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Basic probability theory



Probability space

The very base of our quantitative studies is a probability space (Ω,F ,P)

consisting of

B a sample space Ω 6= ∅,

B a σ-algebra F ⊂ P(Ω), a subset of the power set of Ω, and

B a probability measure P : F → [0, 1].
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The sample space

The sample space Ω is an arbitrary non-empty set. The only assumption

here is non-emptiness, but it is important and needs to be stated!

The elements of Ω are usually denoted by ω for the simple reason that

‘small omegas’ live in the ‘big omega’. We may give them subscripts, bars,

hats, and so on, ω1, ωk , ω̄, ω̂.

In principle, you are free to use your imagination at the cost of

transparency: �, ?, ∈ Ω. However, we strongly advise you against doing

that. Some conventions are so firmly established that any deviation causes

confusion.
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The power set

By P(Ω) or 2Ω we denote the power set of Ω. This is the set of all subsets

of Ω, including the empty set ∅ and Ω.

Example. Consider the set S = {a, b, c}. All possible strict subsets are

{a}, {b}, {c}, {a, b}, {a, c}, {b, c}. Including the empty set and S itself,

we get the power set of S ,

P(S) =
{
∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}

}
.

Notice that S has |S | = 3 elements and |P(S)| = 8 = 23. This is true in

general for any finite set: if |S | = n ∈ N, then |P(S)| = 2n (exercise).

That is the reasoning behind the notation P(S) = 2S .
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A σ-algebra

Let Ω be some non-empty set. A σ-algebra or σ-field F over Ω is a subset

of the power set P(Ω) which satisfies the following three properties:

B Ω ∈ F ,

B if A ∈ F , then A{ := Ω \ A := {ω ∈ Ω | ω /∈ A} ∈ F (we say F is

closed under complementation),

B if A1,A2, . . . ∈ F , then ∪∞k=1Ak ∈ F (we say F is closed under

countable unions).

Exercise. Using the defining properties above, show that

B ∅ ∈ F , and

B if A1,A2, . . . ∈ F , then ∩∞k=1Ak ∈ F (use De Morgan’s laws).
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σ-algebra : Intuition

The σ-algebra is just a definition of which sets may be considered as

events.

Elements not in F simply have no defined probability measure.

Why are they important?

B It is not always possible to assign a measure to all subsets of Ω,

B Keeping track of σ-algebras allows us to formulate some key concepts

in probability very elegantly!
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(General) measures

Let Ω be a non-empty set and let F be a σ-algebra over Ω.

We call a function µ : F → R = R ∪ {−∞,+∞} a measure if it satisfies

B µ(∅) = 0,

B non-negativity: for all F ∈ F we have µ(F ) ≥ 0, and

B countable additivity (σ-additivity): for any countable collection

{Fk}∞k=1 ⊂ F of pairwise disjoint sets we have

µ(∪∞k=1Fk) =
∑∞

k=1 µ(Fk).

In general, we call a set together with a σ-algebra over that set, in our case

the pair (Ω,F), a measurable space, since we can define a measure on it.

Elements of F are called measurable sets.

The triplet (Ω,F , µ) is called a measure space.
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Probability measures

Let Ω be a non-empty set and let F be a σ-algebra over Ω.

We call a function P : F → [0, 1] a probability measure if it satisfies

B P[∅] = 0 and P[Ω] = 1, and

B P is countably additive.

Notice that a probability measure is a special kind of measure with total

measure of one.

For a probability measure P, we call the triplet (Ω,F ,P) a probability

space.
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Real-valued random variables

Let (Ω,F ,P) be a probability space and let B(R) be the Borel σ-algebra

on R. This is (without going into much detail here) the smallest σ-algebra

on R which contains all the intervals.

In particular, sets of the form (−∞, x ] for some x ∈ R are elements of

B(R).

A real-valued random variable is a measurable function X : Ω→ R. This

means that for every set B ∈ B(R) the preimage

X−1(B) := {ω ∈ Ω | X (ω) ∈ B} is an element of F .

To emphasise the dependence of measurability on the underlying

σ-algebra, authors also write X : (Ω,F)→ (R,B(R)).
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Real-valued random variables

The probability that X takes on a value in a specified measurable set

B ∈ B(R) is written as

P[{ω ∈ Ω | X (ω) ∈ B}] .

Most of the time, we will abbreviated the set {ω ∈ Ω | X (ω) ∈ B} by

{X ∈ B} and hence, we will write P[X ∈ B].

Notice that X−1(B) = {X ∈ B} and that already here the notion of

measurability is essential: the set {X ∈ B} has to be an element of F so

that we can measure it!
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Cumulative distribution function (cdf)

Every real-valued random variable X can be described by its cumulative

distribution function (cdf) FX : R→ [0, 1] defined as

FX (x) = P[X ≤ x ] .

Notice that, as mentioned above, {X ≤ x} = X−1((−∞, x ]) ∈ F .

