstein (CRR) model.
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Completeness and absence of arbitrage

Theorem. The Cox-Ross-Rubinstein model is arbitrage free if, and only

if, d < r < u. In this case, the market is complete and so there exists a

unique equivalent martingale measure P∗.

In addition, the random variables R1, . . . ,RT are independent under P∗

with joint distribution

P∗[Rt = u] =
r − d

u − d
=: p∗ ,

P∗[Rt = d ] =
u − r

u − d
=: 1− p∗ .
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Arbitrage-free prices

Since the binomial model is arbitrage-free and complete, any contingent

claim CT is attainable.

Thus, we can extend the model by defining the arbitrage-free

undiscounted price process C for CT as

Ct = (1 + r)t EP∗

[
CT

(1+r)T
| Ft

]
,

for t = 0, . . . ,T .
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Black-Scholes’ Formula for the Binomial Model

Theorem. (Black-Scholes’ formula for the binomial model) Suppose we

are in an arbitrage-free, complete binomial model. Then, the price at time

t ∈ {0, . . . ,T} of an undiscounted call option payoff CT = (ST − K )+ on

the underlying risky asset with maturity T and strike price K > 0 is given

by

Ct =
T−t∑
s=0

(
T − t

s

)
(p∗)s(1− p∗)T−t−s

(St(1 + u)s(1 + d)T−t−s − K )+

(1 + r)T−t
.

Exercise. Prove the theorem.
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Examples and exercises



Exercise 1

Exercise. Consider a one-period model with 2 assets. Let Ω = {ωu, ωd}
and let P[{ωu}] = 1− P[{ωd}] > 0.

Assume r = 0, B0 = 1, S0 = 100, S1(ωu) = 120, S1(ωd) = 80 and let

80 < K < 120.

Consider a call and put option on the risky asset with payoffs

C call
1 = (S1 − K )+ and Cput

1 = (K − S1)+, respectively.

For which values of K do we have π(C call
1 ) ≤ π(Cput

1 )?
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Exercise 1: Solution

Solution.

i. First, we need to derive an equivalent risk-neutral measure. We

already know that it will be unique, since d < r < u. So as before,

we solve p∗120 + (1− p∗)80 = 100. This gives the p∗ = 1
2 = 1− p∗.

ii. We also know that the binomial model is complete if d < r < u. So

we can use p∗ to price the contingent claims C call
1 and Cput

1 . We get

π(C call
1 ) = EP∗

[
C call

1

1 + r

]
=

1

2
(120− K )+ +

1

2
(80− K )+ = 60− K

2
,

π(Cput
1 ) = EP∗

[
Cput

1

1 + r

]
=

1

2
(K − 120)+ +

1

2
(K − 80)+ =

K

2
− 40 .

68/86



Exercise 1: Solution

iii. Finally, π(C call
1 ) ≤ π(Cput

1 ) is equivalent to

60− K

2
≤ K

2
− 40 .

This implies K ≥ 100. By assumption, K < 120 and thus, we get

that for

100 ≤ K < 120

the call option price is less than or equal to the put option price.
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Exercise 2

Exercise. Consider a two period binomial model with one risk-free and

one risky asset. Let u = 0.2, d = −0.2, r = 0.1, S0 = 100, B0 = 1.

Compute the price at time t = 0 of a European put option on the risky

asset with maturity 2 and strike price K = 100.
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Exercise 2: Solution

Solution. The payoff of the European put option is given by

Cput
2 = (K − S2)+ .

Since d < r < u, the binomial model is arbitrage-free and complete. Thus,

there exists a unique martingale measure P∗ such that

π(Cput
2 ) = EP∗

[
Cput

2

(1 + r)2

]
.
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Exercise 2: Solution

We know that in the binomial model the probability of an up and down

movement in each period are given by

p∗ =
r − d

u − d
=

3

4
,

1− p∗ =
u − r

u − d
=

1

4
.

Therefore,

P∗[{ωuu}] =
9

16
P∗[{ωud}] =

3

16

P∗[{ωdu}] =
3

16
P∗[{ωdd}] =

1

16
.
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Exercise 2: Solution

So we have the following state of the payoff.

C2(ωuu) = (100− 144)+ = 0

C1(ωu)

C0 C2(ωud) = C2(ωdu) = (100− 96)+ = 4

C1(ωd)

C2(ωdd) = (100− 64)+ = 36

p∗u

p∗d

p∗u
p∗d

p∗u
p∗d
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Exercise 2: Solution

Hence, the price of the put option is given by:

π(Cput
2 ) = EP∗

[
Cput

2

(1 + r)2

]

=
1

1.12
·
(

0 + 2 · 3

16
· 4 +

1

16
· 36

)
=

15

1.12 · 4
≈ 3.099 .
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Exercise 3∗

Exercise. Consider a one-period market model with d + 1 assets. We use

the notation from above, S0 = (S0
0 ,S0)ᵀ = (S0

0 , S
1
0 , . . . ,S

d
0 )ᵀ is the initial

price vector and S1 = (S0
1 ,S1)ᵀ = (S0

1 ,S
1
1 , . . . ,S

d
1 )ᵀ is the future price

random vector. As always, let S0
0 = 1 and S0

1 = (1 + r) be the prices of

the riskless asset.

1. Show that if there exists a free lunch, that is a strategy ξ ∈ Rd+1

such that ξ · S0 < 0 and ξ · S1 ≥ 0 P-a.s., then there exists an

arbitrage opportunity.

