Asset Management Advanced Investments

Prof. Dr. Thorsten Hens University of Zurich

14th September 2020

Portfolio Management Program

A unique Masters Programm

sponsored by the PoK-foundation

September 14, 2020

Background

- The **Portfolio Management Program** is a Master seminar series at UZH supported by an industry partner (ZZ Vermögensberatung).
- It enables students to participate in a unique seminar where they can deepen their theoretical as well as their **practical financial knowledge** and gain valuable experience in the field of asset management.
- Seminar participants get to know various fields of **asset management**, from strategy analysis and strategy conception to trading, risk management, and controlling. They manage **three real-money portfolios of approx. 1.5 Mio EUR each.**

Course Structure

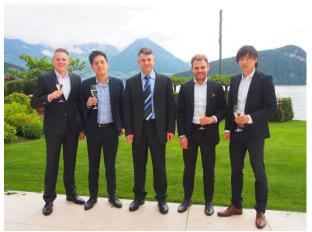
- The program is a two-year commitment
- Students are awarded 21 ECTS Credits

	Ye	Year 2				
Fall Term			Spring Term	Fall Term Spring Term		
Course:	Seminar:	Course:	Seminar:	Seminar:	Seminar:	
Asset Mgt: Advanced Investments	Portfolio Management Theory I	MATLAB for Portfolio Management	Portfolio Management Theory II	Portfolio Management Implementation I	Portfolio Management Implementation II	
3 ECTS Credits	3 ECTS Credits	3 ECTS Credits	3 ECTS Credits	3 ECTS Credits	6 ECTS Credits	

Application

- Interested students can send their complete applications for the Fall Semester 2020 in a single PDF file to pmpadmin@bf.uzh.ch by Friday September 18.
- There will be an **information session** on **Wednesday September 16** at 6 p.m. via Zoom:

https://uzh.zoom.us/j/99238811793?pwd=ZjBUWkh4NU40UFc2VF l6cHpiamVWUT09; Meeting ID: 992 3881 1793, Passcode: 819294 (Link in Olat (Asset Management: Advanced Investments) or email me)


• Interviews to select this year's students will be held online on Monday, September 21.

Just do it!

Syllabus

Asset Management: Advanced Investments

Portfolio Management Theory I

Administrative Deadlines

Interviews / Exam

1 Mon 1//09 1/ 00-18 00 11/H Introductory Lactura management strategies: asset	Thorsten Hens lexandre Ziegler
1 Mon, 14/09 14.00-18.00 UZH Introductory Lecture Overview of the program; portfolio management strategies; asset allocation; portfolio optimization Fri, 18/09 Final Application Deadline Sat, 19/09 Invitations to Interviews Interviews Portfolio Management Program	
1 Mon, 14/09 14.00-18.00 UZH Introductory Lecture management strategies; asset allocation; portfolio optimization Fri, 18/09 Final Application Deadline Sat, 19/09 Invitations to Interviews Mon, 21/09 Interviews Portfolio Management Program	
Sat, 19/09 Invitations to Interviews Mon. 21/09 Interviews Portfolio Management Program	
Mon 21/09 Interviews Portfolio Management Program	
Tue, 22/09 Announcement of Participants	
2 Mon, 28/09 14.00-18.00 UZH Strategy Development Portfolio Management Strategy Al	lexandre Ziegler

Syllabus

3	Mon, 05/10	14.00-18.00	UZH	Strategy Development	Portfolio Management Strategy Development	Alexandre Ziegler			
4	Mon, 12/10	14.00-18.00	UZH	Portfolio Management Theory Equities		Alexandre Ziegler			
	Mon, 19/10	14.00-18.00	Online	Group Presentations & Expert Lecture					
5	Mon, 26/10	14.00-18.00	UZH	Portfolio Management Theory	Bonds/Interest rates	Alexandre Ziegler			
6	Mon, 02/11	14.00-18.00	UZH	Portfolio Management Theory	Currencies	Alexandre Ziegler			
7	Mon, 09/11	14.00-18.00	UZH	Portfolio Management Theory / Q&A Exam	Options/Volatility	Alexandre Ziegler			
	Mon, 16/11	14.00-18.00	Online	Group Presentations & Expert Lecture		Thorsten Hens Matthias Uhl Alexandre Ziegler			
	Mon, 23/11	16.15-20.00	Online	Guest Lecture		William T. Ziemba			
	Mon, 30/11	14.00-18.00	UZH	Student Presentations	ТВА	Thorsten Hens Matthias Uhl Alexandre Ziegler			
	Mon, 07/12	14.00-18.00	Online	Group Presentations		Thorsten Hens Matthias Uhl Alexandre Ziegler			
	Mon, 14/12	14.00-18.00	UZH	Student Presentations	TBA	Thorsten Hens Matthias Uhl Alexandre Ziegler			
	Fri, 18/12			Official End of the Lectures					
	Mon, 11/01	14:00-16:00	UZH	Exam: Asset Management: Advanced Investments	Material from lectures 1-7 (Asset Allocation, Optimization, Strategy Development, Equities, Bonds, Currencies, and Options)				
	Sun, 31/01	Official End of the Semester							