Exercise. Argue that any cdf F is increasing and that

lim
x→−∞

F (x) = 0 and lim
x→+∞

F (x) = 1 .
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Discrete random variables

We call a real-valued random variable X : Ω→ S for some S ⊂ R discrete

if its image is finite or countably infinite.

The function fX : S → [0, 1] which gives the probability that X is exactly

equal to a certain value in its image is called probability mass function

(pmf) (not pdf!),

fX (x) = P[X = x ] for x ∈ S .

Notice that we can assume without loss of generality (w.l.o.g.) that these

probabilities are non-zero if we restrict S to the image of X .

Since the image of X is at most countably infinite, we can also enumerate

the corresponding probabilities. That means for every xk in the image of

X we can define pk = P[X = xk ] = fX (xk).

Exercise. Argue that
∑

x∈S fX (x) =
∑∞

k=1 pk = 1.
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Discrete random variables

Exercise. Let Ω = {ω1, . . . , ω6} describe all possible states after rolling a

six faced dice, that is ω1 = {After rolling the dice, it shows ‘1’}, . . . ,

ω6 = {After rolling the dice, it shows ‘6’}.

The discrete random variable which gives us the value of the dice is

defined as X (ω1) = 1, . . . ,X (ω6) = 6.

We assume that the dice is perfect, that means every face has the same

probability, P[ω1] = . . . = P[ω6] = 1
6 .

Write down the cumulative distribution function FX (x) = P[X ≤ x ] of X .

Recall that {X ≤ x} = {ω ∈ Ω | X (ω) ≤ x}.
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Continuous random variables

We say X is a continuous random variable if its cdf is continuous. In

particular, this implies that the image of X is uncountably infinite.

If X is absolutely continuous, then X admits a probability density function

(pdf) fX which assigns probabilities to intervals.

We have

P[a ≤ X ≤ b] =

∫ b

a
fX (x)dx ,

in particular, we have

FX (b) =

∫ b

−∞
fX (x)dx .
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Continuous random variables

Example. Let X be (continuous) uniformly distributed on the closed

interval [a, b] for −∞ < a < b <∞. We write X ∼ U(a, b). By

definition, the pdf is given by

fX (x) =

 1
b−a for a ≤ x ≤ b ,

0 else.

Hence, the cdf is given as

FX (x) =

∫ x

−∞
fX (t)dt =


0 for x < a ,

x−a
b−a for a ≤ x ≤ b ,

1 for x > b .
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Continuous random variables

Exercise. Let X be a absolutely continuous random variable with cdf FX

and pdf fX .

B Show that F ′X (x) = fX (x) (use the first fundamental theorem of

calculus).

B Argue that P[X = x ] = 0 for any x ∈ R.
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Expected value

The expected value (or expectation, mean, average, first moment) of a

random variable X intuitively characterises the central tendency or

long-run average value.

For absolutely continuous random variables it is defined via the integral

E[X ] =

∫ ∞
−∞

x fX (x) dx .

In the discrete case, the integral becomes a sum

E[X ] =
∞∑
k=1

xkP[X = xk ] =
∞∑
k=1

xkpk .
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Expected value

Example. Let X ∼ U(a, b), then the expected value of X is

E[X ] =

∫ ∞
−∞

x fX (x) dx =

∫ b

a

x

b − a
dx =

x2

2(b − a)

∣∣∣b
x=a

=
b2 − a2

2(b − a)
=

a + b

2
.

Now let X denote the value of a perfect dice as in the example above.

The expected value of X is

E[X ] =
∞∑
k=1

xkP[X = xk ] =
6∑

k=1

k
1

6
=

21

6
= 3.5 .
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Expected value: Linearity

Exercise. Show that the expectation is a linear functional. This means

that for any random variables X ,Y and any real number c ∈ R we have

B E[X + Y ] = E[X ] + E[Y ], and

B E[cX ] = cE[X ].
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Variance and standard deviation

The variance of a random variable is the expectation of the squared

deviation from its mean. It is defined as

Var(X ) = V[X ] = E[(X − E[X ])2] .

The standard deviation (std) σ(X ) of a random variable X is the square

root of its variance,

σ(X ) =
√

V[X ] .
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Variance and standard deviation

Exercise. Let X be a random variable and let c ∈ R. Show that

B V[X ] = E[X 2]− E[X ]2 (use linearity of the expected value),

B V[X + c] = V[X ],

B V[cX ] = c2V[X ].

Find an example of two random variables X ,Y such that

V[X + Y ] 6= V[X ] + V[Y ] .

Hint: Make it simple by taking for example Ω = {ω1, ω2} and defining

X (ω1) = 1 and X (ω2) = 0. What could be a possible definition for Y ?
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Variance and standard deviation

Example. Let X ∼ U(a, b), then the variance of X is

V[X ] = E[X 2]− E[X ]2 =

∫ b

a

x2

b − a
dx −

(a + b

2

)2

=
x3

3(b − a)

∣∣∣b
x=a
−
(a + b

2

)2
=

b3 − a3

3(b − a)
−
(a + b

2

)2
.