2. Give an example to show that the reverse is not true.
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Exercise 3: Solution

Solution.

1. Suppose there exists a free-lunch, that means we find a ξ ∈ Rd+1

such that ξ · S0 < 0 and ξ · S1 ≥ 0 P-a.s..

We want to show that this implies the existence of an arbitrage

opportunity, that means there exists η ∈ Rd+1 such that:

B η · S0 ≤ 0,

B η · S1 ≥ 0 P-a.s.,

B P[η · S1 > 0] > 0.

By definition, a free-lunch implies a negative initial portfolio,

0 > ξ · S0 = ξ0 + ξ · S1 =: −δ ,

so that δ > 0.
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Exercise 3: Solution

Now, we define η0 := ξ0 + δ and ηk := ξk for k = 1, . . . , d . Then, for

the new strategy η we get:

η · S0 = (ξ0 + δ) + η · S0 = 0 .

Moreover,

η · S1 = η0(1 + r) + η · S1

= ξ0(1 + r) + δ(1 + r) + ξ · S1

= ξ · S1 + δ(1 + r).

By definition of free-lunch, we know that P[ξ · S1 ≥ 0] = 1. But since

δ(1 + r) > 0, it follows that

P[η · S1 > 0] = P
[
ξ · S1 + δ(1 + r) > 0

]
= 1.

This proves that η is an arbitrage opportunity.
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Exercise 3: Solution

2. Consider a binomial model with 2 assets.

Recall that no free lunch in this model is equivalent to d ≤ r ≤ u.

Hence, choosing for example d = r ≤ u we get the no free lunch

condition.

However, no arbitrage is equivalent to d < r < u. And thus, with the

above choice there must exist an arbitrage opportunity in the market.

This example shows, that in general, the existence of an arbitrage

opportunity does not imply the existence of free lunch.
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A little extra



Modifying risk via options: binomial model

Example.

Now we want to use options to modify the risk of a position. Assume that

the price movement of the risk asset is given by

S1(ωu) = 120

S0 = 100

S1(ωd) = 80

p

1− p

Let K = 110.
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Modifying risk via options: Binomial model

If we invest in the risky asset, we have the following simple return

RS =
S1 − S0

S0
.

So, in our binomial model, we get

RS(ωu) =
S1(ωu)− S0

S0
= 0.2 = 20% ,

RS(ωd) =
S1(ωd)− S0

S0
= −0.2 = −20%.
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Modifying risk via options: Binomial model

On the other hand, consider again C call
1 = (S1 − 110)+, and suppose that

r = 0.05.

We calculate the price of this option as π(C call
1 ) ≈ 5.95.

Therefore, the simple return on the option is

RC =
(S1 − K )+ − π(C call

1 )

π(C call
1 )

.

So this gives us

RC (ωu) ≈ (120− 110)+ − 5.95

5.95
≈ 68%,

RC (ωd) ≈ 0− 5.95

5.95
= −100%.

There is a dramatic increase of profit opportunities and (in this case) even

more so in losses. This is called the leverage effect of options.
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Modifying risk via options: Binomial model

To reduce the risk of holding the asset, we can hold the portfolio

consisting of one risky asset and one put option on that asset. The payoff

profil of this portfolio is given by

C̃ = (K − S1)+ + S1 .

Clearly, this “insurance” involves an additional cost.

Indeed, from the put-call parity, we can derive the price of the put option

π(Cput
1 ) = π(C call

1 )− S0 +
K

1 + r
≈ 10.71 .

So the portfolio of a risky asset and a put on that asset costs

approximately π(C̃ ) = 100 + 10.71 = 110.71 [CHF] at time t = 0.
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Modifying risk via options: Binomial model

The simple return of this portfolio is

R
C̃

=
(K − S1)+ + S1 − π(C̃ )

π(C̃ )
,

which in the different cases is

RC̃ (ωu) ≈ (110− 120)+ + 120− 110.71

110.71
≈ 8.39%

RC̃ (ωd) ≈ (110− 80)+ + 80− 110.71

110.71
≈ −0.64% .

Hence, by holding this portfolio insurance we have reduce the risk of a

loss, although the possibility of a big gain has decreased as well.

Exercise. Explain where the asymmetry of the reduction of profit and

losses comes from.
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Appendix



Asian option

We have already seen simple European options.

In a multiperiod setup, we have many more types of options. In the

following, we introduce the most important ones.

The outcome of an Asian option depends on the average price of the

underlying asset S

Sav =
1

|M|
∑
t∈M

St ,

where M ⊂ {0, 1, · · · ,T} is a subset of predetermined time periods.

The payoff of the average price call option with strike price K is given by

C av
call = (Sav − K )+ ,

and the payoff of the average price put option is

C av
put = (K − Sav)+ .
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Barrier option

The payoff of a barrier option depends on whether or not the price of the

underlying asset reaches a certain level (barrier) before maturity. Most

commonly we have two types, the knock-out and knock-in options.

A knock-out option has zero payoff once the price of the underlying asset

reaches the barrier B ∈ R. For example, an up-and-out call option with

strike price K has payoff

Cu&o
call =

(ST − K )+ if max0≤t≤T St < B,

0 otherwise.

A knock-in option pays off only if the barrier B is reached. For example, a

down-and-in put option with strike price K has payoff

Cd&i
put =

(K − ST )+ if min0≤t≤T St ≤ B,

0 otherwise.
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