Content

- Definition Asset Management
- Economic Foundations
- Practical Procedures
- Performance Measurement
- Summary
- References
- Bonus Material

Asset Management

Asset management:

"Investing into assets in order to achieve certain goals given some restrictions."

Example: achieve a high average return but make sure the volatility of your returns does not exceed a certain level.

Wealth management determines the goals and restrictions.

Risk management makes sure the restrictions are satisfied.

Example Pension Fund

- Board of directors:
 - Goal: achieve 4% on average over 5 years
 - Restrictions: coverage ratio above 90% at the end of each year
- Investment committee:
 - Asset management
 - Select asset classes
 - Define general rules
 - Select asset managers
 - Monitor returns and asset managers
 - Report results to board of directors
- Risk Management
 - Independent advisor checks risks and reports to board of directors.

Example "The Fisher Family"

- Relationship manager and family define:
 - Goal: achieve 7% on average over 10 years
 - Restrictions: make sure maximum drawdown below 20%
- Asset Management of the bank
 - Select asset classes
 - Invest consistent with goals and restrictions
 - Monitor returns
 - Report to relationship manager
- Regulator sets general rules (FIDLEG)
 - Asset Managers need to be qualified
 - Investment strategy shall be **suitable**
- Bankenombudsmann can be called

Content

- Definition Asset Management
- Economic Foundations
- Practical Procedures
- Performance Measurement
- Summary
- References
- Bonus Material

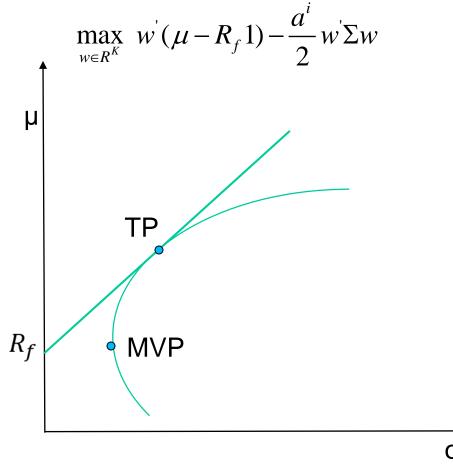
Asset Pricing Theories

Theory

- •Financial Analysis
- Mean-Variance-Analysis
- •CAPM
- •EPT
- •..

Practice

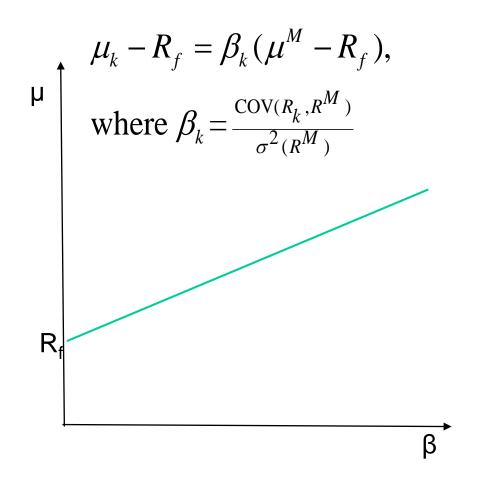
- •Value/Growth Investing
- •Active Portfolio Management
- Indexing
- •Factor investing
- •...



