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Abstract

External motivation, such as a promise of future monetary reward for remembering an event, can affect which events are
remembered. Reward-based memory modulation is thought to result from encoding and post-encoding interactions between
dopaminergic midbrain, signaling reward, and hippocampus and parahippocampal cortex, supporting episodic memory. We
asked whether hippocampal and parahippocampal interactions with other reward-related regions are related to reward modulation
of memory and whether such relationships are stable over time. Individuals’ memory sensitivity to reward was measured using a
monetary incentive encoding task in which a cue indicated potential monetary reward (penny, dime, or dollar) for remembering
an upcoming object pair. Functional connectivity between memory and reward regions was measured before, during, and
following the task. Reward-related regions of interest were generated using a meta-analysis of existing studies on reward and
included ventral striatum, medial and orbital prefrontal cortices and anterior cingulate cortex, in addition to midbrain. The results
showed that connectivity between memory and reward regions tracked individual differences in reward modulation of memory,
irrespective of when connectivity was measured. Connectivity patterns of anterior cingulate, orbitofrontal cortex, and ventral
striatum covaried together and tracked behavior most strongly. These findings implicate a broader set of reward regions in reward
modulation of memory than considered previously and provide new evidence that stable connectivity patterns between memory
and reward centers relate to individual differences in how reward impacts memory.
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Why are some events remembered and others forgotten?
Reward-based motivation is one factor that impacts which
events are remembered. The modulation of memory by re-
wards is thought to result from reward-related activation of
the dopaminergic midbrain and the projection of dopamine
into the hippocampus, which facilitates long-term potentiation
and memory formation (Lisman & Grace, 2005; Lisman,
Grace, & Duzel, 2011; Shohamy & Adcock, 2010).
Consistent with this model, several functional MRI studies
have documented increased activation in the midbrain and
ventral striatum, accompanied by univariate and multivariate
signals reflecting reward in the hippocampus and
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parahippocampal cortex (PHC) within the medial temporal
lobe (Adcock, Thangavel, Whitfield-Gabrieli, Knutson, &
Gabrieli, 2006; Gruber, Ritchey, Wang, Doss, & Ranganath,
2016; Wittmann et al., 2005; Wolosin, Zeithamova, &
Preston, 2012, 2013). A common finding in these studies is
that individuals differ in the degree to which their memory is
affected by extrinsic rewards (Adcock et al., 2006; Gruber
et al., 2016; Wolosin et al., 2012, 2013).

Individual differences in memory sensitivity to reward
have been related to both phasic and tonic interactions be-
tween the midbrain and medial temporal lobe (Shohamy &
Adcock, 2010). Adcock et al. (2006) first found that task-
related activation in the hippocampus, PHC, midbrain, and
ventral striatum were correlated participants. Wolosin et al.
(2012) showed background hippocampal-midbrain interac-
tions across both encoding and retrieval phases track memory
sensitivity to reward. Other studies focused on learning-
induced connectivity increases, relating them to reward-
motivated memory (Gruber et al., 2016; Murty, Tompary,
Adcock, & Davachi, 2017), although hippocampal-midbrain
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interactions may relate to associative memory in general
(Duncan, Tompary, & Davachi, 2014; Tompary, Duncan, &
Davachi, 2015).

Across many memory studies, the emphasis has been on
connectivity during task performance or connectivity changes
after learning as primary predictors of behavior (Gruber et al.,
2016; Murty et al., 2017; Tambini, Ketz, & Davachi, 2010;
Tompary etal., 2015). In contrast, other fields have focused on
resting connectivity patterns, given that individual differences
of intrinsic connectivity can remain relatively stable across
time and tasks (Finn et al., 2015; Gratton et al., 2018),
predicting individual differences in cognition (Finn et al.,
2015; Gerraty, Davidow, Wimmer, Kahn, & Shohamy, 2014;
Poole etal., 2016; Wang et al., 2010). Therefore, we wanted to
bridge these approaches and test whether there are stable in-
teractions between memory and reward regions that track in-
dividual differences in memory sensitivity to reward, irrespec-
tive of when those interactions are measured. For example,
even in the absence of a task, the strength of connectivity
between hippocampus, midbrain, and ventral striatum varies
across individuals (Kahn & Shohamy, 2013). Because these
regions are involved in memory and reward processes, these
task-independent interactions may relate to individual differ-
ences in memory sensitivity to reward. However, the idea of
an individual’s connectivity “fingerprint”—used in a broad
sense referring to connectivity patterns differentiating groups
and tracking performance (Gratton et al., 2018; Wang et al.,
2010) rather than identifying specific individuals (Finn et al.,
2015)—has not yet been tested in the area of reward modula-
tion of memory.

