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Introduction



Introduction

What is volatility?

B The volatility of a financial asset alludes to the fact that asset price

and hence the associated return, is random.

B The volatility of a stock, σ, is a measure of our uncertainty about the

stock returns.

B Technically, the volatility of the asset is the standard deviation of the

return distribution. Stocks typically have a volatility between 20%

and 50%.

B A return and its volatility are always expressed relative to a period of

time.

2/51



Introduction

Why does volatility matter?

B Financial markets are quite often driven by unanticipated shocks.

B Investors, traders and asset managers revise their expectations in

response to those shocks and rebalance positions.

B As a result, we observe fluctuations (simply ups and downs) in asset

prices. This mechanism holds for various markets including stocks,

bonds, FX, commodities, and many others.
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Introduction

Main goal: explain how to use historical data to produce estimates of the

current and future levels of volatilities (and correlations).

B Modeling volatility allows us to consider various financial implications:

• the choice of optimal portfolios,

• hedging portfolios,

• Value-at-Risk (VaR) evaluation and forecasting,

• option pricing,

• market news-reaction analysis,

• fundamental (stock) trading and technical trading.

B We consider the following three models:

1. the Exponentially Weighted Moving Average (EWMA) model;

2. the AutoRegressive Conditional Heteroscedascity (ARCH) model;

3. the Generalized ARCH (GARCH) model.
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Introduction

Definition. A sequence (or a vector) of random variables is homoscedastic

if all its random variables have the same finite variance. This is also

known as homogeneity of variance.

Definition. A sequence (or a vector) of random variables is heteroscedastic

if the variances (i.e., random disturbances) are different across the random

variables. Thus, heteroscedasticity is the absence of homoscedasticity.

Definition. Volatility clustering: “Large returns tend to be followed by

large returns of either sign, and small returns tend to be followed by small

returns of either sign”, as first noted by Mandelbrot (1963).

Quantitatively, while returns (ut) themselves are uncorrelated, squared (or

absolute) returns display a positive, significant, and slowly decaying

autocorrelation function: corr(u2t , u
2
t+τ ) > 0 for τ ranging from a few

minutes to several weeks.
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Introduction

Figure 1: Changing volatility exemplified by the S&P 500 daily log-returns.

Observe the heteroscedasticity and clustering of volatility.
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Introduction

Figure 2: Daily squared log-returns are plotted here. They exhibit

heteroscedasticity and positive-autocorrelation (which are caused by the periods

with mostly large or small values).
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Volatility clustering in the returns

B Simple chart shows the periods with mostly large values and periods

with mostly small values - this holds for both returns and squared (or

absolute) returns. This is actually a form of heteroscedasticity.

B Volatility clustering: The volatility changes over time and its degree

shows a tendency to persist, i.e., there are periods of low volatility

and periods where volatility is high.

B Large swings, positive or negative, tend to be followed by large

swings; thus, the positive autocorrelations found in the squared (or

absolute) returns.

B The autocorrelations are not large (usually < 0.3), and they decrease

more or less slowly with the lag order (depending on the frequency

and the series).

B (G)ARCH models were developed to model such stylized facts;

heteroscedasticity and volatility clustering.
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Volatility clustering in the returns

B Financial theory: the price of an asset is the expected present value of

its future income flows.

B An asset price changes because the expectations of investors about

these future incomes change over time. As time passes, new

information (news) about these future incomes is released, which

modifies the expectations.

B As a result, returns are random and therefore volatile.

B Volatility fluctuates over time because the arrival rate of news

fluctuates. For example, crisis periods correspond to more news

releases: in particular bad news tend to spread in clusters.

B Volatility clustering is thus due to clusters of arrivals of different

types of news.
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Introduction

To estimate the volatility of a stock from (empirical) data, the price is

observed at fixed intervals of time (e.g. every day, week, or month).

Consider

n + 1 : number of observations.

Si : stock price at the end of the i th interval, with i = 0, 1, ...n.

τ : length of the time intervals in years (1 month: τ = 1/12 etc.).

and define the daily log-returns as

ui = log

(
Si
Si−1

)
i = 1, 2, . . . , n.
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Introduction

B An unbiased estimator of the variance v of the ui ’s is given by:

v̂ =
1

n − 1

n∑
i=1

(ui − u)2 ,

where u is the sample mean of ui .

