
ARTICLE

Ventromedial prefrontal cortex compression
during concept learning
Michael L. Mack 1*, Alison R. Preston 2,3,4,7 & Bradley C. Love 5,6,7

Prefrontal cortex (PFC) is thought to support the ability to focus on goal-relevant information

by filtering out irrelevant information, a process akin to dimensionality reduction. Here, we

test this dimensionality reduction hypothesis by relating a data-driven approach to char-

acterizing the complexity of neural representation with a theoretically-supported computa-

tional model of learning. We find evidence of goal-directed dimensionality reduction within

human ventromedial PFC during learning. Importantly, by using computational predictions of

each participant’s attentional strategies during learning, we find that that the degree of neural

compression predicts an individual’s ability to selectively attend to concept-specific infor-

mation. These findings suggest a domain-general mechanism of learning through compres-

sion in ventromedial PFC.
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Prefrontal cortex (PFC) is sensitive to the complexity of
incoming information1 and theoretical perspectives suggest
that a core function of PFC is to focus representation on

goal-relevant features by filtering out irrelevant content2,3. In
particular, ventromedial PFC (vmPFC) is thought to represents
the latent structures of experience4,5, coding for causal links6, and
task-related cognitive maps7. At the heart of these accounts is the
hypothesis that during learning vmPFC may perform data
reduction on incoming information, compressing task-irrelevant
features, and emphasizing goal-relevant information structures.
This compression process is goal-directed and akin to how
attention in category learning models dynamically selects features
that have proven predictive across recent learning trials8,9.
Although emerging evidence suggests structured representations
occur in the rodent homolog of vmPFC10,11, such coding in
human vmPFC remains poorly understood. Here, we directly
assess the data reduction hypothesis by leveraging an
information-theoretic approach in human neuroimaging to
measure how goal-driven learning is supported by attention
updating processes in vmPFC.

We focused on concept learning, given the recent findings that
vmPFC represents conceptual information in an organized
fashion12,13. Participants learned to classify the same insect
images (Fig. 1a), composed of three features that could take on
two values (thick/thin legs, thick/thin antennae, pincer/shovel
mandible), across three different learning problems14. These
learning problems were defined by rules that required con-
sideration of different numbers of features to successfully classify
(see Table 1): the low category complexity problem was uni-
dimensional (e.g., insects living in warm climates have thick legs,

cold climate insects have thin legs), the medium category com-
plexity problem depended on two features (e.g., insects from rural
environments have thick antennae and shovel mandible or thin
antennae and pincer mandible, urban insects have thick antennae
and pincer mandible or thin antennae and shovel mandible), and
the high category complexity problem required all three features
(i.e., each insect’s class was uniquely defined by a combination of
features). By using the same stimuli for all three problems, the
manipulation of conceptual complexity allowed us to target goal-
specific learning processes.

This design allows us to directly test whether compression of
neural representations corresponds with the complexity of the
problem-specific conceptual structure during learning. Com-
plexity and compression have an inverse relationship; the lower
the complexity of a conceptual space, the higher the degree of
compression. For instance, in learning the unidimensional pro-
blem, variance along the two irrelevant feature dimensions can be
compressed resulting in a lower complexity conceptual space. In
contrast, learning the high complexity problem would result in
less compression because all three feature dimensions must be
represented, resulting in a more complex conceptual space rela-
tive to the unidimensional problem. Differences in complexity
across the three learning problems thus provide a means for
testing how learning shapes the dimensionality of neural concept
representations. Namely, brain regions involved in goal-directed
data compression should learn by building internal models that
adapt to the complexity of the problems in order to represent
information relevant to the task at hand.

To test this prediction, we recorded functional magnetic
resonance imaging (fMRI) data while participants learned the
three problems and measured the degree that multivoxel activa-
tion patterns were compressed through learning using principal
component analysis (PCA), a method for low-rank approxima-
tion of multidimensional data15. We demonstrate that neural
codes in vmPFC distinctly reflect the conceptual complexity of
the learning problems and that this neural signature of dimen-
sionality reduction corresponds with participants’ ability to learn
goal-relevant information.

Results
Learning-related neural compression. Trial-level whole-brain
activation patterns for each insect image were estimated using the
least squares-separate approach16. These trial-specific activation
patterns were then submitted to principal component analyses
(PCA) and the number of principal components (PCs) that were
necessary to explain 90% of the variance across trials within a
learning block was used to calculate an index of neural
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Fig. 1 Experimental schematic and behavioral results (N= 23). a The
learning problems differed in rule complexity (see Supplementary Table 1).
The low complexity problem was unidimensional (e.g., antennae size),
medium complexity required a conjunction of two features (e.g., leg size
and mandible shape), and high complexity required all three features.
b Learning trials consisted of presentation of a stimulus for 3.5 s, followed
by a fixation cross for 0.5–4.5 s, and then a feedback display for 2 s that
included the stimulus, accuracy of the response, and the correct category.
Learning trials were separated by a delay of 2–6 s of fixation. c The
probability of a correct response increased across stimulus repetitions. The
rate of learning differed according to the complexity of the problems. Bands
represent 95% confidence intervals of the logistic regression model and
error bars represent 95% prediction intervals for the midpoint of accuracy
across participants.

Table 1 Stimulus features and class associations for the
three learning problems.

Stimulus Feature attribute Problem complexity

1 2 3 Low Medium High

1 0 0 0 A A B
2 0 0 1 A B A
3 0 1 0 A B A
4 0 1 1 A A B
5 1 0 0 B A A
6 1 0 1 B B B
7 1 1 0 B B B
8 1 1 1 B A A

Each of the eight stimuli is represented by the binary values of the three feature attributes. The
stimuli are assigned to different classes (A or B) across the low, medium, and high complexity
learning problems according to rules that depend on one, two, or three of the feature attributes,
respectively
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compression (i.e., fewer PCs reflects more neural compression;
Fig. 2a). This measure of neural compression was calculated
across the whole brain with searchlight methods17 for each
learning block in each problem. We then identified brain regions
that reduce dimensionality with learning (i.e., learn to represent
the less complex problems with fewer dimensions) by conducting
a voxel-wise linear mixed effects regression on the searchlight
compression maps. Specifically, at each voxel, we assessed how
neural compression changed as a function of learning block and
problem complexity and their interaction.

