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Bonds: Definition and Examples



Bonds: Definition

B A bond is an instrument of indebtedness, under which the issuer

(debtor) owes the holder (creditor) a debt, and is obliged – depending

on the terms – to pay them interest (i.e., the coupon) as well as to

repay the principal at the maturity.

B Interest is usually payable at fixed intervals (semiannual, annual,

sometimes monthly).

B Generally, the ownership of the bond can be transferred in the

secondary market =⇒ high liquidity of the bond market.

B A bond is a form of loan =⇒ bonds provide the borrower with

external funds to finance long-term investments or – in the case of

government bonds – to finance current expenditure.
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Bonds: Definition and Examples

In practice, depending on the nature of the issues, one distinguishes

between different types of bonds:

• Government or Treasury Bonds: issued by governments, primarily

to finance the shortfall between public revenues and expenditures and

to pay off earlier debts.

• Municipal Bonds: issued by municipalities, e.g. cities and towns to

raise the capital needed for various infrastructure works such as roads,

bridges, sewer systems, and so on.

• Mortgage Bonds: issued by special agencies who use the proceeds

to purchase real estate loans extended by commercial banks.

• Corporate Bonds: issued by large corporations to finance the

purchase of property, plant and equipment.
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Bonds: Definition and Examples

B Among all assets, the simplest (i.e., most basic) to study are

fixed-coupon bonds as their cash-flows are predetermined.

B The valuation of bonds requires a good understanding of concepts

such as compound interest, discounting, present value, and yield.

B For hedging and risk management of bond portfolios (risk)

sensitivities such as duration and convexity are important.

B Bonds and stocks are both securities, but the major difference

between the two is that (capital) stockholders have an equity stake in

a company (i.e. they are owners), whereas bondholders have a

creditor stake in the company (i.e. they are lenders).

B Being a creditor, bondholders have priority over stockholders. This

means they will be repaid in advance of stockholders.
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Bonds: Default

B For bonds issued by some companies and countries, there is a

non-negligible risk that the issuer will default and the holder of the

bond will not receive the promised payments.

B The price of the bond has to reflect that =⇒ credit risk.

B Credit quality tells investors how likely the borrower is going to

default.

B High-yield bonds are bonds that are rated below investment grade by

the credit rating agencies. As these bonds are riskier than investment

grade bonds, investors expect to earn a higher yield.

B The bonds issued by some national governments (often also called

Treasury bonds) are sometimes treated as risk-free and not exposed

to default risk. Risk-free bonds are thus the safest bonds, with the

lowest interest rate.
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Bonds: Trading

B The issue price at which investors buy the bonds when they are first

issued will typically be approximately equal to the nominal amount.

B The market price of the bond varies over its life: it may trade at a

premium (above par, usually because market interest rates have fallen

since issue), or at a discount (price below par, if market rates have

risen or there is a high probability of default on the bond).

B Bonds are bought and traded mostly by institutions such as central

banks, sovereign wealth funds, pension funds, insurance companies,

hedge funds, and banks.
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Zero-Coupon Bonds

A zero-coupon bond promises no coupon payments, only the repayment of

the principal at maturity.

B Consider an investor who wants a zero-coupon bond, which

• pays 100 CHF

• in 10 years, and

• has no default risk.

Since the payment occurs at a future data – here after 10 years – the

value of this investment is surely less than an up-front payment of 100

CHF (assuming a positive interest rate environment).

B To value this payment one needs two ingredients:

• the prevailing interest rate per period

• and the tenor, denoted T , which gives the number of periods

until maturity, expressed in years.
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Zero-Coupon Bonds

B The present value of a zero-coupon bond is:

P(y) =
CT

(1 + y)T
,

where CT is the principal (or face value) and y is the discount rate.

B For instance, a payment of CT = 100 CHF in 10 years discounted at

6% is (only) worth 55.84 CHF.

Note:

B The (market) value of zero-coupon bonds decreases with longer

maturities;

B keeping T fixed, the value of a zero-coupon bond decreases as the

interest rate (or yield) increases.
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Zero-Coupon Bonds

B Analogously to the notion of present value, we can define the notion

of future value (FV) for an initial investment of amount F :

FV = F · (1 + y)T .

B For example, an investment now worth F = 100 CHF growing at 6%

per year will have a future value of 179.08 CHF in 10 years.
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Zero-Coupon Bonds

B The internal rate of return of a bond, or annual growth rate, is called

the yield, or yield-to-maturity (YTM).

B Yields are usually easier to deal with than CHF values.

B Rates of return are directly comparable across assets (when expressed

in percentage terms and on an annual basis).

B The yield y of a bond is the solution to the (non-linear) equation:

P = P(y),

where “P” is the (market) price of the bond and P(·) is the price of

the bond as a function of the yield y ; recall that in case of a

zero-coupon bond

P(y) =
CT

(1 + y)T
.
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Zero-Coupon Bonds

B The yield of bonds with the same characteristics but with different

maturities can differ strongly. Hence, the yield (usually) depends on

the maturity of the bond.