B The annualized volatility σ̂, under the assumption of Gaussianity, can

be estimated as

σ̂ =

√
v√
τ
.

B The standard error of this estimate can be shown to be

approximatively σ̂√
2n

.
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Introduction

Choosing an appropriate value for n is not easy:

B More data generally leads to more accuracy, but σ does change over

time and old data may not be relevant for predicting the future

volatility.

B A reasonably good compromise: use closing prices from daily data

over the most recent 90 to 180 days.

B A popular rule of thumb: set n equal to the number of days to which

the volatility is applied.

B For example, if the volatility estimate is used to value a 2-year option,

daily data for the last 2 years are used.
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Example: Stock prices over one month

Day Closing price Si/Si−1 log(Si/Si−1)

0 20.00

1 20.10 1.00500 0.00499

2 19.90 0.99005 0.01000

3 20.00 1.00503 0.00501

4 20.50 1.02500 0.02469

5 20.25 0.98780 -0.01227

6 20.90 1.03210 0.03159

7 20.90 1.00000 0.00000

8 20.90 1.00000 0.00000

9 20.75 0.99282 -0.00720

10 20.75 1.00000 0.00000

11 21.00 1.01205 0.01198

12 21.10 1.00476 0.00475

13 20.90 0.99052 -0.00952

14 20.90 1.00000 0.00000

15 21.25 1.01675 0.01661

16 21.40 1.00706 0.00703

17 21.40 1.00000 0.00000

18 21.25 0.99299 -0.00703

19 21.75 1.02353 0.02326

20 22.00 1.01149 0.01143
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Example: Stock prices over one month

In this case

20∑
i=1

ui = 0.09531 and
20∑
i=1

u2i = 0.00326 .

B The estimate of the standard deviation of daily returns is√
0.00326

19
− 0.095312

20 · 19
= 0.01216 (or 1.216%).

B Assuming that there are 252 trading days per year, i.e., τ = 1/252,

an estimate for the volatility per annum is

0.01216×
√

252 = 0.193 (or 19.3%).
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Example: Stock prices over one month

B The standard error of this estimate is

0.193√
2× 20

= 0.031 (or 3.1% per annum).

B With dividend paying stocks: the return ui during a time interval that

includes an ex-dividend day is given by

ui = log
Si + Di

Si−1
,

where Di is the amount of the dividend paid out at time i .
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Introduction: Trading days vs calendar days

An important issue is whether time should be measured in calendar days

or trading days when volatility parameters are being estimated and used.

B Practitioners tend to ignore days on which the exchange is closed

when estimating volatility from historical data (and when calculating

the life of an option).

B This may be justified by the empirical evidence suggesting that

volatility is to a large extent caused by trading itself (and not only by

new information reaching the market).

B The volatility per annum (p.a.) is calculated from the volatility per

trading day using the formula:

Vola p.a. = Vola per trading day×
√

# trading days p.a. .
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Estimating volatility

B Recall, volatility is inherently not observable (latent).

B Like returns, volatility also evolves randomly through time. Of course,

this does not imply that it is not partially predictable (why?).

B Volatility can be “indirectly” measured through econometric models

using observed returns. That is, the models we utilize link the

“observed” returns to the “unobserved” volatility.

B Inferring volatility from returns is one of the primary research focuses

in financial econometrics.
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Estimating volatility

B Measures based on the empirical standard deviation of most recent

returns (i.e., rolling window approach).

B Model-based measures:

• Exponential Weighted Moving Average model (EWMA);

• AutoRegressive Conditional Heteroskedastic models (ARCH);

• Generalized AutoRegressive Conditional Heteroskedastic models

(GARCH);

• stochastic volatility;

• stochastic volatility + jumps, only jumps.

B Measures based on high frequency returns (so-called model-free),

such as realized volatility.
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Estimating volatility

B Denote with σn the volatility of a market variable on day n, as

estimated at the end of day n − 1.

B The square of the volatility σ2n on day n is the variance rate.

B Recall that the variable ui is defined as the continuously compounded

return between the end of day i − 1 and the end of day i :

ui = log
Si
Si−1

.