We can now expand the fraction so that we have the same denominator

and get

V[X ] =
4(b3 − a3)− 3(b − a)(a + b)2

12(b − a)

=
b3 + 3ba2 − 3ab2 − a3

12(b − a)
=

(b − a)3

12(b − a)
=

(b − a)2

12
.
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Variance and standard deviation

Example. Let X denote the value of a dice again. The variance of X is

given by

V[X ] = E[X 2]− E[X ]2 =
6∑

k=1

k2 1

6
−
(21

6

)2
=

91

6
−
(21

6

)2

=
35

12
= 2.916̄ .
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Normal distribution

Example. One of the most prominent continuous probability distributions

is the normal or Gauss distribution. We say a random variable X is

normally distributed with mean (or location parameter) µ and variance (or

scale parameter) σ2 and we write X ∼ N (µ, σ2) if its probability density

function is given by

fX (x) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
.

We call an X ∼ N (0, 1) a standard normal random variable.

For the density function of a standard normal random variable, by

convention, we often use the symbol ϕ,

ϕ(x) =
1√
2π

exp

(
−x2

2

)
,

and for its cumulative distribution function we use Φ.
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Normal distribution

Notice that

fX (x) =
1

σ
ϕ

(
x − µ
σ

)
.

Exercise. Let X ∼ N (µ, σ2). We call the location parameter µ the mean

and the scale parameter σ2 the variance of X . But are they really what

their names suggest? Let’s find out.

First of all, you have to either accept the fact, that∫ ∞
−∞

e
−x2

2σ2 dx =
√

2πσ2 ,

or ask in the break or after the lecture how you can calculate this.
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Normal distribution - expected value

So we want to show that

E[X ] =
1√

2πσ2

∫ ∞
−∞

xe−
(x−µ)2

2σ2 dx = µ .

We start with the substitution z = x − µ with dz = dx . We notice that

the limits stay the same.

Hence, we get

E[X ] =
1√

2πσ2

∫ ∞
−∞

(z + µ)e−
z2

2σ2 dz

=
1√

2πσ2


∫ ∞
−∞

ze−
z2

2σ2 dz︸ ︷︷ ︸
=0

+µ

∫ ∞
−∞

e−
z2

2σ2 dz︸ ︷︷ ︸
=
√

2πσ2

 = µ .

Notice that the first integral evaluates to 0, since ze−
z2

2σ2 is an odd

function.
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Normal distribution - variance

Next we want to show that

V[X ] = E[X 2]− E[X ]2 = E[X 2]− µ2 = σ2 .

So we have to calculate E[X 2]. Using the same substitution as above, we

get

E[X 2] =
1√

2πσ2

∫ ∞
−∞

(z + µ)2e−
z2

2σ2 dz

=
1√

2πσ2

(
µ2

∫ ∞
−∞

e−
z2

2σ2 dz︸ ︷︷ ︸
=
√

2πσ2

+2µ

∫ ∞
−∞

ze−
z2

2σ2 dz︸ ︷︷ ︸
=0

+

∫ ∞
−∞

z2e−
z2

2σ2 dz

)

= µ2 +
1√

2πσ2

∫ ∞
−∞

z2e−
z2

2σ2 dz .

Hence, we can already intuit that the second term must evaluate to σ2.
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Normal distribution - variance

To show this, we want use a second substitution x = z2 with dx = 2zdz .

However, since we are integrating from −∞, we cannot directly do that.

Instead, we notice that the integrand is an even function and thus, we can

split the integral in two equal parts at 0. We get∫ ∞
−∞

z2e−
z2

2σ2 dz = 2

∫ ∞
0

z2e−
z2

2σ2 dz = 2

∫ ∞
0

xe−
x

2σ2
1

2
√
x
dx

=

∫ ∞
0

√
xe−

x
2σ2 dx .

Next, we use integration by parts to get∫ ∞
0

√
xe−

x
2σ2 dx = −2σ2e−

x
2σ2
√
x
∣∣∞
x=0

+ σ2

∫ ∞
0

1√
x
e−

x
2σ2 dx .

Notice that the first term is equal to 0.
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Normal distribution - variance

Finally, we substitute again with x = z2, dx = 2zdz and arrive at

σ2

∫ ∞
0

1√
x
e−

x
2σ2 dx = σ2

∫ ∞
0

1

z
2ze−

z2

2σ2 dz = σ2
√

2πσ2 .

Plugging everything in, we get

V[X ] = E[X 2]− E[X ]2 = µ2 + σ2 − µ2 = σ2 .

We conclude that calling the location parameter µ ‘mean’ and the scale

parameter σ2 ‘variance’ is justified.
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Standard normal distribution

With the above results we can easily show that any normally distributed

random variable X ∼ N (µ, σ2) can be written in terms of a standard

normally distributed random variable Z ∼ N (0, 1) as

X = µ+ σZ .

Indeed, we have

E[µ+ σZ ] = µ+ σE[Z ] = µ = E[X ]

and

V[µ+ σZ ] = σ2V[Z ] = σ2 = V[X ] .
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Covariance

The covariance between two real-valued random variables X and Y (with

finite second moment) is the expected value of the product of their

deviations from their expected values,

cov(X ,Y ) = σXY = σ(X ,Y ) = E[(X − E[X ])(Y − E[Y ])] .