Throughout the entire brain, only a region within vmPFC
showed an interaction of problem complexity and learning block
(peak coordinates [4, 54, −18]; 653 voxels; voxel-wise
threshold= 0.001, cluster extent threshold= 0.05; Fig. 2b; see
Supplementary Fig. 1 and Supplementary Table 1 for main effects
of problem complexity and learning block). The nature of the
interaction within this cluster was assessed with a Bayesian-
estimated mixed effects linear regression and showed that vmPFC
compression corresponded with problem complexity and
emerged over learning blocks (peak: βmean=−0.013, 95% HDI=
[−0.019, −0.006], P < 0.001). Importantly, the interaction effect
was independent of problem order, individual differences in
learning performance, and remained when looking at only the
low and medium complexity problems (see “Methods” section for
details about the voxel-wise regression modeling and control
analyses). Moreover, there was no interaction of learning block
and problem complexity when examining univariate vmPFC
activation (Bayesian-estimated mixed effects linear regression:
βmean=−1.309, 95% HDI= [−82.7, 126.7], P= 0.93), ruling out
an explanation based on problem difficulty impacting overall

neural activation. Because the stimuli were identical across the
three problems, this finding demonstrates that learning-related
compression is goal-specific, with vmPFC requiring fewer
dimensions for less complex goals.

Neural compression relates to attentional strategies. To evalu-
ate whether vmPFC compression tracked changes in attentional
allocation, we characterized the participant-specific attentional
weights given to each stimulus feature across the three problems
using a computational learning model8. Attention weight com-
pression indexed changes in attentional allocation based on
model fits to behavior; low attention compression indicates
equivalent weighting to all three features, whereas high attention
compression indicates attention directed to only one feature18.
We found that attention compression varied with the interaction
of learning block and conceptual complexity (Bayesian-estimated
mixed effects linear regression: βmean=−0.028, 95% HDI=
[−0.035, −0.020], P < 0.001). That vmPFC neural compression
and model-based attention compression demonstrated similar
relationships with conceptual complexity suggests a potential link
between the behavioral/model and neural signatures of dimen-
sionality reduction.

To assess this relationship, we evaluated whether the
compression of participants’ attention weights was predicted by
vmPFC neural compression at the individual participant level.
Specifically, if the ability to compress neural representations in a
problem-appropriate fashion is related to participants’ ability to
attend to problem-relevant features, the prediction follows that
participants with more neural compression for a given problem
will also show more selective attention, thus higher attention
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Fig. 2 Neural compression analysis schematic and results (N= 23). a Principal component analysis (PCA) was performed on neural patterns evoked for
each of n trials within a learning block. The number of principal components (PC) required to explain 90% of the variance (k) was used to calculate a neural
compression score (1-k/n). We quantified neural compression as a function of problem complexity and learning block; the interaction of these factors
reflects changes in the complexity of neural representations that emerge with learning. b A whole-brain voxel-wise linear mixed effects regression revealed
a vmPFC region that showed a significant interaction between learning block and problem complexity. See Supplementary Figure 1 for main effect maps of
learning block and problem complexity. The nature of the interaction in the vmPFC region is depicted in the middle panel; points represent compression at
the cluster’s peak voxel for each participant and the horizontal lines depict the group average. The right graph plots the results of a Bayesian-estimated
linear mixed effects regression of neural compression from the peak voxel of the vmPFC cluster. Posterior distributions of coefficients from the regression
model are depicted for the factors of learning block (b), complexity (c), and their interaction (b:c). Shaded regions within the distributions represent 95%
high-density intervals. These data and regression results are displayed only to demonstrate the nature of the interaction effect in the vmPFC cluster and do
not represent an independent statistical analysis.
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compression values. This hypothesis was confirmed with a
Bayesian-estimated mixed effects regression analysis that took
into account differences across learning block, problem complex-
ity, accuracy, and learning order (βmean= 0.168, 95% HDI=
[0.072, 0.277], P= 0.0005; see Fig. 3b). Importantly, this
relationship remained when restricting analysis to the low and
medium complexity problems, which were counterbalanced for
learning order (Bayesian-estimated mixed effects linear regres-
sion: βmean= 0.210, 95% HDI= [−0.082, 0.368], P= 0.0005).
Thus, even after controlling for differences in neural and
attention compression due to learning block and problem
complexity, the degree of problem-specific compression in
vmPFC representations significantly predicted participants’
attentional strategies throughout learning.

Category coding in neural compression. Although vmPFC
neural compression tracks model-based predictions of learning,
this link between learning problem-specific coding and neural
representation is ultimately indirect. The neural compression
findings may be due to learning-related changes in neural
representation that highlight within-category similarities and
differentiate between-category differences or due to other factors
unrelated to the category structure of the problem at hand. To
directly assess the degree of category coding present in vmPFC
compression, we analyzed how trials loaded onto the PCs. Spe-
cifically, we hypothesized that if neural compression is driven by
category-specific coding in activation patterns, trials will load on
the PCs similarly within category, but differently between cate-
gory (Fig. 4a). In contrast, if neural compression is due to factors
not related to category representation, trials from both categories
will load similarly on the PCs. We found support for the former
(Fig. 4b and Table 3) such that category discrimination in PCA
loadings increased over learning blocks (Bayesian-estimated
mixed effects linear regression: βmean= 0.008, 95% HDI= [0.004,
0.011], P < 0.001) and was highest for the low followed by med-
ium and high complexity problems (βmean=−0.003, 95% HDI=
[−0.0048, −0.0013], P < 0.001). Thus, by directly assessing the
structure of the PCA results, we find that vmPFC compression is
driven by activation patterns that discriminate categories based
on current task goals.