B An unbiased estimate of the variance rate per day, σ2n, using the most

recent m observations on the ui is

σ2n =
1

m − 1

m∑
i=1

(un−i − u)2 , (1)

where the mean u is given by

u =
1

m

m∑
i=1

un−i .
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Estimating volatility

B For the purpose of monitoring daily volatility the last formula can be

changed in a number of ways:

1. ui can be defined as the percentage change in the market variable

between the end of day i − 1 and the end of day i , so that

ui =
Si − Si−1

Si−1
;

2. One can assume u = 0;

3. m − 1 can be replaced by m.
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Estimating volatility

B These three changes (i.e., assumptions) make very little difference to

the calculated estimates, whereas they allow us to simplify the

formula for the variance rate from Equation (1) that now becomes:

σ2n =
1

m

m∑
i=1

u2n−i .

B The last expression gives equal weight to u2n−1, u
2
n−2, ..., u

2
n−m.

B Note: All expressions that follow could also be derived without

assuming u = 0. We assume this for simplicity and improved

intuition.

B Idea: Our objective is to estimate the current level of volatility σn,

therefore, it would make sense to give more weight to recent data.
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Estimating volatility

B We can accomplish this with the following model,

σ2n =
m∑
i=1

αiu
2
n−i . (2)

B The coefficient αi > 0 is the weight given to the observation i days

ago.

B If we choose them so that αi < αj when i > j , less weight is given to

older observations.

B The weights must sum up to unity,

m∑
i=1

αi = 1.
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Estimating volatility

An extension of the idea in Equation (2) is to assume that there is a

long-run average variance rate and that this should be given some weight.

B This leads to a model that takes the form

σ2n = γVL +
m∑
i=1

αiu
2
n−i , (3)

where VL is the long-run variance rate and γ is the weight assigned to

VL.

B Because the weights must sum to unity, we have

γ +
m∑
i=1

αi = 1.
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ARCH(m) model

The representation from Equation (3) is known as the ARCH(m) model

and it was first suggested by Robert Engle in 1982 in the journal

Econometrica.

B The ARCH model class for asset returns was designed to capture the

dependence (in the form of positive autocorrelations) in the squared

(or absolute) returns =⇒ volatility clustering (a form of

heteroscedasticity).

B From a statistical viewpoint, taking account of heteroscedasticity

provides more efficient estimates of the conditional mean parameters

and more realistic confidence bands for the forecasts.
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ARCH(m) model

B In the ARCH(m) model, the estimate of the variance is based on a

long-run average variance and m observations: the older an

observation, the less weight it is given.

B Defining ω = γVL, the ARCH(m) model from Equation (3) can be

written as

σ2n = ω +
m∑
i=1

αiu
2
n−i .

B This is the version of the model used when the parameters are being

estimated.
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EWMA model

The Exponentially Weighted Moving Average (EWMA) model is a

particular case of the model in Equation (2), and consequently also a

particular case of an ARCH(1) model with γ = 0.

B Here, the weights αi decrease exponentially as we move back through

time,

αi+1 = λαi , where λ ∈ [0, 1] .

B It turns out that this weighting scheme leads to a particularly simple

formula for updating volatility estimates:

σ2n = λσ2n−1 + (1− λ)u2n−1. (4)

B The estimate σn is the volatility for day n (made at the end of day

n − 1) and is calculated from σn−1 (the estimate that was made at

the end of day n − 2 of the volatility for day n − 1) and un−1 (the

most recent percentage change).
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EWMA model

B To understand why Equation (4) corresponds to weights that

decrease exponentially, we substitute for σ2n−1 to get

σ2n = λ
[
λσ2n−2 + (1− λ)u2n−2

]
+ (1− λ)u2n−1,

or, when rearranged,

σ2n = (1− λ)(u2n−1 + λu2n−2) + λ2σ2n−2.

B Substituting in a similar way for σ2n−2 yields

σ2n = (1− λ)(u2n−1 + λu2n−2 + λ2u2n−3) + λ3σ2n−3.

B Continuing in this way, we see that

σ2n = (1− λ)
m∑
i=1

λi−1u2n−i + λmσ2n−m.
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EWMA model

B To repeat, we have

σ2n = (1− λ)
m∑
i=1

λi−1u2n−i + λmσ2n−m. (5)

B Note that for large m the term λmσ2n−m is sufficiently small to be

ignored so that Equation (5) is the same as Equation (2) with

αi = (1− λ)λi−1.