Using the linearity of the expected value, we can simplify it to

cov(X ,Y ) = E[(X − E[X ])(Y − E[Y ])]

= E[XY − XE[Y ]− E[X ]Y + E[X ]E[Y ]]

= E[XY ]− E[X ]E[Y ] .
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Pearson’s correlation coefficient

Pearson’s correlation coefficient is a measure of the linear correlation

between two (non-constant) random variables X and Y , and it is defined

as

ρX ,Y =
cov(X ,Y )√
V[X ]

√
V[Y ]

=
σX ,Y
σXσY

.

If two random variables are independent, then they are also (linearly)

uncorrelated. It is a common misconception that the reverse is also true.

Uncorrelatedness does not imply independence! Bear this in mind, we will

define independence below.

Exercise. Let X and Y be two random variables. Show that Pearson’s

correlation coefficient always lies in the interval [−1, 1]. Use the

Cauchy-Schwarz inequality.
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Variance: sum of random variables

We have already seen, that the expected value is linear and that the

variance, in general, is not. Indeed, the variance of the sum of two random

variables is given by

V[X + Y ] = E[(X + Y )2]− E[X + Y ]2

= E[X 2 + 2XY + Y 2]− E[X ]2 − 2E[X ]E[Y ]− E[Y ]2

= E[X 2]− E[X 2] + E[Y 2]− E[Y ]2 + 2(E[XY ]− E[X ]E[Y ])

= V[X ] + V[Y ] + 2cov(X ,Y ) .

Note that the variance of a sum is the sum of variances only if the

variables are uncorrelated.
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Expectation and variance of a portfolio

We can extend these results to a general weighted sum of random

variables. Let {Xk}nk=1 be a family of random variables. Define

Y =
n∑

k=1

wkXk .

This could represent a portfolio of assets, where Xk represents, for

example, the return of asset k. We assume that
∑n

k=1 wk = 1, that

means we invest all our wealth in the portfolio.

By linearity of the expected value, we immediately get that the expected

value of the weighted sum is the weighted sum of the expected values,

E[Y ] = E
[ n∑
k=1

wkXk

]
=

n∑
k=1

E[wkXk ] =
n∑

k=1

wkE[Xk ] .
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Expectation and variance of a portfolio

Calculating the variance, we need to be more careful.

V[Y ] = V
[ n∑
k=1

wkXk

]
= E

[( n∑
k=1

wkXk

)2]
− E

[ n∑
k=1

wkXk

]2

= E
[ n∑
k=1

n∑
`=1

wkw`XkX`

]
−

n∑
k=1

n∑
`=1

wkw`E[Xk ]E[X`]

=
n∑

k=1

n∑
`=1

wkw`
(
E[XkX`]− E[Xk ]E[X`]

)
.

=
n∑

k=1

n∑
`=1

wkw` cov(Xk ,X`)

=
n∑

k=1

w2
kV[Xk ] + 2

∑
k<`

wkw`cov(Xk ,X`) .
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Expectation and variance of a portfolio

Since this is a lot to write, we want to abbreviate it and use matrix

notation. For this we define the weight vector w = (w1, . . . ,wn)ᵀ and the

covariance matrix

Σ =


cov(X1,X1) cov(X1,X2) · · · cov(X1,Xn)

cov(X2,X1) cov(X2,X2) · · · cov(X2,Xn)
...

...
. . .

...

cov(Xn,X1) cov(Xn,X2) · · · cov(Xn,Xn)


Now we can compactly write the variance of the sum as

V[Y ] = wᵀΣw .

Exercise. Make sure that wᵀΣw is indeed equal to∑n
k=1

∑n
`=1 wkw` cov(Xk ,X`).
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Skewness

The skewness of a real-valued random variable is a measure of the

asymmetry of the distribution about its mean. It is defined as the third

standardised moment

γ1(X ) = E

[(
X − E[X ]√

V[X ]

)3 ]
= E

[(
X − µ
σ

)3
]
.

We differentiate between

B negative skewness: long left tail (high probability of observing large

negative values), and

B positive skewness: long right tail (high probability of observing large

positive values).
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Kurtosis

The kurtosis of a real-valued random variable is (roughly speaking) a

measure of the width of its tails. It is defined as the fourth standardised

moment,

Kurt[X ] = γ2(X ) = κ(X ) = E

[(
X − µ
σ

)4
]
.

B A distribution with kurtosis of 3 is considered average and it is called

mesokurtic. Any normally distributed random variable has kurtosis

of 3. In fact, excess kurtosis is defined as kurtosis minus 3.

B A distribution with kurtosis greater than 3 is called leptokurtic. It

indicates fatter tails.