B The yield curve is the set of yields as a function of maturity.

B Under “normal” circumstances, the yield curve is upward sloping.

That means the longer you lock in your money, the higher your return.
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Zero-Coupon Bonds

Important: state the method used for compounding:

B Annual compounding (usually the norm):

P(y) =
CT

(1 + y)T
.

B Semi-annual compounding (e.g. used in the U.S. Treasury bond

market): interest rate ys is derived from:

P(ys) =
CT(

1 + ys
2

)2T
,

where 2T is the number of periods, T is the number of years.

B Continuous compounding (used ubiquitously in the quantitative

finance literature): interest rate yc is derived from:

P(yc) =
CT

exp(ycT )
= e−ycTCT .
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Zero-Coupon Bonds

Example. Consider our example of the zero-coupon bond, which pays

100 CHF in 10 years, once again. Recall that the present value of the

bond is approximately equal to 55.8395 CHF.

Now we can compute the 3 yields as follows:

B Annual compounding:

P(y) =
CT

(1 + y)10
⇒ y = 6%.

B Semi-annual compounding:

P(y) =
CT

(1 + ys/2)20
⇒ (1 + ys/2)2 = 1 + y ⇒ ys = 5.91%.

B Continuous compounding:

P(y) =
CT

exp(ycT )
⇒ exp(yc) = 1 + y ⇒ yc = 5.83%.

Note: higher (compounding) frequency results in a lower equivalent yield.
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Zero-Coupon Bonds

Exercise. Assume a semi-annual compounded rate of 8% (per annum).

Then the equivalent annual compounded rate is

(1) 9.20%,

(2) 8.16%,

(3) 7.45%,

(4) 8.00%.

Solution: The correct answer is: (2). This is derived from

(1 +
ys
2

)2 = (1 + y)

or, equivalently, (1 + 0.08
2 )2 = (1 + y), which gives y = 8.16%.
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Zero-Coupon Bonds

Exercise. Assume a continuously compounded rate of 10% (per annum).

Then the equivalent semi-annual compounded rate?

(1) 10.25%,

(2) 9.88%,

(3) 9.76%,

(4) 10.52%.

Solution: The correct answer is: (1). This is derived from

(1 +
ys
2

)2 = exp(yc)

or, equivalently, (1 + ys
2 )2 = 1.1056, which gives ys = 10.25%.
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Coupon Bonds

While zero coupon bonds are a very useful (theoretical) concept, the

bonds usually issued and traded are coupon bearing bonds.

Note:

B A zero coupon bond is a special case of a coupon bond (with zero

coupon);

B A coupon bond can be seen as a portfolio of zero coupon bonds.
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Coupon Bonds: price-yield relationship

Consider now the price (or present value) of a coupon bond with a general

pattern of fixed cash-flows.

The price-yield relationship is defined as follows:

P =
T∑
t=1

Ct

(1 + y)t
.

Here we have adopted the following notations:

• Ct : the cash-flow (coupon or principal) in period t;

• t: the number of periods (e.g. half-years) to each payment;

• T : the number of periods to final maturity;

• y : the discounting yield.
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Coupon Bonds: price-yield relationship

B As indicated earlier, the typical cash-flow pattern for bonds traded in

reality consists of regular coupon payments plus repayment of the

principal (or face value) at the expiration.

B Specifically, if we denote c the coupon rate and F the face value,

then the bond will generate the following stream of cash flows:

Ct = cF prior to expiration: 0 ≤ t ≤ T − 1

CT = cF + F at expiration (t = T ).

18/72



Coupon Bonds: price-yield relationship

Using this particular cash-flow pattern, we obtain (by the geometric series

formula) a more compact formula for the price of a coupon bond:

P(y) =
C1

1 + y
+

C2

(1 + y)2
+ · · ·+ CT−1

(1 + y)T−1
+

CT

(1 + y)T

=
cF

1 + y
+

cF

(1 + y)2
+ · · ·+ cF

(1 + y)T−1
+

cF + F

(1 + y)T

= cF ·
1

1+y −
1

(1+y)T+1

1− 1
1+y

+
F

(1 + y)T

=
cF

y

(
1− 1

(1 + y)T

)
+

F

(1 + y)T
.
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Coupon Bonds: par bonds

Definition. A par bond (or a bond priced at par) is a bond for which the

coupon rate matches the yield (c = y) (using the same compounding

frequency).

Remark. The price of a par bond equals its face value, since

P(y) =
yF

y

(
1− 1

(1− y)T

)
+

F

(1 + y)T
= F .
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Coupon Bonds: par bonds

Example. Consider a bond that pays 100 CHF in 10 years and has a 6%

annual coupon.

(a) What is the market value of the bond if the yield is 6%?