Discussion
By focusing on a mechanism by which vmPFC may form and
represent concepts through goal-sensitive dimensionality reduc-
tion, we show that neural representations in a vmPFC subregion
are shaped by experience. And, this shaping is adaptive, pro-
moting efficient representation of information that focuses on
encoding features that are most predictive of positive outcomes
for a given goal. Importantly, by evaluating behavior through the
lens of a theoretically oriented computational model, we
demonstrate that compression in vmPFC unfolds over the course
of learning in a manner consistent with the learning mechanisms
of SUSTAIN8,9. These findings provide a quantitative account of
vmPFC’s potential role in the coding of efficient schematic
models or cognitive maps7,12,13,19, specifically in the conceptual
domain.

Successfully learning new concepts requires attending to goal-
diagnostic features and ignoring irrelevant information to build
abstract representations that capture the structure defining a
concept8. Viewed in these terms, concept learning has many
parallels to schema formation, a vmPFC-related function first
identified in lesion studies in the memory literature20. Schemas
are defined as structured memory networks that represent asso-
ciative relationships among prior experiences and provide pre-
dictions for new experiences4,5,21,22. Schema-related memory
behaviors are significantly impacted by vmPFC lesions. For
example, vmPFC lesion patients exhibit a reduced influence of
prior knowledge during recognition of items presented in sche-
matically congruent contexts compared with healthy controls23.
Moreover, vmPFC lesions have been associated with a marked
inability to differentiate schema-related concepts from concepts
inappropriate for a given schema24. From this work, it is clear
that vmPFC is necessary for retrieving generalized representa-
tions built from prior events that are relevant to current experi-
ence. Such guided retrieval of relevant learned representations is a
key to building new concepts.

A key proposal of the SUSTAIN computational model we
leveraged is that concept learning is decidedly goal-based, with
concept representations adaptively formed to reflect the task at
hand8. Recent rodent and human work support this proposal
with findings that vmPFC representations are goal-specific in
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Fig. 3 Relationship between model-based attention weighting and vmPFC neural compression (N= 23). a Attention compression (i.e., degree of
attention selectivity as derived from cognitive model fits to behavior) emerged according to feature relevancy across the problems with highest
compression for low complexity followed by medium and high complexity by the end of learning. Points depict individual participants, horizontal lines are
group averages, and violin plots depict the distribution of posterior predictions from the Bayesian-estimated linear regression. The right panel depicts
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marks the 95% high-density interval. b vmPFC neural compression predicted the degree of problem-specific computational model-based attention
compression across learning blocks and problems. Both vmPFC neural compression and model-based attention compression are plotted as partial residuals
of separate regression models that regress out factors of learning block, problem complexity, accuracy, and learning order. The solid line depicts the best-
fitting regression line of the partial residuals. The violin plot depicts the posterior distribution of regression coefficient relating neural compression and
attention compression. The shaded area bounded by black lines within the distribution mark the 95% high-density interval.
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nature, at least at the end of learning. Specifically, neural
ensembles in the rodent homolog of vmPFC have been demon-
strated to represent higher order goal states that relate stimuli to
behaviorally relevant value10,11,25. Similarly, one human neuroi-
maging study recently localized representations of a complex task
space relating 16 different task states to vmPFC activation pat-
terns7. Importantly, these vmPFC representations of task states
predicted participants’ behavioral performance. It is worth noting
that much of the human task/goal-state literature refers to
functions of orbitofrontal cortex (OFC). The specific boundaries
of vmPFC and its relation to OFC are muddied by definitions
arising from anatomical and/or functional distinctions made
across somewhat separate literatures; however, there is a general
consensus that vmPFC largely overlaps with the medial portion of
OFC26. Future work will continue to uncover the spatial orga-
nization of functional aspects of OFC and vmPFC, but the
existing literature does support the notion that vmPFC organizes
knowledge based on goals to promote flexible behaviors.

Our findings provide important evidence for the role of vmPFC
during the formation of conceptual maps of experience. Although
theoretical perspectives highlight the importance of vmPFC in
cognitive map formation2,19, empirical work has failed to directly
examine the computations of vmPFC contributions during
encoding. Instead, evidence is limited to representations that
are established after long periods of training7,12. Relatedly, most
current models of vmPFC function in memory focus on its role in
biasing reactivation of relevant prior experiences via the hippo-
campus27. Few studies target the role of vmPFC during encoding.
We know that vmPFC interaction with memory centers during
encoding4,22,28,29, but we do not know how vmPFC knowledge
representations emerge and support behavior. Our findings pro-
vide evidence for vmPFC potentially playing a role in encoding
processes that build goal-specific mental models. The current
neural findings are ambiguous as to whether vmPFC is directly
implicated in forming conceptual representations or simply
reflects representations learned elsewhere. For example, rodent
models have implicated similar dimensionality-reduction pro-
cesses to the basal ganglia with outputs influencing frontal cod-
ing30. However, by linking vmPFC coding to the learning
mechanisms defined in SUSTAIN, our results suggest that
vmPFC may influence encoding through dimensionality reduc-
tion wherein selective attention highlights goal-specific informa-
tion and discards irrelevant dimensions. That vmPFC was the
only region identified in our analysis provides more support for

such a direct influence at encoding: inputs to vmPFC are
weighted to select goal-related information and discard irrelevant
features in order to efficiently map input to a goal-directed action.
This efficient mapping may then be fed back to memory centers
(i.e., hippocampus) and even high-level vision areas31 to impact
neural coding of learning experiences28. This theorized role for
vmPFC coding during learning offers a strong hypothesis for
future work investigating flexible goal-oriented behavior.