Financial Analysis

Input	Firm 1	Firm 2
(1) price	70.00	40.00
(2) stocks	62'900'000	19'599'999
(3) profit	244'500'000	3'067'000
(4) book value	1'109'000'000	72'594'507
(5) cash flow	352'000'000	19'694'496
(6) earnings growth	5%	20%
Ratios		
P/E = ((1)*(2))/(3)	18.01	255.62
M/B = ((1)*(2))/(4)	3.97	10.80
PEG = PE / (6)	360.16	1'278.12
Weights		
P/E	0.40	0.40
M/B	0.40	0.40
PEG	0.20	0.20
Valuation	80.82	362.19
	Value stock	Growth stock

Mean-Variance Analysis



Estimation problems

estimate	portfolio
μ, Σ	TP
Σ	MVP
σ	ECR
-	1/K

CAPM

Required Rate of Return

Only systematic risk is rewarded

Cross-section of asset returns

Empirical evidence

weak for single assets

better for asset classes

anomalies

Size, Value, Momentum

Static

CAPM-Assumptions

Standard Assumptions

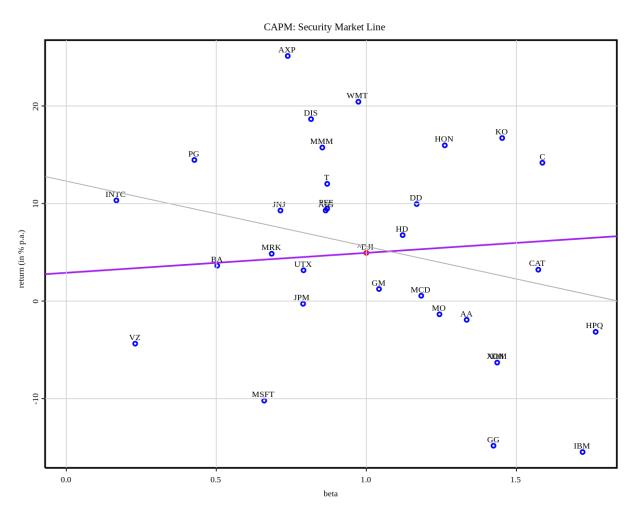
- Mean-Variance
- Risk free asset
- No background risk
- Homogenous expectations

Generalizations

- Background risk
- Heterogenous behavior

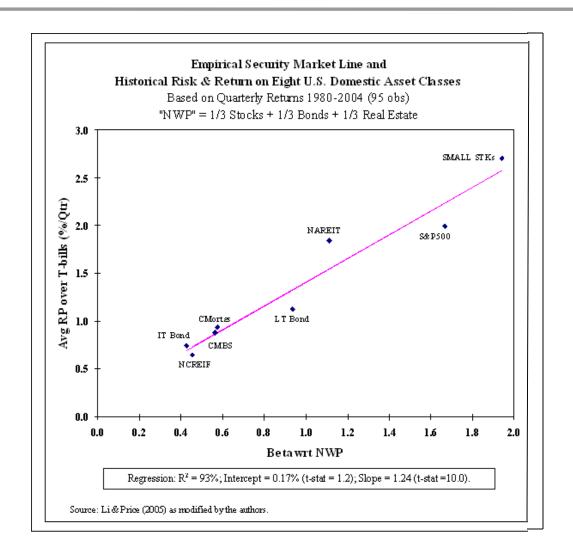
No risk free asset

$$\mu_k - R_f = \frac{COV(R_k, R^M)}{\sigma^2(R^M)} (\mu^M - R_f)$$

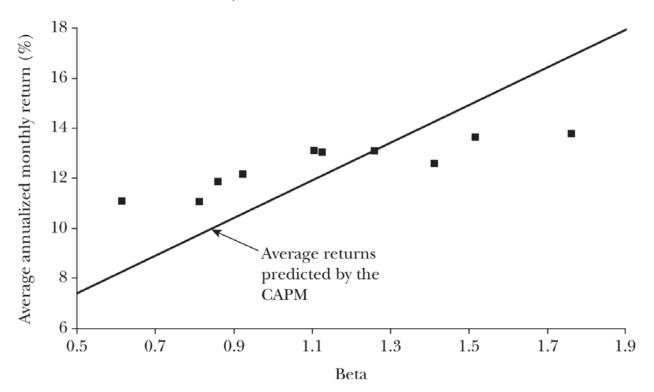

Heterogenous expectations
$$\overline{\mu}_k - R_f = \frac{COV(R_k, R^M)}{\sigma^2(R^M)} (\overline{\mu}^M - R_f)$$

$$\mu_{k} - R_{f} = \frac{COV(R_{k}, R^{M} + R_{y})}{COV(R^{M}, R^{M} + R_{y})} (\mu^{M} - R_{f})$$

$$\mu_{k} - R_{f} = \frac{COV(R_{k}, R^{M} - r^{I}R^{I})}{COV(R^{M}, R^{M} - r^{I}R^{I})}(\mu^{M} - R_{f})$$