(b) What is the market value of the bond if the yield falls to 5%?

Solution:

(a) The cash flows are C1 = 6, . . . ,C9 = 6, C10 = 106. Discounting at

6% gives values of 5.66,. . . ,3.55, and 59.19, which sum up to

100 CHF. Hence, the bond is selling at par.

(b) Alternatively, discounting at 5% leads to a price of 107.72 CHF.

Hence, the bond is selling above par.
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Coupon Bonds: exercise

Exercise. Consider a 1-year fixed-rate bond currently priced at 102.9 CHF,

with face value is CHF 100 and paying a 4% coupon each six months.

Then the yield of the bond is:

(a) 8% (b) 7% (c) 6% (d) 5% .

Solution: The correct answer is: (d).

The (two) cash flows are:

• CHF 4 after 6 months and

• CHF 104 after 12 months

Consequently, we need to find ys such that

4

1 + ys
2

+
104(

1 + ys
2

)2
= 102.9

Solving, we find ys = 0.0499 . . . ≈ 5%.
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Coupon Bonds: perpetual bonds

Another special case of a general coupon bond is the so-called perpetual

bond, or consol.

Definition. A perpetual bond is a regular coupons paying bond with

Ct = cF , but with infinite maturity.

Example. The price of a consol is given by

P(y) =
c

y
F .
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Coupon Bonds: perpetual bonds

Solution: To calculate the price of a consol, we use the same approach.

However, the sum becomes a series and we get:

P(y) =
cF

1 + y
+

cF

(1 + y)2
+

cF

(1 + y)3
+ · · ·

= cF

[
1

1 + y
+

1

(1 + y)2
+

1

(1 + y)3
+ · · ·

]
= cF

1

1 + y

[
1 +

1

(1 + y)
+

1

(1 + y)2
+ · · ·

]
= cF

1

1 + y

[
1

1− (1/(1 + y))

]
= cF

1

1 + y

1 + y

y

=
c

y
F .
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Taylor series



Price approximation for bonds

B To gain information on the price changes of a bond as effects of

changes in the risk factors, in our case the yield, is very important for

Hedging and Risk management

B We focus on the the yield as main risk factor and analyse the

following question:

What happens with the price of a bond when the yield moves form

an initial value y0 to a new value y1 = y0 + ∆y (assuming ∆y is

relatively “small”)?
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Price approximation for bonds

B We start with the price-yield relation P = P(y), and consider an

initial price of the bond P0 = P(y0) and a new price P1 = P(y1).

B For a small change ∆y = y1 − y0 we could approximate P1 through a

Taylor series:

P(y1) = P(y0 + ∆y) = P(y0) + P ′(y0)∆y +
1

2
P ′′(y0)(∆y)2 + . . .

=
∞∑
n=0

P(n)(y0)

n!
(∆y)n .

B This is a series (“infinite sum”) with increasing exponents of ∆y .

But how exactly does a Taylor series work?
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Taylor series of real-valued functions

Let us consider a real-valued function f : R→ R and a fixed point x0 ∈ R.

The following series is called Taylor series of f at x0 and is defined as

Tf ,x0(x) =
∞∑
n=0

f (n)(x0)

n!
(x − x0)n

= f (x0) + f ′(x0)(x − x0) +
f ′′(x0)

2
(x − x0)2 + . . .

We immediately notice that for the existence of the series the function f

has to be infinitely differentiable at x0. If the function is infinitely

differentiable on its domain, we call it smooth.
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Taylor series of real-valued functions

Often the Taylor series is a good approximation of the function in a

neighbourhood of x0, that means at points x which are close to x0.

Be careful! ‘Often’ in the previous sentence is not for rhetoric purposes

as we will see in an example below.
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Taylor series of real-valued functions

In practice, for example with computers, we are often limited in handling

infinities. So we simply truncate the series at a certain degree.

So we call

1∑
n=0

f (n)(x0)

n!
(x − x0)n = f (x0) + f ′(x0)(x − x0)

a Taylor polynomial of degree one,

2∑
n=0

f (n)(x0)

n!
(x − x0)n = f (x0) + f ′(x0)(x − x0) +

f ′′(x0)

2
(x − x0)2

a Taylor polynomial of degree two and so on.
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Taylor series of the exponential function

Example Consider f : R→ R defined as f (x) = exp(x). We know that

for the exponential function we have f ′(x) = f (x). We conclude that f is

smooth and we can write down the Taylor series,

Tf ,x0(x) =
∞∑
n=0

f (n)(x0)

n!
(x − x0)n =

∞∑
n=0

exp(x0)

n!
(x − x0)n .

Let us look at the polynomials up to degree five at x0 = 0.

Exercise. What is the converging neighbourhood in this example?