Our hypothesized view of vmPFC function is based on SUS-
TAIN’s formalism of highly interactive mechanisms of selective
attention and learning8, functions theoretically mapped onto
interactions between PFC and the hippocampus9,28,32. Support
for this view is found in recent patient work that has demon-
strated a causal link between attentional processes and vmPFC
function in decision making33–35. These studies have shown that
lesions to vmPFC disrupt attentional guidance based on prior
experience with cue-reward associations35, learning the value of
task-diagnostic features during probabilistic learning33, and value
comparison during reinforcement learning34. These findings have
been recently extended to healthy humans in a neuroimaging
study which demonstrated that value signals in vmPFC are
dynamically biased by attention during reinforcement learning13.
Relatedly, recent rodent work demonstrates the bidirectional flow
of information between the rodent homolog of vmPFC and
hippocampus during context-guided memory encoding and
retrieval36–38. Coupled with the recent demonstration of
hippocampal–vmPFC functional coupling during concept learn-
ing28, the current findings align well with the view that vmPFC is
critical for evaluating and representing information in learning
and decision making.

One limitation of the current work is that we evaluated our
neural compression findings in light of only one computational
model. Although SUSTAIN is a well-established model that
explains many learning behaviors8, is theoretically motivated by
neural mechanisms of learning9,32, and has been successfully
linked to neural measures of concept learning28,39,40, an alter-
native model with similar predictions for attentional tuning over
the course of learning may also account for our neural com-
pression findings. Future studies could leverage our data-driven
measure of neural dimensionality reduction as a target index of
learning for adjudicating between formal cognitive models.

The neural compression method proposed here offers a unique
approach for evaluating the informational value of neural
representations. One limitation to this approach, however, is the
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need for stable trial- or condition-level general linear model
(GLM) estimates of BOLD signal. Such univariate estimates in
brain regions with lower signal-to-noise ratios may be noisy
which would bias PCA towards less dimensionality reduction.
This limitation is true of any analysis that depends on single-trial
GLM estimates, including many forms of representational simi-
larity analysis41 and beta-series connectivity methods42. In the
current study, only within-participant factors were considered,
thus observing a significant effect requires a relative difference in
neural compression across learning blocks and problem com-
plexity within a specific brain region. As such, lower signal-to-
noise ratios within a specific brain region may have influenced
trial-level GLM estimates but would have at worst led to missed
effects, not false positives. Importantly, the category discrimina-
tion present in the PCA loadings for the vmPFC region (Fig. 4)
suggest that the vmPFC neural compression findings are related
to problem-specific dimensionality reduction rather than simple
changes in BOLD signal-to-noise ratios.

The current neural compression findings are based on a data-
driven approach, but their link to mechanistic changes in SUS-
TAIN’s account of learning behavior provide a useful theoretical
interpretation. Such an approach actually provides an answer to
questions of circularity in linking brain measures to behavior43.
For example, in the current study, the structure of neural repre-
sentations across learning was quantified with a data-driven PCA
method that was ignorant to experimental conditions. The
vmPFC region showing neural compression effects was identified
by an interaction of learning block and problem complexity with
no regard for the direction of the effects. Separately, participant
behavior was characterized with SUSTAIN to derive a measure of
attention compression. Thus, measures of brain representation
and voxel selection criteria were independently quantified from
the model-based predictions of learning behavior.

Although combining data-driven methods to understanding
brain dynamics with formal psychological theories is a fruitful
approach44–46, temporal and representational scales of data
analytics and theory may not align. In the current work, the
neural compression measure is necessarily computed over a block
of several trials, whereas SUSTAIN’s predictions of learning
unfold trial-by-trial. Also, PCA-based neural compression cap-
tures the complexity of neural representations based on the
inherent structure of the data rather than model-based predic-
tions28. Thus, neural compression offers a coarser characteriza-
tion of neural dynamics. We anticipate that future extensions of
neural compression methods will allow for characterizations of
representational complexity at finer scales and tighter synchrony
with formal theories.

In summary, we show that learning can be viewed as a process
of goal-directed dimensionality reduction and that such a
mechanism is apparent in vmPFC neural representations
throughout learning. Thus, we suggest that vmPFC may play a
critical role not only in representing conceptual content, but in
the process of learning concepts. Notably, dimensionality reduc-
tion through selective attention offers a reconciling account of
many processes associated with vmPFC including schema
representation47, latent casual models7, grid-like conceptual
maps12, and value coding48,49.

Methods
Participants. Twenty-three volunteers (11 females, mean age 22.3 years old, ran-
ging from 18 to 31 years) participated in the experiment. All subjects were right
handed, had normal or corrected-to-normal vision, and were compensated $75 for
participating.

The methods used in the current study are novel; however, related category
learning experiments have been employed in several previous studies that focus on
analyses of fMRI activation patterns44,50. Given the sample sizes in these studies

(N= 20, 22, 22), as well as our previous experience with functional imaging of the
whole brain, we set a target minimum samples size of 20 participants.

Stimuli. Eight color images of insects were used in the experiment (Fig. 1a). The
insect images consisted of one body with different combinations of three features:
legs, mouth, and antennae. There were two versions of each feature (thick or thin
legs, shovel or pincer mandible, and thick or thin legs). The eight insect images
included all combination of the three features. The stimuli were sized to 300 × 300
pixels.

Procedures for the learning problems. After an initial screening and consent in
accordance with the University of Texas Institutional Review Board, participants
were instructed on the classification learning problems. Participants then per-
formed the problems in the MRI scanner by viewing visual stimuli back-projected
onto a screen through a mirror attached onto the head coil. Foam pads were used
to minimize head motion. Stimulus presentation and timing was performed using
custom scripts written in Matlab (Mathworks) and Psychtoolbox (https://www.
psychtoolbox.org) on an Apple Mac Pro computer running OS X 10.7.