B The weights for the ui decline at rate λ as we move back through

time; each weight is λ times the previous weight.
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EWMA model: Example

B Suppose that λ = 0.90, the volatility estimated for a market variable

for day n − 1 is 1% per day, and during day n − 1 the market variable

increased by 2%.

B This means: σ2n−1 = 0.012 = 0.0001 and u2n−1 = 0.022 = 0.0004.

B Equation (4) yields

σ2n = 0.9× 0.0001 + 0.1× 0.0004 = 0.00013.

B The estimate of the volatility σn for the day n is therefore
√

0.00013,

or 1.14% per day.
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EWMA model: Example

B Note that the expected value of u2n−1 is σ2n−1 or 0.0001.

B In this example, the realized value of u2n−1 is greater than the

expected value and as a result our volatility estimate increases.

B If the realized value of u2n−1 had been less than its expected value,

our estimate of the volatility would have decreased.
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EWMA model

The EWMA approach has the attractive feature that relatively little data

needs to be stored.

B At any given time we need to remember only the current estimate of

the variance rate and the most recent observation of the value of the

market variable.

B When we get a new observation of the value of the market variable,

we calculate a new daily percentage change and use Equation (4) to

update our estimate of the variance rate.

B The old estimate of the variance rate and the old value of the market

variable can then be discarded.
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EWMA model

B The EWMA approach is designed to track changes in the volatility.

B The Risk Metrics database, which was originally created by J. P.

Morgan and made publicly available in 1994, uses the EWMA model

with λ = 0.94 for updating daily volatility estimates.

B The company found that, across a range of different market variables,

this value of λ yields forecasts of the variance rate that come closest

to the realized variance rate.
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GARCH(1,1) model: Definition

The GARCH(1,1) model was first proposed by Tim Bollerslev in 1986.

Definition. In the most simple GARCH(1,1) model, returns are

conditionally normally distributed:

ut ∼ N (0, σ2t ),

and the conditional variance σ2t is calculated from a long-run average

variance rate VL, the past variance σ2t−1, and the past return ut−1:

σ2t = γ · VL︸ ︷︷ ︸
ω

+β · σ2t−1 + α · u2t−1, with 1 = γ + β + α.

B We have heteroscedasticity because σ2t is the conditional (on past

returns) variance of ut :

Var (ut |u0, . . . , ut−1) = σ2t .

B The conditional mean E(ut |u0, . . . , ut−1) is assumed equal to zero.

Hence, ut is not autocorrelated and E(ut) = 0.
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GARCH(1,1) vs EWMA vs ARCH(1)

B The EWMA model is a particular case of GARCH(1,1) where γ = 0,

α = 1− λ, β = λ.

B The ARCH(1) model is a particular case of GARCH(1,1) where

β = 0.

B The (1,1) in GARCH(1,1) indicates that σ2t is based on the most

recent observation of the (squared) return, namely u2t−1, and the

most recent estimate of the variance rate, namely σ2t−1 =⇒
generalization to GARCH(p,q).
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GARCH(p,q)

B The more general GARCH(p,q) model calculates σ2t from the most

recent p observations of u2 and the most recent q estimates of the

variance rate. Exercise: Write it down.

B Note: GARCH(1,1) is by far the most popular GARCH model.
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GARCH(1,1) model

B Setting ω = γVL, the GARCH(1,1) model can also be written as

σ2t = ω + αu2t−1 + βσ2t−1 , (6)

and this is the form that is usually used for the purposes of

estimating the parameters.

B There are two effects of a large value of σ2t−1 in the GARCH(1,1)

representation from Equation (6):

• a direct effect: σ2t−1 is large =⇒ σ2t is large;

• an indirect effect: σ2t−1 is large =⇒ u2t−1 tends to be large

because ut−1 ∼ N (0, σ2t−1) =⇒ σ2t tends to be large.

B Hence, the GARCH(1,1) model captures volatility clustering.

B Note that for a stable GARCH(1,1) process we require α + β < 1,

otherwise the weight term applied to the long-term variance is

negative.
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GARCH(1,1) model

B Volatility clustering often generates more extreme values and less

central values compared to case when returns were independent (i.e.

if α = β = 0).

B Large (positive or negative) returns (ut) tend to follow large returns,

small returns tend to cluster as well. Return observations mingle with

each other.

B This gives a higher proportion of extreme returns (and of returns

close to 0) than if returns are independent through time.