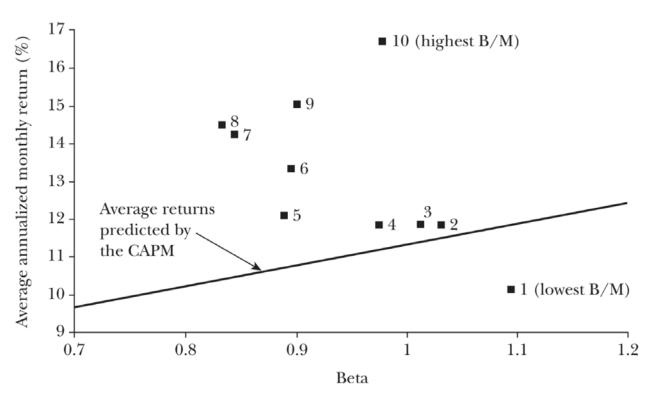

$$\mu_{k} - \mu_{z} = \frac{COV(R_{k}, R^{M})}{\sigma^{2}(R^{M})} (\mu^{M} - \mu_{z}), \text{ where } \frac{COV(R_{z}, R^{M})}{\sigma^{2}(R^{M})} = 0$$

CAPM on Single Stocks


CAPM on Asset Classes

CAPM Low Beta Anomaly

Abbildung 32: Average Annualized Monthly Return versus Beta for Value Weight Portfolios Formed on Prior Beta, 1928–2003



Quelle: Fama & French (2004).

CAPM Value Anomaly

Abbildung 33: Average Annualized Monthly Return versus Beta for Value Weight Portfolios Formed on B/M, 1963–2003

Quelle: Fama & French (2004).

EPT and Fama-French Factor Model

$$\mu(r_x) = r_f + \beta_{x,M} [r_M - r_f] + \beta_{x,SMB} SMB + \beta_{x,HML} HML + \beta_{x,UMD} UMD$$

SMB= Small Minus Big (Size Effect)

HML = High Minus Low (Value Effect)

UMD = Up Minus Down (Momentum)

. . .

Factor-Zoo: more than 200 factors have been suggested so far!

PCA shows: Different representation of same return space.

EPT (Evolutionary Portfolio Theory) models the dynamic interaction of factors.

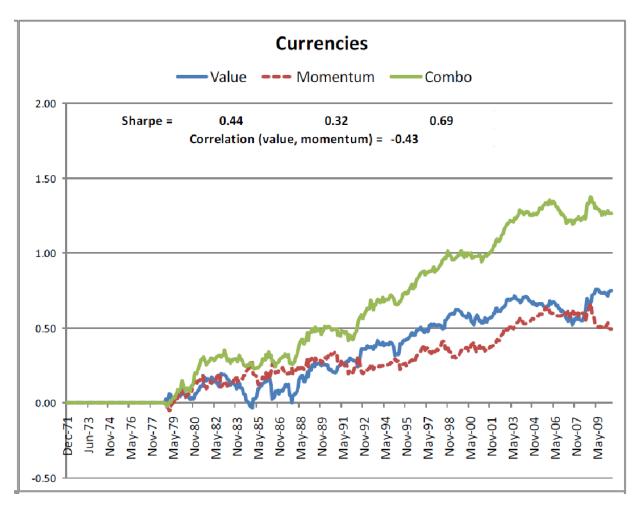
EPT

Modelling of factor strategies i=1,...,I

 $\lambda_t^{i,k}$ is percentage of wealth factor strategy i invests in asset k

Asset prices are given by average strategy: $q_t^k = \sum_{i=1}^{I} \lambda_t^{i,k} r_t^i, t = 1,...,T$

Return of asset k: $R_t^k = \frac{q_t^k + D_t^k}{q_{t-1}^k}, t = 1,...,T.$


Evolution of relative wealth: $r_{t+1}^{i} = \left\{ \sum_{k=1}^{K} \left[\frac{D_{t+1}^{k} + q_{t+1}^{k}}{q_{t}^{k}} \right] \lambda_{t}^{i,k} \right\} r_{t}^{i}$