Participants were instructed to learn to classify the insects based on the
combination of the insects’ features using the feedback displayed on each trial. As
part of the initial instructions, participants were made aware of the three features
and the two different values of each feature. Before beginning each classification
problem, additional instructions that described the cover story for the current
problem and which buttons to press for the two insect classes were presented to
the participants. One example of this instruction text is as follows: “Each insect
prefers either Warm or Cold temperatures. The temperature that each insect
prefers depends on one or more of its features. On each trial, you will be shown an
insect and you will make a response as to that insect’s preferred temperature. Press
the ‘1’ button under your index finger for Warm temperatures or the ‘2’ button
under your middle finger for Cold temperatures”. The other two cover stories
involved classifying insects into those that live in the Eastern vs. Western
hemisphere and those that live in an Urban vs. Rural environment. The cover
stories were randomly paired with the three learning problems for each participant.
After the instruction screen, the four fMRI scanning runs (described below) for
that problem commenced, with no further problem instructions. After the four
scanning runs for a problem finished, the next problem began with the
corresponding cover story description. Importantly, the rules that defined the
classification problems were not included in any of the instructions; rather,
participants had to learn these rules through trial and error.

The three problems, the participants learned, were structured such that perfect
performance required attending to a distinct set of feature attributes (Fig. 1a). For
the low complexity problem, class associations were defined by a rule depending on
the value of one feature attribute. For the medium complexity problem, class
associations were defined by an XOR logical rule that depended on the value of the
two feature attributes that were not relevant in the low complexity problem. For the
high complexity problem, class associations were defined such that all feature
attributes had to be attended to respond correctly. As such, different features were
relevant for the three problems and successful learning required a shift in attending
to and representing those feature attributes most relevant for the current problem.
Critically, by varying the number of diagnostic feature attributes across the three
problems, the representational space for each problem had a distinct informational
complexity.

The binary values of the eight insect stimuli along with the class association for
the three learning problems are depicted in Table 1. The stimulus features were
randomly mapped onto the attributes for each participant. These feature-to-
attribute mappings were fixed across the different classification learning problems
within a participant. After the high complexity problem, participants learned the
low and medium problems in sequential order. The learning order of the low and
medium problems was counterbalanced across participants. This problem order
was used for purposes described in a prior analysis of this data28.

The classification problems consisted of learning trials (Fig. 1a) during which an
insect image was presented for 3.5 s. During stimulus presentation, participants
were instructed to respond to the insect’s class by pressing one of two buttons on
an fMRI-compatible button box. Insect images subtended 7.3° × 7.3° of visual
space. The stimulus presentation period was followed by a 0.5–4.5 s fixation. A
feedback screen consisting of the insect image, text of whether the response was
correct or incorrect, and the correct class was shown for 2 s followed by a 4–8 s
fixation. The timing of the stimulus and feedback phases of the learning trials was
jittered to optimize general linear modeling estimation of the fMRI data. Within
one functional run, each of the eight insect images was presented in four learning
trials. The order of the learning trials was pseudo randomized in blocks of 16 trials
such that the eight stimuli were each presented twice. One functional run was 388 s
in duration. Each of the learning problems included four functional runs for a total
of 16 repetitions for each insect stimulus. The entire experiment lasted ~65 min

Behavioral analysis. Participant-specific learning curves were extracted for each
problem by calculating the average accuracy across blocks of 16 learning trials.
These learning curves were used for the computational learning model analysis.
Furthermore, a mixed effect logistic regression analysis was performed on the
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behavioral data. Specifically, fixed effects of stimulus repetition, problem com-
plexity, and learning order along with random intercepts were estimated in pre-
dicting trial-by-trial accuracy across all participants. Accuracy improved across
stimulus repetitions (χ2= 769.9, p < 0.0001), differed between problem complexity
overall (χ2= 970.1, p < 0.0001), and changed differently across repetitions for the
problems (χ2= 68.9, p < 0.0001), but did not differ between learning orders
(χ2= 2.087, p < 0.149).

Computational learning model. Participant behavior was modeled with an
established mathematical learning model, SUSTAIN8. SUSTAIN is a network-
based learning model that classifies incoming stimuli by comparing them with
memory-based knowledge representations of previously experienced stimuli. Sen-
sory stimuli are encoded by SUSTAIN into perceptual representations based on the
value of the stimulus features. The values of these features are biased according to
attention weights operationalized as receptive fields on each feature attribute.
During learning, these attention weight receptive fields, which change as a function
of the latent model variable λi, are tuned to give more weight to diagnostic features.
SUSTAIN represents knowledge as clusters of stimulus features and class asso-
ciations that are built and tuned over the course of learning. New clusters are
recruited, and existing clusters updated according to the current learning goals. A
full mathematical formulization of SUSTAIN is provided in its introductory
publication8.

To characterize the attention weights participants formed during learning, we fit
SUSTAIN to each participant’s trial-by-trial learning behavior. First, SUSTAIN was
initialized with no clusters and equivalent attention weights across the stimulus
feature attributes. Then, stimuli were presented to SUSTAIN in the same order as a
participant’s experience, and model parameters were optimized to predict each
participant’s trial-by-trial responses in the three learning problems through a
maximum likelihood optimization method51. Specifically, model likelihood was
calculated based on the probability of the model making the same response as the
participant in each trial and this likelihood was maximized through the differential
evolution optimization algorithm provided in the scipy python library. In the
optimization procedure, the model state at the end of the first learning problem was
used as the initial state for the second learning problem. In doing so, parameters
were optimized to account for learning with the assumption that attention weights,
and knowledge clusters learned from the first problem carried over to influence
learning in the second problem. Similarly, model state from the second problem
carried over and influenced early learning in the third problem. Thus, problem
order effects are considered a natural consequence of our model fitting approach.
The optimized parameters were then used to extract measures of feature attribute
attention weights throughout learning in the three problems. Specifically, for each
participant, the model parameters were fixed to the optimized values and the model
was presented with the trial order experienced by the participant. On each trial, the
values of the feature attribute attention weights, λi, were extracted for each
participant. This was repeated for each of the three learning problems. The average
value and 95% confidence intervals of SUSTAIN’s five free parameters were:
γ= 8.96 ± 0.82, β= 1.51 ± 0.34, η= 0.08 ± 0.03, d= 17.04 ± 2.05, τh= 0.11 ± 0.04.