B Even if the “conditional” distribution is assumed to be normal, the

“unconditional” distribution is not necessarily normal (it has a larger

kurtosis than the normal).
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GARCH(1,1) model: Example

Suppose that a GARCH(1,1) model is estimated from daily data as

σ2n = 0.000002 + 0.13u2n−1 + 0.86σ2n−1 .

B This corresponds to α = 0.13, β = 0.86, and ω = 0.000002.

B Since γ = 1− α− β, it follows that γ = 0.01.

B Since ω = γVL, it follows that VL = 0.0002.

B In other words, the long-run average variance per day implied by the

model is 0.0002.

B This corresponds to a volatility of
√

0.0002 = 0.014 or 1.4% per day.
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GARCH(1,1) model: Example

Suppose that the estimate of the volatility on the day n − 1 is 1.6% per

day, so that σ2n−1 = 0.0162 = 0.000256, and that on the day n − 1 the

market variable decreased by 1% so that u2n−1 = 0.012 = 0.0001.

B Then,

σ2n = 0.000002 + 0.13× 0.0001 + 0.86× 0.000256 = 0.00023516.

B The new estimate of the volatility is therefore
√

0.00023516 = 0.0153

or 1.53%.
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GARCH(1,1) model: Weights

B Substituting for σ2n−1 and, afterwards, for σ2n−2 in Equation (6), we

obtain

σ2n = ω + βω + β2ω + αu2n−1 + αβu2n−2 + αβ2u2n−3 + β3σ2n−3 .

B Continuing this, we see that the weight applied to u2n−i is αβi−1.

B The weights decline exponentially at rate β.

B The parameter β can be interpreted as a decay rate. It is similar to

the parameter λ in the EWMA model.

B The GARCH(1,1) model is similar to the EWMA model except that,

in addition to assigning weights that decline exponentially to past u2i ,

it also assigns some weight to the long-run average volatility.

40/51



GARCH(1,1) model: Mean reversion

The GARCH(1,1) model recognizes that over time the variance tends to

get pulled back to a long-run average level of VL.

B The amount of weight assigned to VL is γ = 1− α− β.

B The unconditional variance is given by:

Var[ut ] = VL =
ω

1− α− β
if α + β < 1.

B The conditional variances (σ2t ) fluctuate around the unconditional

one:

VL = E(σ2t ).
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GARCH(1,1) model: Mean reversion

B The GARCH(1,1) is equivalent to a model where the variance V

follows the stochastic process

dV = a(VL − V )dt + ξVdz ,

where time is measured in days, a = 1−α− β, and ξ = α
√

2. This is

the mean reverting model.

B The variance has a drift that pulls it back to VL at rate a.

B When V > VL, the variance has a negative drift, when V < VL it has

a positive drift.

B In practice, variance rates tend to be mean reverting.

B The GARCH(1,1) model incorporates mean reversion, whereas the

EWMA model does not.
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GARCH(1,1) model: Parameter estimation

B A important question that needs to be discussed is how the best-fit

parameters ω, α, β in GARCH(1,1) can be estimated.

B Maximum likelihood estimation (MLE) method can be used to obtain

GARCH parameter values, see Appendix. Link to Appendix

B GARCH(1,1) is more general and hence more appealing than the

ARCH(1) and EWMA models.

B However, in circumstances where the best-fit value of ω turns out to

be negative, the GARCH(1,1) model is not stable and it makes sense

to switch to the EWMA model.

B Trade-off between model generality and statistical estimation (i.e.,

parameter uncertainty).
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Using GARCH(1,1) to forecast volatility

B The variance rate estimated at the end of day n − 1 for day n, when

GARCH(1,1) is used, is

σ2n = (1− α− β)VL + αu2n−1 + βσ2n−1

so that

σ2n − VL = α(u2n−1 − VL) + β(σ2n−1 − VL).

B On day n + t in the future, we have

σ2n+t − VL = α(u2n+t−1 − VL) + β(σ2n+t−1 − VL),

which implies a recursive scheme for forecasting volatility.
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Using GARCH(1,1) to forecast volatility

B The expected value of u2n+t−1 is σ2n+t−1, hence

E[σ2n+t − VL] = (α + β)E[σ2n+t−1 − VL].