Hint: Do you recognise the resulting series, what is
∑∞

n=0
xn

n! ?
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Taylor series of the exponential function
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Taylor series of the exponential function
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Taylor series of the exponential function
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Taylor series of the exponential function
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Taylor series of the logarithm

Example.* Let us look at another simple example. Consider

f : (−1,∞)→ R with f (x) = log(x + 1).

The first derivative is given by f ′(x) = 1
x+1 , and the second as

f ′′(x) = − 1
(x+1)2 . In general, the n-th derivative, n ≥ 1, is given by

f (n)(x) = (−1)n−1 (n − 1)!

(x + 1)n
(exercise!) .

So the coefficients of the Taylor series for n ≥ 1 are given by

f (n)(x0)

n!
=

(−1)n−1

n(x0 + 1)n
.

So for x0 = 0 we get 0, 1,−1
2 ,

1
3 ,−

1
4 , and so on.
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Taylor series of the logarithm
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Taylor series of the logarithm
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Taylor series of the logarithm
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Taylor series of the logarithm
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Taylor series of the logarithm

-1 0 1 2 3

-3

-2

-1

0

1

41/72



Pitfalls of Taylor series

It is important to understand the following points:

• If f is smooth, then we can write down the Taylor series, since f is

infinitely differentiable at any point in its domain.

B However, it does not mean, the series has a limit at every point. That

means, we cannot assign a unique real number to it. Consider for

example f : R→ R defined by f (x) =
∑∞

n=0 e
−
√

2n cos(2nx).
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Pitfalls of Taylor series

B And even if the limit exists, it may not be the same value as the

function! Consider the function f : R→ R defined by

f (x) =

e−
1
x2 x 6= 0 ,

0 x = 0 .

Indeed, one can show that f is infinitely differentiable at x0 = 0 and all its

derivatives are equal 0. Hence, the Taylor series is also equal 0. But f is

not the zero function!

A function that is equal to its Taylor series in all neighbourhoods is called

an analytic function.
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Pitfalls of Taylor series
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Visualisation of Taylor series

Watch this! One of the nicest visualisations and explanations of the

Taylor series is done by 3Blue1Brown,

https://www.youtube.com/watch?v=3d6DsjIBzJ4.

45/72

https://www.youtube.com/watch?v=3d6DsjIBzJ4


Duration



Duration

Now that we understand what a Taylor series is, we move back to bonds.

With respect to the first and second derivative we will now introduce two

concepts from finance, duration and convexity1.

For very small changes it is often enough to use only the first two terms of

the Taylor series. Be careful though and remember the pitfalls!

1Beware that we do not talk about the actual convexity from mathematics. A

somewhat misleading name!
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Duration: definition

Definition.

B The Dollar-Duration (DD) is the negative of the first derivative

DD(y) = −P ′(y).

B The Modified Duration (D*) is a normalized version of the

Dollar-Duration:

D∗(y) =
DD(y)

P(y)
= −P ′(y)

P(y)
.

B The Macaulay Duration (DM), yet another normalized version:

DM(y) = (1 + y)D∗(y) = −(1 + y)
P ′(y)

P(y)
.
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Duration: derivation

Let us derive the different notions of duration for our coupons paying

bond:

B We start with the present value of the bond,

P(y) =
C1

1 + y
+

C2

(1 + y)2
+ . . .+

CT

(1 + y)T
=

T∑
t=1

Ct

(1 + y)t
.

B Since differentiation is a linear operation, we can differentiate each

term in the sum (!) separately. Hence, for each t ∈ {1, . . . ,T} we get

d

dy

(
Ct

(1 + y)t

)
= − tCt

(1 + y)t+1
.

B Thus, the first derivative of the bond price with respect to the yield is

P ′(y) =
dP

dy
(y) = −

T∑
t=1

tCt

(1 + y)t+1
= − 1

1 + y

T∑
t=1

tCt

(1 + y)t

= − 1

1 + y

(
C1

1 + y
+

2C2

(1 + y)2
+ ...+

TCn

(1 + y)T

)
.
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Duration: derivation

Hence, we get

B for the Dollar-Duration

DD(y) = −P ′(y) =
T∑
t=1

t Ct

(1 + y)t+1
,

B for the modified duration

D∗(y) = −P ′(y)

P(y)
=

1

P(y)

T∑
t=1

t Ct

(1 + y)t+1
,

B and for the Macaulay Duration

DM(y) = −(1 + y)
P ′(y)

P(y)
=

1

P(y)

T∑
t=1

t Ct

(1 + y)t
.
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Duration: interpretation

B Notice that we can “rearrange” the modified duration as

D∗(y) = −P ′(y)

P(y)
=

1

(1 + y)

T∑
t=1

t · Ct/(1 + y)t

P(y)

=
1

1 + y

(
C1/(1 + y)

P(y)
+ 2

C2/(1 + y)2

P(y)
+ . . .+ T

CT/(1 + y)T

P(y)

)
B The expression in the bracket is a weighted sum of times. The times

are the times t at which a cash payment is received.