MRI data acquisition. Whole-brain imaging data were acquired on a 3.0T Sie-
mens Skyra system at the University of Texas at Austin Imaging Research Center.
A high-resolution T1-weighted MPRAGE structural volume (TR= 1.9 s, TE=
2.43 ms, flip angle= 9°, FOV= 256 mm, matrix= 256 × 256, voxel dimensions=
1 mm isotropic) was acquired for coregistration and parcellation. Two oblique
coronal T2-weighted structural images were acquired perpendicular to the
main axis of the hippocampus (TR= 13,150 ms, TE= 82 ms, matrix= 384 × 384,
0.4 × 0.4 mm in-plane resolution, 1.5 mm thru-plane resolution, 60 slices, no gap).
High-resolution functional images were acquired using a T2*-weighted multiband
accelerated EPI pulse sequence (TR= 2 s, TE= 31 ms, flip angle= 73°, FOV=
220 mm, matrix= 128 × 128, slice thickness= 1.7 mm, number of slices= 72,
multiband factor= 3) allowing for whole-brain coverage with 1.7 mm isotropic
voxels.

MRI data preprocessing and statistical analysis. MRI data were preprocessed
and analyzed using FSL 5.0.952 and custom Python routines. Functional images
were realigned to the first volume of the seventh functional run to correct for
motion, spatially smoothed using a 3 mm full-width-half-maximum Gaussian
kernel, high-pass filtered (128 s), and detrended to remove linear trends within
each run. Functional images were registered to the MPRAGE structural volume
using Advanced Normalization Tools, version 1.953.

Neural compression analysis. The goal of the neural compression analysis was to
assess the informational complexity of the neural representations formed during
the different learning problems. To index representational complexity, we mea-
sured the extent that neural activation patterns could be compressed into a smaller
dimensional space according to PCA. The compression analyses were implemented
using PyMVPA54 and custom Python routines and were conducted on pre-
processed and spatially smoothed functional data. First, whole-brain activation
patterns for each repetition of each stimulus within each run were estimated using
an event-specific univariate GLM approach16. This approach allowed us to model

estimates of neural patterns for the eight insect stimuli across the trials in each
learning problem. For each classification problem run, a GLM with separate
regressors for stimulus presentation on each trial, modeled as 3.5 s boxcar con-
volved with a canonical hemodynamic response function, was conducted to extract
voxel-wise parameter estimates for each trial. In addition, two separate regressors
for correct and incorrect feedback events (2 s boxcar) and two separate regressors
for response events (impulse function at the time of response), as well as six motion
parameters were included in the GLM. This modeling strategy targeted the neural
representations specific to viewing the stimuli separate from processes associated
with feedback events and trial outcomes for the participants’ responses. This
procedure resulted in, for each participant, whole-brain activation patterns for each
trial in the three learning problems.

We assessed the representational complexity of the neural measures of stimulus
representation during learning with a searchlight method17. Using a searchlight
sphere with a radius of four voxels (voxels per sphere: 242 mean, 257 mode,
76 minimum, 257 maximum), we extracted a vector of activation values across all
voxels within a searchlight sphere for all 32 trials within a problem run. These
activation vectors were then submitted to PCA to assess the degree of correlation in
voxel activation across the different trials. PCA was performed using the singular
value decomposition method as implemented in the decomposition. PCA function
of the scikit-learn (version 0.17.1) Python library. To characterize the amount of
dimensional reduction possible in the neural representation, we calculated the
number of PCs that were necessary to explain 90% of the variance (k) in the
activation vectors. We scaled this number into a compression score that ranged
from 0 to 1,

compression ¼ 1� k
n
; ð1Þ

where n is equal to 32, the total number of activation patterns submitted to PCA.
By definition, 32 PCs will account for 100% of the variance, but no compression.
With this definition of neural compression, larger compression scores indicated
fewer PCs were needed to explain the variance across trials in the neural data (i.e.,
neural representations with lower dimensional complexity). In contrast, smaller
compression scores indicated more PCs were required to explain the variance (i.e.,
neural representations with higher dimensional complexity). This neural
compression searchlight was performed across the whole brain separately for each
participant and each run of the three learning problems in native space. One
limitation that is important to note is that this PCA approach to indexing neural
compression does depend on the success of the single-trial GLM parameter
estimates. Brain regions with lower signal or higher noise may lead to noisy single-
trial parameter estimates that would inflate the PCA estimation of dimensionality
(i.e., a higher number of PCs). For this reason, differences in neural compression
are most interpretable when observed for within-subject factors evaluated within
the same brain region, as has been done in the current work.