B Using this equation repeatedly yields

E[σ2n+t − VL] = (α + β)t(σ2n − VL)

or

E[σ2n+t ] = VL + (α + β)t(σ2n − VL) . (7)

B This equation forecasts the volatility on day n + t using the

information available at the end of the day n − 1.
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Using GARCH(1,1) to forecast volatility

B In the EWMA model we have α + β = 1 and the last equation shows

that the expected future variance rate equals the current variance

rate.

B When α + β < 1, the final term in the equation becomes

progressively smaller as t increases.

B As mentioned earlier, the variance rate exhibits mean reversion with a

reversion level of VL and a reversion rate of 1− α− β.

B Our forecast of the future variance rate tends towards VL as we look

further and further ahead.

B This analysis emphasizes the point that we must have α + β < 1 for

a stable GARCH(1,1) process.

B When α+β > 1 the weight given to the long-term average variance is

negative and the process is mean fleeing rather than mean reverting.
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Using GARCH(1,1) to forecast volatility

B In the yen-dollar exchange rate example considered earlier we

calculated α + β = 0.9602 and VL = 0.00004422.

B Suppose that our estimate of the current variance rate per day is

0.00006 (this corresponds to a volatility of 0.77% per day).

B In 10 days the expected variance rate is

0.00004422 + 0.960210(0.00006− 0.00004422) = 0.00005473.

B The expected volatility per day is 0.0074, still well above the

long-term volatility of 0.00665 per day.

B However, the expected variance rate in 100 days is

0.00004422 + 0.9602100(0.00006− 0.00004422) = 0.00004449

and the expected volatility per day is 0.00667 very close to the

long-term volatility.
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Extensions of GARCH

Many extensions of the GARCH(p,q) model have been presented in the

existing literature. Some of the most prominent cases are:

B Exponential GARCH (EGARCH), and

B Threshold GARCH (TGARCH).
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Exponential GARCH (EGARCH)

B The EGARCH model is a GARCH variant that models the logarithm

of the conditional variance.

B It includes a leverage term to capture the asymmetric effects between

positive and negative asset returns.

B The EGARCH(1,1) model takes the following form:

log σ2n = ω + αg (εn−1) + β log σ2n−1 ,

where εn = un/σn and g(εn) = θεn + γ(|εn| − E [|εn|]).

B Since negative returns have a more pronounced effect on volatility

than positive returns of the same magnitude, the parameter θ usually

takes negative values.
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Threshold GARCH (TGARCH)

B The TGARCH model is a specification of conditional variance.

B Like the EGARCH model it allows positive returns to have a

larger/smaller impact on volatility than negative returns.

B The TGARCH(1,1) model has the following form:

σ2n = ω + (α + γNn−1)u2n−1 + βσ2n−1 ,

where Nn−1 is an indicator for negative un−1, that is

Nn−1 =

1 if un−1 < 0 ,

0 if un−1 ≥ 0 .
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Conclusion

B Empirical stylized facts of financial returns: Among others, financial

time series exhibit time-varying volatility and volatility clustering, i.e.,

periods of swings interspersed with periods of relative calm.

B Financial econometrics: (G)ARCH models were developed to model

such stylized facts; heteroscedasticity and volatility clustering.

B The GARCH class of models are the most general =⇒ ARCH and

EWMA models can be seen as particular cases of the GARCH class.

B However, EWMA can be preffered when statistical estimation of the

GARCH parameters turns out to be unstable (e.g., the best-fit w is

negative). Moreover, the EWMA approach has the attractive feature

that relatively little data needs to be stored.

B Inferring volatility from returns is one of the primary research focuses

in financial econometrics.
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Estimating GARCH(1,1) parameters

How can the maximum likelihood estimation (MLE) method be used to

estimate the parameters when the GARCH(1,1) model (or some other

volatility updating scheme)?

B MLE attempts to find the parameter values that maximize the

likelihood function L, given the observations.

B The resulting estimate is called a maximum likelihood estimate.

B Denote vi = σ2i as the variance estimated for day i .

B In order to perform the estimation described here, we assume that the

probability distribution of ui conditional on the variance is normal.

53/51



Estimating GARCH(1,1) parameters

Use the maximum likelihood method to estimate the constant variance v

of a N (0, v) random variable from n observations:

u1, u2, · · · , un.

B The likelihood of ui being observed is given by the normal pdf:

1√
2πv

exp

(
−u2i
2v

)
.