B A distribution with kurtosis smaller than 3 is called platykurtic. It

indicates thinner tails.
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Kurtosis of a normal random variable

Exercise. As mentioned above, the kurtosis of any normally random

variable is equal to 3. Using the fact that X−µ
σ ∼ N (0, 1) and the ‘tricks’

we used to calculate the expectation and variance, prove this result.

Hint: First use the substitution z = x2, then use integration by parts, and

finally substitute back.
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Importance of skewness and kurtosis

Two types of risks emerge:

B Skewness risk: risk that results when observations are not spread

symmetrically around the average value. Ignoring this will cause the

model to understate the risk of variables with high skewness.

B Kurtosis risk: kurtosis is associated with a high level of risk for an

investment because it indicates that there are high probabilities of

extremely large and extremely small returns.

Not taking them into account can thus severely impare our model.
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A gambler and his two dice

Example. A gambler wants to know the expected value of the outcome of

throwing two dice simultaneously.

B He writes down all possible outcomes: xk ∈ {2, 3, . . . , 12}.

B He determines the probabilities f (xk) as all possibilities to achieve xk

divided by the total number of outcomes, which is 62 = 36. We get

f (2) =
1

36
= 0.027̄

f (3) =
2

36
= 0.05̄

f (4) =
3

36
= 0.083̄

f (5) =
4

36
= 0.1̄

f (6) =
5

36
= 0.138̄

f (7) =
6

36
= 0.16̄

f (8) =
5

36
= 0.138̄

...

f (11) =
2

36
= 0.05̄

f (12) =
1

36
= 0.027̄
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A gambler and his two dice

B Then he computes all values xk f (xk). The first values are:

x1f (x1) = 2 · f (2) = 0.05̄

x2f (x2) = 3 · f (3) = 0.16̄

x3f (x3) = 4 · f (4) = 0.3̄ ,

and so on.

B He sums up across all events and calculates the mean as

µ =
12∑
k=1

xk f (xk) = 7 .

He notes, that this is also the median, since the distribution is

symmetrical.
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A gambler and his two dice

Exercise. By now, he is so intrigued by all these calculations, that he does

not want to stop there. He decides to also calculate the variance, the

skewness, and the kurtosis. He wonders if you can check and verify his

results :)

B All terms (xk − µ)2 f (xk) sum up to
∑

(xk − µ)2 f (xk) = 5.833 or,

taking the square root, σ = 2.4152.

B All terms (xk − µ)3 f (xk) sum up to zero, since for each entry with a

positive deviation (xk − µ)3 there is an identical one with a negative

sign and with the same probability. Hence, the skewness is zero.

B All terms (xk − µ)4 f (xk) sum up to 80.5. dividing by σ4 = 34.0278,

he calculates the kurtosis of 2.3657.
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Joint cumulative distribution function

We now extend the notion of a cumulative distribution function to

multiple random variables.

For two random variables X and Y we define the joint (bivariate)

distribution function as

FX ,Y (x , y) = P[X ≤ x ,Y ≤ y ] = P[{X ≤ x} ∩ {Y ≤ y}]
= P[{ω ∈ Ω | X (ω) ≤ x and Y (ω) ≤ y}] .

The joint probability density function fX ,Y for two absolutely continuous

random variables is defined as the derivative with respect to both

arguments,

fX ,Y (x , y) =
∂2FX ,Y (x , y)

∂x∂y
.

Notice that

FX ,Y (x , y) =

∫ x

−∞

∫ y

−∞
fX ,Y (s, t)dsdt
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Joint cumulative distribution function

Naturally, we can define the joint cdf for any finite number of random

variables X1, . . . ,Xn,

FX1,...,Xn(x1, . . . , xn) = P[X1 ≤ x1, . . . ,Xn ≤ xn] .

The joint density is similarly defined as

fX1,...,Xn(x1, . . . , xn) =
∂nFX1,...,Xn(x1, . . . , xn)

∂x1 · · · ∂xn
,

and again we have

FX1,...,Xn(x1, . . . , xn) =

∫ x1

−∞
· · ·
∫ xn

−∞
fX1,...,Xn(t1, . . . , tn) dt1 · · · dtn .
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Independence of events

We say two elements A and B of a σ-algebra are independent and we

write A ⊥ B if

P[A ∩ B] = P[A]P[B] .

To see why we call this property independence, we recall the definition of

the conditional probability and use ‘independence’,

P[A | B] =
P[A ∩ B]

P[B]
=

P[A]P[B]

P[B]
= P[A] .

So the probability of A stays the same independent of the occurrence of

B. The same is true the other way around

P[B | A] =
P[B ∩ A]

P[A]
= P[B] .
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Independence of two random variables

This notion of independence can now easily be translated to the

independence of two random variables.

We say two random variables X and Y are independent if for all x , y ∈ R
the sets {X ≤ x} and {Y ≤ y} are independent.

From here we directly get the equivalent property that the joint cdf is the

product of the individual cdf’s. That is, for all x , y ∈ R we have

FX ,Y (x , y) = FX (x)FY (y) .

This is also equivalent (if all densities exists) that for all x , y ∈ R, we have

fX ,Y (x , y) = fX (x)fY (y) .
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Independence of random variables

For the independence of more than two random variables we differentiate

between pairwise independence and mutual independence.