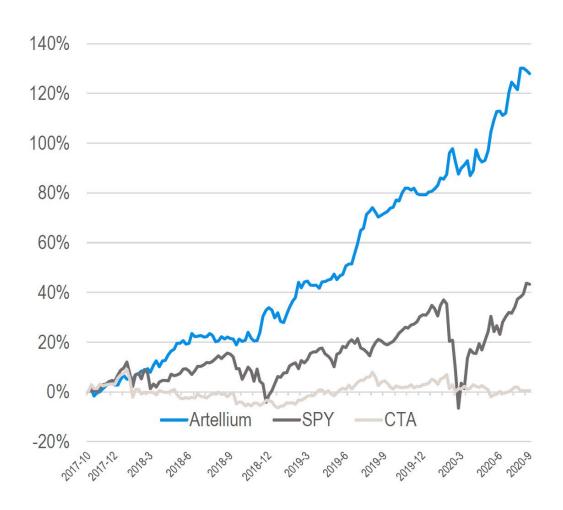
Result: Random Dynamical System

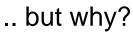
$$r_{t+1} = \lambda_0 \left\{ Id - \left[\frac{\lambda_{t,k}^i r_t^i}{\sum_{i=1}^I \lambda_{t,k}^i r_t^i} \right]_i^k \Lambda_{t+1} \right\}^{-1} \left(\sum_{k=1}^K d_{t+1,k} \frac{\lambda_{t,k}^i r_t^i}{\sum_{i=1}^I \lambda_{t,k}^i r_t^i} \right)_i, \text{ where } d_k = \frac{D_k}{\overline{D}}, \overline{D_t} = \sum_{k=1}^K D_k.$$

Combination of Factors

Factor Rotation with EPT

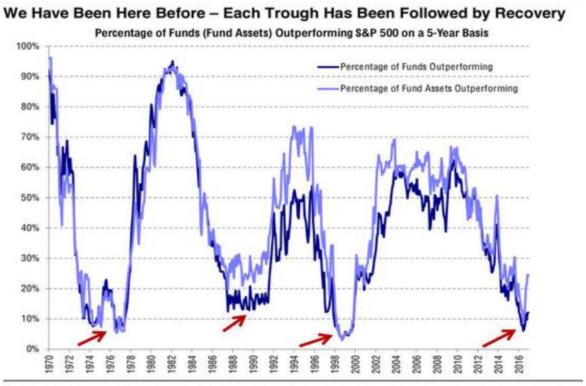
• • •


Big Data


Machine Learning

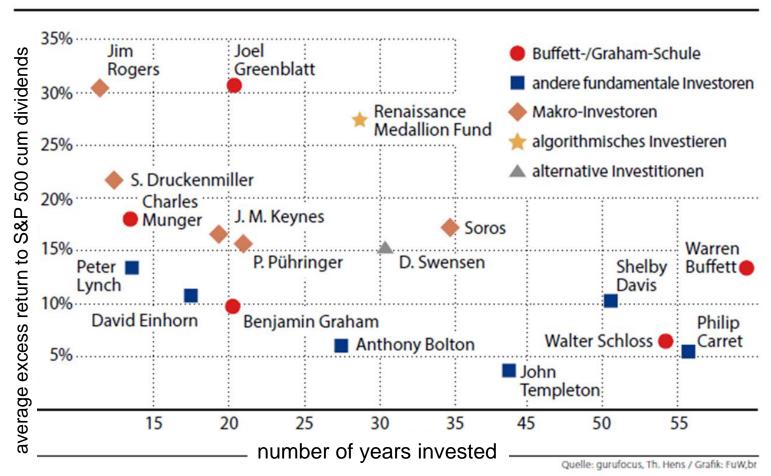
Artificial Intelligence

Does ... work?



Active or Passive?

Passive = invest according to relative market capitalization


Grossman-Stiglitz-Theorem "Impossibility of Efficient Markets"

→ active-passive cycles

Great Investors: Luck, Skill or Personality?

Great Investors (Skill): Buffett's Alpha

$$r_t - r_t^f = \alpha + \beta_1 MKT_t + \beta_2 SMB_t + \beta_3 HML_t + \beta_4 UMD_t + \beta_5 BAB_t + \beta_6 QMJ_t + \varepsilon_t$$

where

$$r-r^f = Alpha$$
,

MKT= Market, SMB = Size, HML = value, UMD = Momentum,

BAB = low beta, QMJ = profitability

Buffett's alpha cannot completely be replicated by known risk factors.