B The likelihood of n (independent) observations is the product:

L(v) =
1√
2πv

exp

(
−u21
2v

)
× · · · × 1√

2πv
exp

(
−u2n
2v

)
=

=
n∏

i=1

[
1√
2πv

exp

(
−u2i
2v

)]
.

B The best estimate of v is the value that maximizes this expression.
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Estimating GARCH(1,1) parameters

B Taking the logarithm, we wish to maximize the log-likelihood

function:

logL(v) = −1

2

n∑
i=1

(
log(v) +

u2i
v

)
.

B Under the assumption of Gaussianity, the normal log-likelihood

function for a sample of n observations is:

logL(ω, β, α) = −1

2

n∑
i=1

{
log(σ2i ) +

u2i
σ2i

}
, (8)

where σ2i is replaced by its chosen specification, for example the

GARCH(1,1) model:

σ2i = ω + αu2i−1 + βσ2i−1.

B We search iteratively to find the parameters of the model that

maximize the expression in Equation (8). Note that more efficient

methods exist as well.
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Estimating GARCH(1,1) parameters

Example. The data below shows the exchange rate between the Japanese

yen and the US dollar for the time period between January 6th 1988 and

August 15th 1997.

Date Day i Si ui vi = σ2i − log(vi )− u2i /vi

06-Jan-88 1 0.007728

07-Jan-88 2 0.007779 0.006599

08-Jan-88 3 0.007746 -0.004242 0.00004355 9.6283

11-Jan-88 4 0.007816 0.009037 0.00004198 8.1329

12-Jan-88 5 0.007837 0.002687 0.00004455 9.8568

13-Jan-88 6 0.007924 0.011101 0.00004220 7.1529

... ... ... ... ... ...

13-Aug-97 2421 0.008643 0.003374 0.00007626 9.3321

14-Aug-97 2422 0.008493 -0.017309 0.00007092 5.3294

15-Aug-97 2423 0.008495 0.000144 0.00008417 9.3824∑
= 22063.5763
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Estimating GARCH(1,1) parameters

B The fifth column shows the estimate of the variance rate vi = σ2i for

day i made at the end of day i − 1.

B On day 3 we start things off by setting the variance equal to u22 .

B On subsequent days, we use equation

σ2n = ω + αu2n−1 + βσ2n−1.

B The sixth column tabulates the likelihood measure − log(vi )− u2i /vi .

B The values in the fifth and sixth columns are based on the current

trial estimates of ω, α and β: we are interested in maximizing the

sum of the members in the sixth column.

B This involves an iterative search procedure.
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Estimating GARCH(1,1) parameters

B On subsequent days, we use

ω = 0.00000176, α = 0.0626, β = 0.8976.

B The numbers shown in the above table were calculated on the final

iteration of the search for the optimal ω, α, and β.

B The long-term variance rate VL in our example is

VL =
ω

1− α− β
=

0.00000176

0.0398
= 0.00004422.
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Estimating GARCH(1,1) parameters

B When the EWMA model is used, the estimation procedure is

relatively simple: we set ω = 0, α = 1− λ, and β = λ.

B In the table above, the value of λ that maximizes the objective

function is 0.9686 and the value of the objective function

is 21995.8377.

B Both GARCH(1,1) and the EWMA method can be implemented by

using the solver routine in Excel to search for the values of the

parameters that maximize the likelihood function.

B However, we suggest you switch from Excel to Python, Matlab, or R.
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Correlations

The discussion so far has centered on the estimation and forecasting of

volatility. The goal of this section is to show how correlation estimates can

be updated in a similar way to volatility estimates.

B Recall that the covariance between two random variables X and Y is

defined as

cov(X ,Y ) = E[(X − µX )(Y − µY )] ,

where µX and µY are the means of X and Y , respectively.

B The correlation (Pearson’s correlation coefficient) between two

random variables X and Y is

ρX ,Y = corr(X ,Y ) =
cov(X ,Y )

σXσY
,

where σX and σY are the standard deviations of X and Y ,

respectively.
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Correlations

B Define xi and yi as the percentage changes (simple returns) in X

and Y between the end of the day i − 1 and the end of day i :

xi =
Xi − Xi−1

Xi−1
and yi =

Yi − Yi−1
Yi−1

,

where Xi and Yi are the values of X and Y at the end of the day i .