We say a set {X1, . . . ,Xn} of random variables is pairwise independent if

every pair of random variables is independent (as defined above).

However, we say they are mutually independent if for all x1, . . . , xn ∈ R we

have

FX1,...,Xn(x1, . . . , xn) = FX1(x1) · . . . · FXn(xn) .
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Independence implies uncorrelatedness

As already mentioned, if two random variables X and Y are independent,

then they are also uncorrelated. A short calculation shows that,

E[XY ] =

∫ ∞
−∞

∫ ∞
−∞

xy fX ,Y (x , y) dxdy

=

∫ ∞
−∞

∫ ∞
−∞

xy fX (x)fY (y)dxdy

=

∫ ∞
−∞

xfX (x)

(∫ ∞
−∞

yfY (y) dy

)
dx

=

(∫ ∞
−∞

xfX (x)dx

)(∫ ∞
−∞

yfY (y) dy

)
= E[X ]E[Y ] .

Hence, cov(X ,Y ) = E[XY ]− E[X ]E[Y ] = 0 and hence ρX ,Y = 0.
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Uncorrelated but not independent!

However, if two random variables X and Y are uncorrelated, then they do

not have to be independent.

One of the standard example is the following. Consider X ∼ U(−1, 1) and

define Y = X 2. Clearly, X and Y are not independent! But there

correlation is 0, so there uncorrelated,

cov(X ,Y ) = E[XY ]− E[X ]E[Y ] = E[X 3]− E[X ]E[X 2]

= E[X 3] =

∫ 1

−1

1

2
x3dx = 0 .

Exercise. Come up with an own example of uncorrelated but dependent

random variables.
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Lognormal distribution

Exercise. We want to practice working with distributions by means of the

log-normal distribution. The log-normal distribution is often use to model

returns of stocks.

We say X is log-normally distributed and write X ∼ logN (µ, σ2) if

Y = log(X ) ∼ N (µ, σ2).

B First of all, show that X ∼ logN (µ, σ2) can be written as

X = exp(µ+ σZ ), where Z ∼ N (0, 1).

B Now show that E[X ] = exp(µ+ σ2

2 ). You will have to calculate

E[eσZ ]. For this write down the integral and complete the square.

Try using (z − σ)2.

B Derive the density function of X . Notice that it is only defined on

(0,+∞). You will get

f (x) =
1

x
√

2πσ2
exp

[
−(log x − µ)2

2σ2

]
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Appendix



Maximum Likelihood (ML) methods

How are the parameters estimated from historical data in the models we

have been considering?

A commonly applied approach is known as the maximum likelihood (ML)

method.

It involves choosing values for the parameter that maximise the chance (or

likelihood) of the data occurring.
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In General

Suppose we have a sample x1, x2, . . . , xN of N i.i.d. random variables,

coming from a parametric model.

B The joint density function of the observations is

f (x1, x2, . . . , xN |θ) = f1(x1|θ) · f2(x2|θ) · . . . · fn(xN |θ),

where θ summarises the model parameters.

B The idea of the maximum likelihood (ML) method is to choose θ

such that the joint density function is maximised, given the observed

sample of data.

B A natural tool to this end is the likelihood function, which we define

as

L(θ|x1, x2, . . . , xN) := f (x1, x2, . . . , xN |θ) =
N∏
i=1

fi (xi |θ).
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In General

To convert the product to summation (which is easier to handle on a

computer), we take the logarithm. The result is called the log-likelihood:

logL(θ|x1, x2, . . . , xn) =
n∑

i=1

log(fi (xi |θ)).

The ML method estimates θ by finding a value for θ that maximises

logL(θ|x1, x2, . . . , xn), that is,

θ̂mle := arg max
θ

logL(θ|x1, x2, . . . , xn).
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Example: Estimating a constant variance

Estimate the variance of a variable X from m observations on X when the

underlying distribution is normal with zero mean.

Let u1, u2, ... denote the sample of m observations and denote the

unknown variance parameter by v .

The likelihood of ui being observed is the probability density function for

X when X = ui

1√
2πv

exp

(
−u2

i

2v

)
.

The likelihood of m observations occurring in order in which they are

observed is
m∏
i=1

[
1√
2πv

exp

(
−u2

i

2v

)]
.

Using the maximum likelihood method, the best estimate of v is the value

that maximises this expression.
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Estimating a constant variance

Maximising an expression is equivalent to maximising the logarithm of

that expression, since the logarithm is strictly increasing.

Taking logarithms and ignoring constant multiplicative factors, it can be

seen that we wish to maximise

m∑
i=1

[
− log v −

u2
i

v

]
.

Differentiating this expression with respect to v and setting the result

equation to zero, we see that the maximum likelihood estimator of v is

1

m

m∑
i=1

u2
i .
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The linear model

The natural starting point for learning about statistical data analysis is

with a sample of independent identically distributed (i.i.d.) data, say

Y = (Y1, . . . ,Yn), as for example in an idealized experiment of randomly

drawing a marble from an urn.