Reference: Frazzini, Kabiller, Pedersen (2014): Buffett's Alpha.

Content

- Definition Asset Management
- Economic Foundations
- Practical Procedures
- Performance Measurement
- Summary
- References
- Bonus Material

Practical Procedures

- SAA = Strategic Asset Allocation
 Allocation to asset classes that should be followed on long-term average
- TAA = Tactical Asset Allocation
 tactical deviation from SAA mostly on a monthly basis
- IAA = Is Asset Allocation implementation of TAA with investments
- Hedging
 - Overlay of SAA to satisfy restrictions (Downside risk, FX risk, ...)

Approaches for SAA

- Mean-Variance Analysis (Standard)
- Mean-Downside Risk Analysis (Ortec)

How to determine the expected return (mean)

- → Standard: risk premia approach
- → Michael Schnetzer: yield approach

Yield (Carry Based) SAA

	Mean	Standard		Excess	Sharpe		
	return	deviation	Skew	kurtosis	ratio	MDD	MDD (from - to)
Annual returns							
US treasuries	5.97%	5.95%	0.13	-0.78	0.45	5.42%	31 Jan 94 - 30 Jun 94
US corporate bonds	7.06%	6.55%	0.24	0.07	0.58	15.42%	29 Feb 08 - 31 Oct 08
US high-yield bonds	9.67%	16.46%	0.95	2.13	0.39	33.31%	31 May 07 - 28 Nov 08
S&P 500	10.91%	17.64%	-0.75	0.45	0.43	50.95%	31 Oct 07 - 27 Feb 09

based on gordon growth model
$$\mu = \frac{CF}{P}(1+g)$$

	Mean	Standard		Excess	Sharpe		
	return	deviation	Skew	kurtosis	ratio	MDD	MDD (from - to)
Annual returns							
$Carry_{YELRDg}$	9.45%	10.99%	0.14	1.21	0.56	23.89%	31 Oct 07 - 28 Nov 08
1/n	8.25%	8.86%	-0.01	0.84	0.56	20.11%	31 Oct 07 - 27 Feb 09
60/40	9.04%	11.23%	-0.58	0.82	0.51	33.21%	31 Oct 07 - 27 Feb 09
Market cap-weighted	8.57%	12.57%	-0.95	1.16	0.42	38.88%	31 Oct 07 - 27 Feb 09

Approaches for TAA

- Passive Rebalancing (calendar time or event-driven)
- Qualitative Analysis (FMM market view)
 - FMM = fundamental monetary macro
- Quantitative Analysis
 - Vescore: Regressions on FMM-Indicators
 - Swissquant: Heat Map based on SR
- Rank-based:
 - Wang and Kochert
 - For each asset class compute the fundamental and momentum rank
 - Michael Schnetzer JPM 2
 - For each asset class compare how its FMM stand relative to their previous values