B We also define

σx ,n : daily volatility of variable X estimated for day n;

σy ,n : daily volatility of variable Y estimated for day n;

covn : estimate of covariance between daily changes in X and Y ,

calculated on day n.

B Our estimate of the correlation between X and Y on day n is

covn
σx ,nσy ,n

.
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Correlations

B Using an equal-weighting scheme and assuming that the means of xi

and yi are zero, we can estimate the variance of X and Y from the

most recent m observations as

σ2x ,n =
1

m

m∑
i=1

x2n−i and σ2y ,n =
1

m

m∑
i=1

y2n−i .

B A similar estimate for the covariance between X and Y is

covn =
1

m

m∑
i=1

xn−iyn−i .
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Correlations

One alternative for updating covariances is the EWMA model, as

previously discussed.

B The formula for updating the covariance estimate under EWMA

becomes

covn = λcovn−1 + (1− λ)xn−1yn−1.

B A similar analysis to that presented for the EWMA volatility model

shows that the weights given to observations on the xi and yi decline

as we move back through time.

B The lower the value of λ, the greater the weight that is given to

recent observations.
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Correlations: Example

B Assume λ = 0.95 and that the estimate of the correlation between

two random variables X and Y on the day n − 1 is 0.6.

B Assume that the estimate of the volatilities for X and Y on the

day n − 1 are 1% and 2%, respectively.

B From the relationship between the correlation and the covariance, the

estimate for the covariance between X and Y on the day n − 1 is

0.6× 0.01× 0.02 = 0.00012.

B Suppose that the percentage changes in X and Y on the day n − 1

are 0.5% and 2.5%, respectively.

B The variance and covariance for the day n would be updated as

follows:

σ2x ,n = 0.95× 0.012 + 0.05× 0.0052 = 0.00009625;

σ2y ,n = 0.95× 0.022 + 0.05× 0.0252 = 0.00041125;

covn = 0.95× 0.00012 + 0.05× 0.005× 0.025 = 0.00012025.
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Correlations: Example

B The new volatility of X is
√

0.00009625 = 0.981%.

B The new volatility of Y is
√

0.00041125 = 2.028%.

B The new coefficient of correlation between X and Y is

0.00012025

0.00981× 0.02028
= 0.6044.
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Correlations

B GARCH models can also be used for updating covariance estimates

and forecasting the future level of covariances.

B For example the GARCH(1,1) model for updating a covariance is

covn = ω + αxn−1yn−1 + βcovn−1,

and the long-term average covariance is ω/(1− α− β).

B Similar formulas to those discussed above can be developed for

forecasting future covariances and calculating the average covariance

during the life time of an option.
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Consistency condition for covariances

Once all variances and pairwise covariances have been calculated, a

(variance-)covariance matrix can be constructed. (Also recall Chapter 1).

B When i 6= j , the (i , j) element of this matrix represents the covariance

between variables i and j . When j = i it represents the variance of

the variable i .

B Not all covariance matrices are internally consistent. The condition

for an N × N covariance matrix Σ to be internally consistent is

wᵀΣw ≥ 0 ,

for all N × 1 vectors w , where wᵀ is the transpose of w . In general,

such matrices are called positive-semidefinite.
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Consistency condition for covariances

B To understand why the last condition must hold, suppose that

w = (w1, ...,wn)ᵀ. The expression wᵀΣw is the variance

of w1x1 + ...+ wnxn where xi is the value of the variable i . As such it

cannot be negative.

B To ensure that a positive-semidefinite matrix is produced, variances

and covariances should be calculated consistently.

B For example, if variances are calculated by giving equal weight to the

last m data items, the same should be done for the covariances.

B If variances are updated using an EWMA model with λ = 0.94, the

same should be done for the covariances.
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Consistency condition for covariances

B An example of a covariance matrix that it is not internally consistent

is  1 0 0.9

0 1 0.9

0.9 0.9 1


B The variance of each variable in this example is 1.0 and so the

covariances are also coefficients of correlation.

B The first variable is highly correlated with the third variable and the

second variable is highly correlated with the third variable.

B However, there is no correlation at all between the first and the

second variables. This seems strange. When we set w equal to

(1, 1,−1) we find that the positive semi-definiteness condition above

is not satisfied proving that the matrix is not positive-semidefinite.
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