B For each time the weight is Ct/(1+y)t

P(y) . This is the ratio of the present

value of the corresponding cash payment and the total present value.
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Duration: interpretation

B Notice also that the weights sum up to 1. Indeed,

T∑
t=1

Ct/(1 + y)t

P(y)
=

1

P(y)

T∑
t=1

Ct

(1 + y)t
=

P(y)

P(y)
= 1 .

Hence, the expression can be interpreted as an average, the average

(or expected) time at which cash is received.

B The concept of duration is closely related to the concept of a Taylor

expansion. An approximation using duration corresponds to a first

order Taylor expansion, that is a Taylor expansion which is cut after

the first linear term.

B With this linear approximation the price change is usually

underestimated.

B An approximation of the price change based on duration is

pessimistic.
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Duration - Example

Example. Let us consider a three-year bond with a face value of

100 CHF, paying annual coupons of 4 CHF and trading on a

yield-to-maturity of 5%. What is the modified duration?

Firstly, we need to calculate the price of the bond. Using the formula

P(y) =
C1

1 + y
+

C2

(1 + y)2
+

C3

(1 + y)3

and inserting the values, we calculate the price of the bond as

P =
4

1.05
+

4

1.052
+

104

1.053
= 97.2768.
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Duration - Example

Secondly, we can calculate the modified duration using the formula derived

above,

D∗(y) =
1

1 + y

(
C1/(1 + y)

P(y)
+ 2

C2/(1 + y)2

P(y)
+ 3

C3/(1 + y)3

P(y)

)
.

After inserting the numbers, we get

1

1.05

(
4/1.05

97.2768
+ 2

4/1.052

97.2768
+ 3

104/1.053

97.2768

)
= 2.7470 [years].

Note that if the cash flows arise at semi-annual intervals then the units of

the modified duration will, correspondingly, be half-years. Thus, it will be

necessary to divide by 2 to convert the modified duration into years.
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Modified duration and risk management

Bond traders, portfolio managers and risk managers use modified duration

through the following relationship. For the price change for a basis point

change in y, ∆PB , we have

%∆PB ≈ Modified Duration · 0.0001

This is a consequence of the approximation (for small differences ∆P and

∆y)

∆P/P

∆y/y
=

∆P

∆y

y

P
=

∆P
∆y

P
y ≈ −D∗ · y .
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Modified duration and risk management

B In our example, the bond is selling at 97.2768 with a modified

duration of 2.7470.

B Notation: BP usually stands for “basis point” and is the amount

0.01%.

B We can compute the percentage change for a one basis point

(0.01%) change in yield as 2.7470 · 0.0001 = 0.0002747.

B Thus, the actual price change explained by a one basis point change

in yield = 0.0002747 · 97.2768 = 0.026722.

B This is known in the bond markets as the dollar value of a basis point

(DVBP or DV01).
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Bond price sensitivity

To improve the approximation of the bond price sensitivity given by

modified duration, one can consider the Taylor approximation up to the

second derivative. This leads to the concept of convexity.2

B Again, we take the second derivative of each term in the sum

separately. We get for all t ∈ {1, . . . ,T},

d2

dy2

(
Ct

(1 + y)t

)
=

d

dy

(
− t Ct

(1 + y)t+1

)
=

t(t + 1)Ct

(1 + y)t+2
.

B Hence, the second derivative of the bond price is given by

P ′′(y) =
d2P

dy2
(y) =

T∑
t=1

t(t + 1)Ct

(1 + y)t+2
=

1

(1 + y)2

T∑
t=1

t(t + 1)Ct

(1 + y)t

=
1

(1 + y)2

(
2C1

1 + y
+

6C2

(1 + y)2
+ ...+

T (T + 1)Cn

(1 + y)T

)
.

2Do not confuse this with the actual mathematical meaning of convexity!
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Bond convexity

Definition.

B Dollar convexity (DC) is defined as the second derivative of the bond

price with respect to the yield, that means we set

DC (y) =
d2P

dy2
(y) = P ′′(y).

B Bond convexity (κ) is defined to be the second derivative of the bond

price with respect to the yield, divided by the bond price, that is

κ(y) =
DC (y)

P(y)
=

P ′′(y)

P(y)
.

Note that some practitioners refer to convexity as the second derivative

divided by the present value and additionally multiplied by the factor 1
2 .
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Bond convexity: example

We will illustrate the use of the second derivative in bond risk management

by calculating the convexity of the three-year bond we looked at earlier.

Example. Consider again a three-year bond with a face value of 100 CHF,

paying annual coupons of 4 CHF and trading on a yield-to-maturity of 5%.