Score Card of Michael Schnetzer

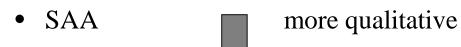
Government bonds																			
	Valuation			Trend			Risk			Macro				Score					
	rYTW	r	YTW/D		Mom	1	Mom 1m		TED sprea	d	Debt/GDF	p ¹	Bus. conf.		Unempl.1	Т	Term spre	ead	
US Treasuries	0.78	0.42	0.15	0.42	0.06	0.48	-0.02	0.07	0.16	0.22	85.10	0.01	57.30	0.87	9.80	0.07	2.73	0.61	0.33
UK Gilts	-0.26	0.08	-0.03	0.08	0.08	0.70	0.00	0.36	0.19	0.69	71.50	0.02	-2.40	0.75	7.80	0.06	2.68	0.85	0.38
Eurozone Gov't Bonds	1.29	0.39	0.21	0.37	0.01	0.15	-0.01	0.25	0.61	0.83	82.30	0.02	2.60	0.81	10.20	0.06	2.18	0.78	0.39
Japan Gov't Bonds	0.67	0.25	0.09	0.21	0.02	0.59	0.01	0.86	0.05	0.31	170.20	0.04	-4.00	0.49	5.10	0.33	0.96	0.21	0.37
Corporate bonds Corporate bonds																			
		Valuat	tion			Tre	nd			Ris	sk				Mad	cro			
	rYTW	(DAS		Mom	l	Mom 1m		TED sprea	d ¹	HY OAS ¹		Bus. conf.		Unempl. ¹	1	Term spre	ead	
US Corporate Bonds	2.92	0.61	1.56	0.52	0.09	0.68	-0.01	0.16	0.16	0.79	5.26	0.55	57.30	0.87	9.80	0.07	2.73	0.61	0.54
US High-Yield Bonds	6.41	0.54	5.26	0.46	0.15	0.78	0.02	0.72	0.16	0.79	5.26	0.55	57.30	0.87	9.80	0.07	2.73	0.61	0.61
UK Corporate Bonds	2.23	0.07	2.34	0.79	0.09	0.74	0.00	0.46	0.19	0.32	7.00	0.43	-2.40	0.75	7.80	0.06	2.68	0.85	0.49
Eurozone Corp. Bonds	1.99	0.39	2.12	0.87	0.05	0.44	0.00	0.25	0.61	0.18	5.96	0.49	2.60	0.81	10.20	0.06	2.18	0.78	0.46
Japan Corp. Bonds	0.54	0.16	0.27	0.59	0.02	0.75	0.00	0.63	0.05	0.70	0.61	0.41	-4.00	0.49	5.10	0.33	0.96	0.21	0.49
	1				ı				Equit				ı						
	Valuation			Trend			Risk		Macro										
	DY	F	P/E ¹		Mom	l	Mom 1m		Vol. index	1	HY OAS ¹		Bus. conf.		Unempl.1	1	Term spre	ead	
US Equities	1.88	0.67	15.41	0.90	0.08	0.52	0.07	0.93	17.75	0.60	5.26	0.55	57.30	0.87	9.80	0.07	2.73	0.61	0.65
UK Equities	3.17	0.28	14.12	0.71	0.05	0.43	0.07	0.94	18.84	0.57	7.00	0.43	-2.40	0.75	7.80	0.06	2.68	0.85	0.56
Eurozone Equities	4.09	0.82	11.22	0.91	-0.07	0.39	0.05	0.88	23.92	0.49	5.96	0.49	2.60	0.81	10.20	0.06	2.18	0.78	0.63
Japan Equities	1.96	0.86	15.15	0.97	-0.03	0.46	0.04	0.84	18.79	0.77	0.61	0.41	-4.00	0.49	5.10	0.33	0.96	0.21	0.63

Performance (Michael Schnetzer Paper 2)

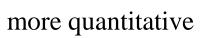
	Mean	Standard	Sharpe	Inf.	Tracking	Months	G/L	relative	relative
	return	deviation	ratio	ratio	error	outperf'ed	ratio	MDD	MDD (from - to)
1/n	5.87%	7.82%	0.55						
$1/\mathrm{n}_{\mathrm{TAA}}$	6.12%**	7.87%	0.58	0.65	0.38%	0.62	1.02	0.81%	28 Feb 11 - 30 Sep 11
60/40	7.03%	9.44%	0.55						
$60/40_{\mathrm{TAA}}$	7.37%**	9.54%	0.57	0.71	0.47%	0.61	1.13	1.02%	27 Feb 09 - 30 Sep 11
Market cap	6.20%	8.66%	0.49						
$Market cap_{TAA}$	6.55%***	8.74%	0.52	0.73	0.49%	0.60	1.17	1.06%	27 Feb 09 - 30 Sep 11
Carry	6.62%	8.81%	0.54						
$Carry_{TAA}$	6.81%*	8.95%	0.54	0.50	0.38%	0.61	0.96	1.02%	29 Jun 07 - 31 May 12

Approaches for IAA

- Make
 - Screening tool (value, size, quality, momentum,..)
 - Qualitative analysis
- Buy
 - Asset manager selection criteria
 - Returns, risk, alpha, ...
 - Team (stability, single-person risk, ..)
 - Personality of key team members
 - Use Watch Lists!