The linear regression model relaxes both assumptions

B allowing the means of the Yi to depend, in a linear way, on other

additional variables,

B allowing for the Yi to have different variances, and

B allowing for correlation between the Yi .

The linear regression model:

B is of fundamental importance in a large variety of quantitative

disciplines, and

B it forms the basis of many complex and seemingly unrelated models.
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Regressors

The univariate linear regression model relates the scalar random variable

Y to k other (possibly random) variables, or regressors, x1, . . . , xk as

Y = β1x1 + β2x2 + · · ·+ βkxk + ε, where, typically, ε ∼ N
(
0, σ2

)
.

Values β1, . . . , βk and σ2 are unknown, constant parameters to be

estimated from the data.

To emphasise that the means of the Yi are not constant, we write

Yi = β1xi ,1 + β2xi ,2 + · · ·+ βkxi ,k + εi , i = 1, 2, . . . , n .

The εi represent the difference between the values of Yi and the model∑k
j=1 βjxi ,j , and so are referred to as the error terms.
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Example

Notice that the error terms are i.i.d., but the Yi are not. However, if we

take k = 1 and xi ,1 ≡ 1, then the above equation reduces to

Yi = β1 + εi
i.i.d.∼ N

(
β1, σ

2
)
.

In fact, it is usually the case that xi ,1 ≡ 1 for any k ≥ 1, in which case the

model is said to include a constant or have an intercept term.

In certain applications, the ordering of the dependent variable and the

regressors is important, because they are observed in time, usually equally

spaced. For this we use the notation Yt , we get

Yt = β1xt,1 + β2xt,2 + · · ·+ βkxt,k + εt , t = 1, 2, . . . ,T .
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Example

An important special case is with k = 2, xt,1 = 1, and xt,2 not constant.

Then

Yt = β1 + β2Xt + εt , t = 1, . . . ,T ,

is referred to as the simple linear regression model.

The goal is to find β1 and β2 which provide a ‘best’ fit. One possibility is

to minimise the square-error, that is minimise the function

S(β1, β2) =
T∑
t=1

ε2
t =

T∑
t=1

(Yt − β1 − β2Xt)
2 .
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Example

For this, we set the partial derivatives equal zero, and solve for β1 and β2,

∂β1S(β1, β2) = −2
T∑
t=1

(Yt − β1 − β2Xt)
!

= 0 , hence, β̂1 = Ȳ − β2X̄ .

Substituting β̂1 in S and differentiating with respect to β2 gives us

∂β2S(β̂1, β2) = ∂β2

(
T∑
t=1

(Yt − Ȳ − β2(Xt − X̄ ))2

)

= −2
T∑
t=1

(Yt − Ȳ − β2(Xt − X̄ ))(Xt − X̄ )
!

= 0 ,

which leads us to

β̂2 =

∑T
t=1(Yt − Ȳ )(Xt − X̄ )∑T

t=1(Xt − X̄ )2
=

Cov(X ,Y )

Var(X )
.
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Example (contn’d)

So we have

β̂1 = Ȳ − Cov(X ,Y )

Var(X )
X̄ and β̂2 =

Cov(X ,Y )

Var(X )
.

In order to verify that this indeed provides a minimum, we consider the

second partial derivatives,

∂β1β1S = 2T > 0 , ∂β2β2S = 2
T∑
t=1

X 2
t > 0 , and

∂β1β2S = ∂β2β1S = 2
T∑
t=1

Xt .

Hence, (∂β1β1S)(∂β2β2S)− (∂β1β2S)2 = 4(T
∑T

t=1 X
2
t − (

∑T
t=1 Xt)

2) > 0,

confirming a minimum.
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Figure 1: Linearly correlated data and the simple linear regression model
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Figure 2: Linearly correlated data and the simple linear regression model
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Figure 3: Nonlinearly correlated data and the simple linear regression model
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Figure 4: Nonlinearly correlated data and linear regression with three regressors
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General linear regression model

We see that the simple linear regression model quickly reaches its limits.

So we want to consider the general case.

Using standard matrix notation, with Y = (Y1, . . .YT )′,

β = (β1, . . . , βk)′, xt = (xt,1, . . . , xt,k)′,

X =

x′1
...

x′T

 =


x1,1 x1,2 · · · x1,k

x2,1 x2,2 · · · x2,k
...

...
...

xT ,1 xT ,2 xT ,k

 , and ε ∼ N
(
0, σ2IT

)
,

we can compactly express the model as

Y = Xβ + ε.

Notice that Y ∼ N
(
Xβ, σ2IT

)
.
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Ordinary least squares (OLS)

The method we used before is the most popular way of estimating the k

parameters in β, namely, the method of least squares, which takes

β̂ = arg min S(β), where

S(β) = S(β; Y,X) = (Y − Xβ)′ (Y − Xβ) =
T∑
t=1

(
Yt − x′tβ

)2
.

This is referred to as ordinary least squares.