To calculate the bond convexity, we need to calculate the second derivative

of the bond price. Using the derivation above, we get for this bond,

P ′′(y) =
1(1 + 1)C1

(1 + y)1+2
+

2(2 + 1)C2

(1 + y)2+2
+

3(3 + 1)C3

(1 + y)3+2

=
2C1

(1 + y)3
+

6C2

(1 + y)4
+

12C3

(1 + y)5
.

Inserting the numbers, we get

2 · 4
(1.05)3

+
6 · 4

(1.05)4
+

12 · 104

(1.05)5
= 1004.4962 .
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Bond convexity: example

Given that the bond price is 97.2768, convexity per cash flow period is:

κ(y) =
DC (y)

P(y)
=

P ′′(y)

P(y)
=

1004.4962

97.2768
= 10.3262 [years2]

In this example, modified duration is measured in years so convexity is

measured in years squared.

Caution: What do we adjust if we consider semi-annual yields?
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Summary: Approximation of the bond price

Let y = y0 + ∆y , then we have the

B exact price-yield relation:

P(y) = P ,

B (first order) approximation using duration:

P(y) ≈ P(y0)− D∗ · P(y0) ·∆y ,

B (second order) approximation using duration and convexity:

P(y) ≈ P(y0)− D∗(y0) · P(y0) ·∆y +
1

2
κ(y0) · P(y0) · (∆y)2 .
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Convexity in action

Now let us investigate how well the different Taylor expansions

approximate the change in price.

Example. Consider the three-year bond with a face value of 100 CHF,

paying annual coupons of 4 CHF and trading on a yield-to-maturity of 5%.

We calculated the price of this bond to be 97.2768 CHF.

B If the yield to maturity were to rise by 1% then the present value

would fall from 97.2768 CHF to

P =
4

1.06
+

4

1.062
+

104

1.063
= 94.6540 [CHF] ,

so a price change of 94.6540− 97.2768 = −2.6228 CHF.

This is the exact price difference.
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Convexity in action

B If we use only the modified duration (Taylor expansion of first

degree), we approximate the change of price as

P(y)− P(y0) ≈ −D∗ · P(y0) ·∆y

= −2.74703 · 97.2768 · 0.01 = −2.6722 .

Comparing this to the exact price change, this approximation

overestimates the change of price by 2.6722− 2.6228 = 0.0494 [CHF].
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Convexity in action

B If we use the Taylor expansion up to the squared term, so if we use

modified duration and convexity, we will get a more accurate figure.

In this case, we get an additional term in the Tayor expansion,

1

2
κ(y0) · P(y0) · (∆y)2 =

1

2
· 10.3262 · 97.2768 · 0.012 = 0.0502 .

(Do not forget the factor 1/2 which arises from Taylor’s expansion!)

This improved approximation yields change of

P(y)− P(y0) ≈ −D∗ · P(y0) ·∆y +
1

2
κ(y0) · P(y0) · (∆y)2

= −2.6722 + 0.0502 = −2.622 .

Relative to the exact value this is only an error of

2.6228− 2.622 = 0.0008 [CHF].

This example illustrates that the second-order Taylor approximation

can lead to better results than a first-order approximation.
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Example: zero-coupon bonds

Example. Recall that a zero-coupon bond has only payment at maturity

equal to the face value CT = F ,

P(y) =
F

(1 + y)T
.

The first derivative is

P ′(y) = −T · F

(1 + y)T+1
= − T

1 + y
· F

(1 + y)T
= − T

1 + y
· P(y).

Hence, the modified duration is D∗(y) = T/(1 + y) and the Macaulay

duration is DM = T . The second derivative is

P ′′(y) = T (T + 1)
F

(1 + y)T+2
=

(T + 1)T

(1 + y)2
· P(y).

Hence, the convexity is given by κ(y) = (T+1)T
(1+y)2 .
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Remarks

Remark.

B Note the difference between the modified duration

D∗(y) = T/(1 + y) and the Macaulay duration DM(y) ≡ T .

B Duration is measured in periods, like T .

B Considering annual compounding, duration is measured in years,

whereas with semi-annual compounding duration is in half-years and

has to be divided by two for conversion to years.

B Dimension of convexity is expressed in periods squared.

B Considering semi-annual compounding, convexity is measured in

half-years squared and has to be divided by four for conversion to

years squared.
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Summary

Summary. Using the duration-convexity terminology developed so far, we

can rewrite the Taylor expansion for the change in the price of a bond, as

follows:

∆P := P(y0 + ∆y)− P(y0)

= −D∗(y0)P(y0)∆y +
1

2
κ(y0)P(y0)(∆y)2 + . . . ,

where

• duration measures the first-order (linear) effect of changes in yield,

• convexity measures the second-order (quadratic) term.
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Exercise

Exercise. What is the price impact of a 10-BP increase in yield on a

10-year zero-coupon bond whose price, modified duration and convexity

are P = 100 CHF, D∗ = 7 and κ = 50, respectively.

(a) = −0.705 (b) = −0.700 (c) = −0.698 (d) = −0.690

Solution: The correct answer is: (c).