Group-level analyses were performed on the neural compression maps
calculated with the searchlight procedure. Each participant’s compression maps
were normalized to MNI space using ANTs53 and combined into a group dataset.
To identify brain regions that demonstrated neural compression that was
consistent with the representational complexity of the learning problems, we
performed a voxel-wise linear mixed effects regression analysis using the
statsmodels Python library (version 0.8). The mixed effects model included factors
of problem complexity and learning block as fixed effects as well as participants as a
random effect to predict neural compression. The interaction of problem
complexity and learning block was the central effect of interest. We also included
each participant’s accuracy for the three problems within each learning block as a
covariate. This regression model was evaluated at each voxel. A statistical map was
constructed by saving the t-statistic of the interaction between complexity and
learning block. The resulting statistical map was voxel-wise corrected at p= 0.001
and cluster corrected at p= 0.05, which corresponded to a cluster extent threshold
of greater than 259 voxels. The cluster extent threshold was determined with
AFNI55 3dClustStim (version 16.3.12) using the acf option, second-nearest
neighbor clustering, and two-sided thresholding. The 3dClustSim software used
was downloaded and compiled on November 21, 2016 and included fixes for the
recently discovered errors of improperly accounting for edge effects in simulations
of small regions and spatial autocorrelation in smoothness estimates56. Additional
statistical maps of the main effects of problem complexity, learning block, and
accuracy were also interrogated. No significant clusters were found for accuracy;
see Supplementary Fig. 1 and Supplementary Table 1 for the results for problem
complexity and learning block.

We assessed the nature of the interaction in the vmPFC cluster by extracting
each participant’s average neural compression score within the cluster for each
problem across the four learning runs. This average compression is plotted in the
middle panel of Fig. 2b. A linear mixed effects model estimated with Bayesian
methods testing the same regression model as described above was performed on
the neural compression scores from the peak voxel within the vmPFC cluster using
the rstanarm (version 2.18.2) R library. Relative to the standard frequentist
approach to linear regression, a Bayesian-estimated linear mixed effects approach
estimates a full probability model that incorporates uncertainty estimates about the
outcome and predictor variables within a hierarchical framework that explicitly
models participant and group-level effects57. Through Monte Carlo Markov Chain
(MCMC) procedures, a regression model can be estimated that provides credible
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probability estimates for predictor variables without the constraints of normality
that limit frequentist linear regression techniques. The regression models
conducted here were based on default arguments for the stan_glmer function:
weakly informed priors with regularization to prevent over-fitting and four MCMC
chains of 2000 samples, the first half of which are discarded as “warm-up” samples.
This results in 4000 total samples from the posterior distribution of the model. The
posterior samples from each factor in the model can be used to assess model
convergence, estimate the average factor coefficient, define a 95% high-density
interval around each factor estimate (i.e., the Bayesian alternative of confidence
intervals), and a P value representing the proportion of samples from each factor’s
posterior distribution that counter the sign of the mean estimate (i.e., this can be
interpreted as a measure of significance similar to frequentist p values). Model
convergence is assessed with the Rhat statistic which estimates the consistency
between independent MCMC chains—values greater than 1.1 suggest the MCMC
sampling did not converge. In all reported Bayesian-estimated linear mixed effects
model here, the Rhat values were less than 1.1 suggesting model convergence.

It is important to note that separately analyzing neural compression from the
peak voxel within the vmPFC cluster does not represent a set of independent
findings. It does, however, provide a window into the nature of the factors
underlying this cluster and the contribution (or lack thereof) of learning problem
order and accuracy. Results from the Bayesian-estimated mixed effects model are
summarized in Table 2. The posterior distributions for learning block, problem
complexity, and their interaction are plotted in the right panel of Fig. 2b.

One potential issue with our findings is that our learning problems vary in their
complexity, and task difficulty can change univariate neural activation. As such, the
concern exists that rather than changes in neural compression, our findings are
driven by simple changes in overall activation levels across problem complexity. To
address this concern, we examined the mean activation in the vmPFC cluster across
learning blocks and problem complexity with a Bayesian-estimated mixed effect
linear regression. We found no differences in average activation across learning
block (βmean=−20.3, 95% HDI= [−134.8, 89.2], P= 0.72), problem complexity
(βmean= 25.1, 95% HDI= [−115.2, 163.8], P= 0.73), nor an interaction of these
factors (βmean=−1.309, 95% HDI= [−82.7, 126.7], P= 0.93). Thus, in our
paradigm, problem complexity did not lead to differences in overall neural
activation that changed across learning.

One additional concern with our experimental procedure is that the task with
the highest complexity was always learned first. This particular problem order was
important for another purpose in a previous analysis of the data28. It is a valid
concern that the differences in neural compression are driven simply by this first
problem being the most difficult and least practiced. Such conditions could
potentially be reflected in greater noise in the neural representations for this higher
complexity task which might lead to lower neural compression, but for reasons not

due to problem complexity. To address this concern, we performed the whole-
brain voxel-wise linear mixed effects regression analysis comparing complexity
across learning blocks while controlling for problem order and accuracy, but only
for the data associated with the low and medium complexity problems. By
excluding the high complexity data, we can target the effect of complexity without
the confound of learning order. If the interaction remains between problem
complexity and learning block in predicting neural compression in the vmPFC
region, it stands to reason that learning order is not a significant driver in the
current findings. Indeed, this follow-up analysis revealed a very similar cluster in
vmPFC (Fig. 5) and no other regions survived cluster correction.

We also performed a Bayesian-estimated linear mixed effects analysis on the
peak voxel from the vmPFC cluster in Fig. 2b, but only for the data associated with
the low and medium complexity problems. Again, we found similar results to the
full dataset with a significant interaction between learning block and complexity
(βmean=−0.021, 95% HDI= [−0.034, −0.008], P= 0.0015). Both of these
analyses suggest that neural compression changes across learning blocks and
increases more for the low vs. the medium complexity problem when restricted to a
subset of the data with counterbalanced learning order.

Category-specific coding in neural compression. The data-driven nature of the
PCA approach for neural compression can reveal the degree that neural patterns
can be compressed, but not necessarily why this compression is possible. In the
current study, the critical hypothesis is that learning to attend to problem-specific
information will impact neural representations in a manner consistent with the
representational complexity of the problem. Demonstrating that neural compres-
sion increases with learning and does so according to problem complexity provides
compelling evidence in support of our hypothesis, but support that is nonetheless
indirect.