Assume that X is of full rank k . Using matrix calculus, we get

∂ S(β) /∂β = −2X′ (Y − Xβ) ,

and setting this to zero yields the solution

β̂ =
(
X′X

)−1
X′Y.

This is referred to as the ordinary least squares (o.l.s.) estimator of β.
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Ordinary least squares (OLS)

To verify that β̂ = (X′X)−1 X′Y indeed corresponds to the minimum of

S(β), the second derivative is checked for positive definiteness, yielding

∂2 S(β) /∂β∂β′ = 2X′X,

which is necessarily positive definite when X is full rank.
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Example

Observe that, if X = 1, then

β̂ = (1′1)−11′Y =
1

T

T∑
t=1

Yt = Ȳ , the mean of the Yt .

Also, if k = T (and X is full rank), then

β̂ =
(
X′X

)−1
X′Y = X−1

(
X′
)−1

X′Y = X−1Y

and using this we get S
(
β̂
)

=
(

Y − Xβ̂
)′ (

Y − Xβ̂
)

= 0.
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Example

Notice that the derivation of β̂ did not involve any explicit distributional

assumptions. Consequently, the estimator may not have any meaning if

the maximally existing moment of the {εt} is too low.

B Take for example X = 1 and let εt
i.i.d.∼ Cauchy. Then β̂ = Ȳ is a

useless estimator.

B Assume that the first moment of the {εt} exists and is zero. Writing

β̂ =
(
X′X

)−1
X′ (Xβ + ε) = β +

(
X′X

)−1
X′ε,

we see that β̂ is unbiased, which means that

E[β̂] = β +
(
X′X

)−1
X′E[ε] = β.
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B Next, if we have existence of second moments, and Var(ε) = σ2I,

then

Var(β̂ | σ2) = E[(β̂ − β)(β̂ − β)′ | σ2]

=
(
X′X

)−1
X′E

[
εε′
]

X
(
X′X

)−1
= σ2

(
X′X

)−1
.

The Gauss-Markov Theorem tells us that β̂ has the smallest variance

among all linear unbiased estimators. We call such an estimator

BLUE – best linear unbiased estimator.

To see this, consider another linear estimator β̂
∗

= A′Y and let

D = A− X(X′X)−1. The unbiased property E
[
β̂
∗] !

= β implies that

D′X = 0.

Next, we calculate Var
(
β̂
∗
| σ2

)
= Var(β̂ | σ2) + σ2D′D. The result

follows because D′D is positive semi-definite and the variance is

minimized when D = 0.
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B Next, if we have existence of second moments, and Var(ε) = σ2I,

then

Var(β̂ | σ2) = E[(β̂ − β)(β̂ − β)′ | σ2]

=
(
X′X

)−1
X′E

[
εε′
]

X
(
X′X

)−1
= σ2

(
X′X

)−1
.

The Gauss-Markov Theorem tells us that β̂ has the smallest variance

among all linear unbiased estimators. We call such an estimator

BLUE – best linear unbiased estimator.

To see this, consider another linear estimator β̂
∗

= A′Y and let

D = A− X(X′X)−1. The unbiased property E
[
β̂
∗] !

= β implies that

D′X = 0.

Next, we calculate Var
(
β̂
∗
| σ2

)
= Var(β̂ | σ2) + σ2D′D. The result

follows because D′D is positive semi-definite and the variance is

minimized when D = 0.
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Maximum Likelihood

In many situations, it is reasonable to assume normality for the {εt}. In

this case, we can estimate σ2 and βi , i = 1, . . . , k , by maximum likelihood.

We start with the density function

fY (y) = (2πσ2)−T/2 exp
{
− 1

2σ2
(y − Xβ)′ (y − Xβ)︸ ︷︷ ︸

=S(β;y,X)

}
,

and the log-likelihood

`
(
β, σ2; Y

)
= −T

2
log (2π)− T

2
log
(
σ2
)
− 1

2σ2
S(β) .
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Maximum Likelihood

To get the Maximum Likelihood Estimator (m.l.e.) we have to solve

∂`

∂β
= − 2

2σ2
X′ (Y − Xβ)

!
= 0

and

∂`

∂σ2
= − T

2σ2
+

1

2σ4
S(β)

!
= 0.

This yields the same estimator for β and the m.l.e. of σ2, namely

β̂ =
(
X′X

)−1
X′Y and σ̃2 = S(β̂)/T .
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Appendix A: Cauchy-Schwarz inequality

Let X ,Y real valued random variables with finite second moment. Then:

E[XY ] ≤ E[X ]2E[Y ]2,

with equality if X = αY for some α ∈ R.
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Appendix B: Matrix Calculus

Let x be a column vector. Then the following rules apply:

a′x

∂x
=
∂x ′a

∂x
= a′,

∂b′Ax

∂x
= b′A,

∂x ′Ax

∂x
= x ′(A + A′),

∂g(u)

∂x
=
∂g(u)

∂u

∂u

∂x
,

where a, b are vectors that are not functions of x , A is a squared matrix

that is not a function of x and u = u(x).
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