The initial price is P(y0) = 100. The yield increase is 10-BP, which means

∆y = y1 − y0 = 10 · 0.0001 = 0.001.

The price impact is approximately

∆P = P(y1)− P(y0) ≈ −D∗(y0)P(y0)∆y +
1

2
κ(y0)P(y0)(∆y)2

= −7 · 100 · (0.001) +
1

2
· 50 · 100 · (0.001)2 = −0.6975 .
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Price approximation: Illustration

It is helpful to have a graphical representation of the duration-convexity

approximation. The graph (on the next slide) compares the following three

curves:

B The actual, exact price-yield relationship:

P(y) = P .

B The duration based estimate (first-order approximation):

P(y) = P(y0)− D∗(y0)P(y0)∆y .

B The duration and convexity estimate (second-order approximation):

P(y) = P(y0)− D∗(y0)P(y0)∆y +
1

2
κ(y0)P(y0)(∆y)2.
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Price approximation: Illustration

Figure 1: Solid black: The exact price-yield relationship. Dotted grey: Linear

approximation. Dash-dotted grey: second order approximation.
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Exercises

Exercise.*

a) Consider the function a : R→ R defined by a(x) = max(x , 0) = x+.

Explain at which point x0 and why the consideration of the Taylor

expansion is problematic. Notice, the payoff of an option is of this

form.

b) Derive the Taylor series of b : (0, 1)→ R given by b(x) = 1
1−x at the

point x0 = 0. What do you notice?

c) Consider the price of a zero-coupon bond, P(y) = CT

(1+y)T
. Write

down the Taylor polynomial up to the second derivative. In this

expression, identify the modified duration D∗ and the (bond)

convexity κ. Argue how convexity got its name. Do you think it is an

appropriate name? Compare also the example above.
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Conclusions



Conclusions

Conclusions.

B For small movements in the yield the duration-based linear

approximation provides a reasonable fit to the exact price. Including

the convexity term, increases the range of yields over which the

approximation remains reasonable.

B Dollar duration measures the (negative) slope of the tangent to the

price-yield curve at the point y0.

B When the yield rises, the price drops but less than predicted by the

tangent. If the yield falls, the price increases faster than in the

duration model. In other words, the quadratic term is always

beneficial.
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Conclusions

Notes.

B In economic terms, duration is the average time to wait for each

payment weighted by their present values.

B For the standard bonds considered so far, we have been able to

compute duration and convexity analytically. However, in practice

there exist bonds with more complicated features (such as

mortgage-backed securities with an embedded prepayment option),

for which it is not possible to compute duration and convexity in

closed form.

B Instead, we need to resort to numerical methods, in particular,

approximating the bond price sensitivities with finite differences.
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Appendix: Examples



Example 1

Consider a zero-coupon bond with CT > 0 CHF paid in T years.

Assuming that the annual compounding rate is y = 10% determine the

(a) the semi-annual compounding rate ys and

(b) the continuous compounding rate yc .
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Example 1: Solution

(a) For the semi-annual compounding rate we set

CT

(1 + y)T
=

CT(
1 + ys

2

)2T
.

Cancelling CT on both sides and “inverting” gives us

(1 + y)T =
(

1 +
ys
2

)2T
.

Hence, taking roots we get

(1 + y) =
(

1 +
ys
2

)2
.

And finally we get

ys = 2
√

1 + y − 2.
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Example 1: Solution

Inserting y = 10% in the derived equation, we obtain

ys = 2
√

1.1− 2 ≈ 0.0976.

So the semi-annual yield is about 9.76%.
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Example 1: Solution

(b) For the continuous compounding rate we set

CT

(1 + y)T
= exp (−ycT )CT .

Again, cancelling CT and inverting the fractions, we get

(1 + y)T = exp (ycT )

Finally, taking roots and applying the natural logarithm we get

(1 + y) = exp (yc) and yc = ln (1 + y) .
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Example 1: Solution

As above, using y = 10%, we get

yc = 0.0953,

and so the continuous compounding rate is about 9.53%.

Remark: as expected we have the relation

y > ys > yc .
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Homework exercises

Consider a zero-coupon bond which pays CT CHF in T years.

1. Assume that the semi-annual compounding rate is ys = 6% and

compute both the annual compounding rate y as well as the

continuous compounding rate yc .

2. Assume that the continuous compounding rate is yc = 7% and

compute both the annual compounding rate y as well as the

semi-annual compounding rate ys .
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Example 2

Consider a coupon bond with T = 3 years and a face value of 1000 CHF.

We assume yearly coupon payments with c = 2% and a yield of 1%.

Using the Taylor expansion results, compute the effect of an increase of

the yield with 1%.
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Example 2: Solution

Using second order expansion we know

P(y1) ≈ P(y0) + P ′(y0)(y1 − y0) +
1

2
P ′′(y0)(y1 − y0)2.

So we first compute P(y0), P ′(y0) and P ′′(y0).