To directly assess the contribution of category coding present in the
compression findings, we analyzed how trials for a given problem within a learning
block load onto the identified PCs. If category information is driving neural
compression, trials with stimuli from the same category should load similarly on
the PCs and trials from different categories should load differently on the PCs. In
other words the distribution of trial loadings onto the PCs should discriminate
between the two categories. We indexed the degree of category discrimination in
PCA loadings by calculating the absolute difference between the average loadings
within each category for the set of PCs identified in the neural compression
analysis. These category loading differences were weighted by the explained
variance of each PC and summed to create a measure of PC category
discrimination (Fig. 4a). Higher values of category discrimination suggests that
category coding is driving neural compression. On the other hand, if trials from
both categories load similarly on the PCs, category discrimination would be equal
to 0. A Bayesian-estimated mixed effects linear regression was conducted that
evaluated the relationship between PC category discrimination and factors of
learning block, problem complexity, learning order, and accuracy. We found that
category discrimination was present in the PCA loadings (Fig. 4b and Table 3): not
only did category discrimination increase with learning, it did so most for low
followed by medium and high complexity problems.

Relating neural compression with behavioral signatures of selective attention.
To evaluate the relationship between neural compression and model-based esti-
mates of attention weighting, we first extracted individual participant-based mea-
sures of each. The participant-specific average neural compression within the
vmPFC cluster was extracted for each learning problem. We used the SUSTAIN
estimates of stimulus dimension attention weights, λ, to calculate a signature of
selective attention. Throughout learning on trial-by-trial basis, SUSTAIN tunes
attention weights based on the model parameters, the trial sequence, and the
outcome of each trial. For each participant, we extracted the trial-by-trial derived
attention weights in each learning problem based on the participant’s best-fitting
parameters. These attention weights for the three stimulus dimensions in each
problem were transformed to sum to 1, thus creating a probability distribution
representing the likelihood of attention to the three features. For example, given the

Table 2 Results of the Bayesian-estimated linear mixed
effects regression model predicting neural compression
within the peak voxel of the vmPFC region depicted in
Fig. 2b.

Estimate 95% HDI P

Intercept 0.586 0.473, 0.699 <0.001
Block 0.028 0.014, 0.041 <0.001
Complexity 0.025 0.005, 0.044 0.017
Accuracy 0.046 0.001, 0.090 0.044
Order 0.069 −0.076, 0.209 0.326
Block:complexity −0.013 −0.019, −0.006 <0.001

The mean estimated values, 95% high-density interval (HDI), and P values are reported for each
fixed effect

0.005 1e–5p value

x = 3 y = 42 z = –27

Fig. 5 A whole-brain voxel-wise linear mixed effects regression restricted to low and medium complexity problems (N= 23). Similar to the main results
in Fig. 2b, a cluster in vmPFC showed a significant interaction between learning block and problem complexity.
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attention weights [0.1, 0.1, 0.8], there is a probability of 0.8 that attention will be
directed to the third stimulus dimension on any one trial. We then calculated
entropy39 across the attention weights for each problem separately:

entropy ¼ �
X3

i¼ 1
ai log2 ai; ð2Þ

such that ai is the attention weight for stimulus dimension i. This entropy measure
indexes the dispersion of attention across the stimulus dimensions. If attention is
unselective and all three stimulus dimensions are equally weighted, entropy is high.
On the other hand, if attention is selective with the majority of weight on a single
dimension, entropy is low. To better align attention entropy with our measure of
neural compression, we transformed entropy into an index of attention com-
pression:

attention compression ¼ 1� entropy= log2ð1=3Þ ð3Þ
Attention compression first scales entropy according to the maximum amount

of entropy given three stimulus dimensions and then subtracts this ratio from 1.
The result is a measure that ranges from 0 to 1 with low values corresponding to
unselective attention and high values corresponding to more selective attention. As
such, the attention compression index offers a unique signature for optimal
attentional strategy across the three learning problems: the highest attention
compression should be seen in the low complexity problem, an intermediate
compression for the medium complexity problem, and the lowest attention
compression for the high complexity problem. As a final step, for each participant,
attention compression was averaged within learning block separately for each
problem. The effect of problem complexity on attention compression was assessed
with a Bayesian-estimated linear mixed effects regression that included factors of
learning block, problem complexity, accuracy, learner order, and the interaction of
block and complexity (see Fig. 3a and Table 4).

We next evaluated the relationship between vmPFC neural compression and
attention weight entropy on an individual participant basis with Bayesian-
estimated mixed effects linear regression. The regression model was conducted
such that vmPFC neural compression, learning block, problem complexity,
learning order, and accuracy were predictors of attention weight compression
(Fig. 3b). This analysis estimates the degree that vmPFC compression is related to
attention compression controlling for all of the other manipulated factors in the
experiment, as well as individual differences in performance throughout learning.
Finding that vmPFC compression is significantly related to attention compression,
in spite of all of these other predictors, suggests that as attention evolves during
learning (according to SUSTAIN’s predictions of behavior), task-specific neural
compression is evolving in the same fashion. Indeed, the results confirm this
hypothesis showing a significant correspondence between vmPFC and attention
compression (Table 5). The posterior distribution for the effect of vmPFC
compression on attention compression reveals a robust finding (Fig. 3b, right
panel). Importantly, a similar relationship between neural and attention

compression was found when restricting the same regression analyses to only the
low and medium complexity data (βmean= 0.210, 95% HDI= [−0.082, 0.368], P=
0.0005).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data collected for this study are available for download: https://osf.io/5byhb/. A
reporting summary for this article is available as a Supplementary Information file.

Code availability
Data analysis code available upon request.
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