Hedging

- FX-Hedging
 - Standard rule:
 - Hedge nominal assets
 - Partially hedge real assets
 - Typically FX-hedging for CHF investor reduces vola by keeping mean
- Tail-Risk Hedging
 - When you have an asymmetric payoff function (e.g. coverage ratio restr.)
 - Offensive risk management
 - Hedge Tails but increase exposures to offset the hedge costs



Final Remarks

- Explanatory power of *AA for observed returns
 - SAA 75%
 - TAA 20%
 - IAA 5%
- Quantitative or qualitative approach

- TAA
- IAA
- Trading

- Definition Asset Management
- Economic Foundations
- Practical Procedures
- Performance Measurement
- Summary
- References
- Bonus Material

Performance Attribution

Brinson decomposition

Sector	TAA Weight	SAA Weight	IAA Return	BeMa Return	Attrib. TAA	Attrib. IAA	Inter- action	Total Active
Equities	90%	70%	5.00%	3.00%	0.12%	1.40%	0.40%	1.92%
Cash	10%	30%	1.00%	1.00%	0.28%	0.00%	0.00%	0.28%
Total	100%	100%	4.60%	2.40%	0.40%	1.40%	0.40%	2.20%

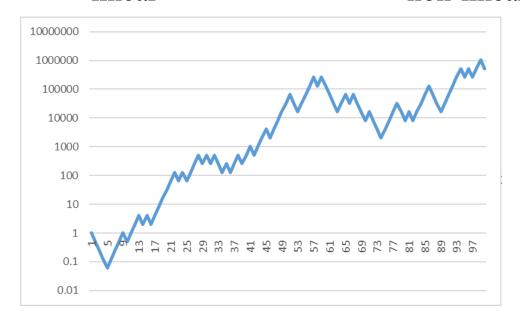
$$R_{2.2\%}^{active} = \underbrace{\sum_{k} TAA_{k} R_{k}^{IAA}}_{A.6\%} - \underbrace{\sum_{k} SAA_{k} R_{k}^{BMA}}_{A.6\%} = \underbrace{\sum_{k} (TAA_{k} - SAA_{k}) R_{k}^{BMA}}_{Attr.TAA} + \underbrace{\sum_{k} SAA_{k} (R_{k}^{IAA} - R_{k}^{BMA})}_{Attr.IAA} + \underbrace{\prod_{k} TAA_{k} R_{k}^{BMA}}_{0.4\%} + \underbrace{\prod_{k} TAA_$$

Performance Measures

- Average return (arithmetic or geometric)
- TWR or MWR (see below)
- Risk (vola, VaR, MDD,...)
- Risk Adjusted Return (SR, DSR,TR,..)
- Benchmark Deviation (TE, ...)

Performance Measures

Which


average?

arithmetic

geometric

	Asset 1	Asset 2	50:50	Asset 1	Asset 2	50:50
s = 1	0%	100%	50%	1	2	1.5
s = 2	0%	-50%	-25%	1	0.5	0.75
average	0%	25%	12.5%	0	0	6%

linear non-linear

Performance Measures

- TWR (time weighted return)
 - A manager has invested a fixed amount X over t = 1,...,T years.
 - His TWR measures the average return he was able to achieve:

$$TWR = \left(\prod_{t=1}^{T} R_t\right)^{1/T}$$

- MWR (money weighted return)
 - A manager has invested variable amounts X_t over t = 1,..., T years
 - His MWR is the IRR (internal rate of return) he was able to achieve:

$$\sum_{t=1}^{T} \frac{CF_{in}}{\left(MWR\right)^{t}} = \sum_{t=1}^{T} \frac{CF_{out}}{\left(MWR\right)^{t}}$$

- Definition Asset Management
- Economic Foundations
- Practical Procedures
- Performance Measurement
- Summary
- References

Summary

- Asset Management ...
 - is an important service for institutional and for private investors
 - takes goals and restrictions as given
 - can be based on various asset pricing theories
- So far in practice management procedures are more important than theories/maths
- This course shall encourage you to develop better support for practice!

- Definition Asset Management
- Economic Foundations
- Practical Procedures
- Performance Measurement
- Summary
- References
- Bonus Material

References

- **Value Investing:** Greenwald (2004): "Value Investing: From Graham to Buffett and Beyond", Wiley Finance.
- Mean-Variance Investing: Grinold and Kahn (1995): "Active Portfolio Management: A Quantitative Approach for Producing Superior Returns and Selecting Superior Returns and Controlling Risk", MacGrawhill.
- **CAPM Investing:** Litterman (2003):"Modern Investment Management: An Equilibrium Approach", John Wiley & Co.
- **Factor Investing:** Ang (2014): "Asset Management: A Systematic Approach to Factor Investing", Oxford University Press.

- Definition Asset Management
- Economic Foundations
- Practical Procedures
- Performance Measurement
- Summary
- References
- Bonus Material

Bonus Material: Value Investing

→ See other slide set