It is easy to see that the cashflows are:

C1 = C2 = 0.02 · 1000 = 20

C3 = 1.02 · 1000 = 1020.

The price is given by

P(y) =
3∑

k=1

Ck

(1 + y)k
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Example 2: Solution

We differentiate to get

P ′(y) = −
3∑

k=1

k · Ck

(1 + y)k+1
= −

[
20

(1 + y)2
+

40

(1 + y)3
+

3060

(1 + y)4

]
,

and

P ′′(y) =
3∑

k=1

k(k + 1)Ck

(1 + y)k+2
=

40

(1 + y)3
+

120

(1 + y)4
+

12240

(1 + y)5
.

Now we insert y0 = 0.01 and obtain

P(y0) =
20

1.01
+

20

1.021
+

1020

1.0303
≈ 1029.4099 ,

P ′(y0) = −
[

20

1.021
+

40

1.0303
+

3060

1.0406

]
≈ −2999.0293 ,

P ′′(y0) =
40

1.0303
+

120

1.0406
+

12240

1.0510
≈ 11800.0813 .
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Example 2: Solution

Finally inserting these results in the Taylor expansion, we obtain with

y1 = 0.02,

P(y1) ≈ P(y0) + P ′(y0) · 0.01 +
1

2
P ′′(y0) · 0.012

≈ 1029.4099− 2999.0294 · 0.01 +
1

2
11800.0813 · 0.012

≈ 1000.0096.

Remark: This is a par bond since y1 = coupon rate. Consequently the

effective price is 1000 CHF. Compared to the effective price of 1000 CHF,

Taylor’s approximation method delivers a quite good approximation!
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Example 3

Using the concepts of duration and convexity, discuss the effect of a

decrease of the yield with 5 BP on the price of a zero-coupon bond, with

T = 5 years and P0 = 50 CHF assuming y0 = 8%.

Compare these results with the effective change.
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Example 3: Solution

(a) Using only duration we have:

P(y1)− P(y0) ≈ −D∗(y0)P0∆y .

Recall that we obtain D∗(y0) as before

D∗(y0) = −P ′(y0)

P(y0)
=

T

1 + y0
.

So for T = 5 and y = 0.08 we get

D∗(y0) =
5

1.08
≈ 4.6296.

So using only Duration, we obtain

∆P ≈ −4.6296 · 50 · (−0.0005) = 0.11574074 . . . .
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Example 3: Solution

(b) Using duration and convexity the approximation result is

P(y1)− P(y0) ≈ −D∗(y0)P(y0)∆y +
1

2
κ(y0)P(y0) (∆y)2 .

For κ we obtained:

κ(y0) =
P ′′(y0)

P(y0)
=

(T + 1)T

(1 + y0)2

Inserting T = 5 and y = 0.08 yields

κ(y0) =
6 · 5

(1.08)2
≈ 25.7202 .

Inserting this, we obtain for the approximation with duration and

convexity

P(y1)− P(y0) ≈ 0.11574 +
1

2
· 25.7202 · 50 · (−0.0005)2

= 0.11590149 . . . .
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Example 3: Solution

(c) Since we are considering a zero-coupon bond, the effective price

P(y1) can be computed as

P(y1) = P(y0) · (1 + y0)T

(1 + y1)T
.

Choosing T = 5 und y = 0.08, on gets

P(y1) = 50 ·
(

1.08

1.0795

)5

= 50.11590166 . . . .
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Example 3: Solution

Comparison:

Only duration ∆P = 0.11574074 . . . P1 = 50.11574074 . . .

duration & convexity ∆P = 0.11590149 . . . P1 = 50.11590149 . . .

effective value ∆P = 0.11590166 . . . P1 = 50.11590166 . . .

We see that when using duration and convexity we obtain a decent

approximation of the effective value.
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Appendix: Optional



Optional: not required for the exam

B Choose a change in the yield, ∆y , and reprice the bond under an

up-move scenario P+ = P(y0 + ∆y) and a down-move scenario

P− = P(y0 −∆y).

B Then approximate the first-order derivative with a centered finite

difference. From

D∗(y) = − 1

P(y)

dP(y)

dy

effective duration is estimated as:

D∗(y) ≈ 1

P(y0)
· P(y0 −∆y)− P(y0 + ∆y)

2∆y
= − 1

P0
· P+ − P−

2∆y
.
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Optional: not required for the exam

B Similarly, from

κ(y) =
1

P(y)

d2P(y)

dy2

effective convexity is estimated as:

κ(y) ≈ 1

P(y0)∆y
·
[
P(y0 −∆y)− P(y0)

∆y
− P(y0)− P(y0 + ∆y)

∆y

]
=

1

P(y0)
· P− − 2P(y0) + P+

(∆y)2
.
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