Theoretical perspectives, particularly the Lisman and
Grace (2005) model, have emphasized the role of the dopami-
nergic midbrain in motivated learning. Influenced by this
model, neuroimaging studies on memory sensitivity to reward
have typically focused on the midbrain as the primary reward
region of interest (Adcock et al., 2006; Gruber et al., 2016;
Wittmann et al., 2005; Wolosin et al., 2012). However, other
reward-related regions are likely to contribute to motivational
effects on memory. The ventral striatum is believed to play a
central role integrating signals between the hippocampus and
midbrain (Lisman & Grace, 2005; Miendlarzewska, Bavelier,
& Schwartz, 2016), is recruited during motivational encoding
(Adcock et al., 2006; Wittmann et al., 2005), and has been
shown to interact with the hippocampus both during rest
(Kahn & Shohamy, 2013) and task performance (Adcock
et al., 2006; Camara, Rodriguez-Fornells, & Miinte, 2009;
Kafkas & Montaldi, 2015). Prefrontal regions, including the
orbitofrontal cortex (OFC) and medial prefrontal cortex
(MPFC), also interact with hippocampus and PHC
(Blessing, Beissner, Schumann, Briinner, & Bir, 2016;
Gerraty etal., 2014; Murty, LaBar, & Adcock, 2016) and have
been implicated in various reward-related processes (Amiez,
Joseph, & Procyk, 2006; Elliott, Agnew, & Deakin, 2008;
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Kable & Glimcher, 2007). However, because of the theoretical
emphasis on midbrain, and to a lesser degree striatum, it is
unknown whether other reward-related regions also contribute
to reward modulation of memory.

The current study had two main goals. First, we sought to
determine the role of a broader network of reward-related
regions in mediating reward modulation of memory.
Reward-related regions of interest were independently derived
based on their involvement in reward processing using an
automated meta-analysis tool Neurosynth (Yarkoni,
Poldrack, Nichols, Van Essen, & Wager, 2011), irrespective
of their prior implication in reward modulation of memory.
Second, we aimed to determine to what extent individual dif-
ferences in memory sensitivity to reward relate to individual
differences in connectivity between memory and reward cen-
ters and whether such a relationship may exist irrespective of
when connectivity is measured. To evaluate the stability of
connectivity patterns and their relationship to behavior,
interactions between hippocampus and PHC with a net-
work of reward-related regions were measured using func-
tional MRI during a monetary incentive encoding task
(Adcock et al., 2006), as well as during rest scans before
and after the task. The pattern of connectivity for each
participant was related to their memory sensitivity to re-
ward, defined as memory advantage for high-value trials,
using analysis of variance and machine-learning ap-
proaches. A separate report from this data set, focusing
on hippocampal and PHC task-related activation patterns
and how they represent reward, has been published previ-
ously (Zeithamova, Gelman, Frank, & Preston, 2018).

Materials and methods
Participants

Thirty-four healthy, English speaking volunteers enrolled in
this study. Data from nine participants were excluded for ex-
cessive head motion during task scans (framewise displace-
ment >1 mm in at least 50 time points in more than 1 run; 4
participants), scanning interruptions (3 participants), or miss-
ing data (2 participants). An additional participant was exclud-
ed due to excessive head motion during a rest scan (>50% of
time points removed during scrubbing). The remaining 24
subjects (18 females, ages 18-31, mean age = 22) were includ-
ed in the connectivity analyses. Subjects received $40 for
participation and up to $55.50 bonus for their memory perfor-
mance. The study was approved by the Institutional Review
Board of The University of Texas at Austin, and all partici-
pants provided a written consent. A separate sample of 20
participants (5 females, ages 18-24 years, mean age 19 years)
completed the same task but were not scanned.
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Behavioral procedures

Following the consent procedure, participants were instructed
on the task and completed five practice trials. Next, they were
screened for MRI, changed into scrubs, and were positioned
into an MRI magnet. The scanning session started with the
acquisition of anatomical scans, followed by functional scans.
Participants completed a pre-encoding rest scan (6 minutes), a
motivated encoding task across five event-related runs (9 mi-
nutes each), and a post-encoding rest scan (6 mins), with 1-2
minutes between all scans (Fig. 1a). During rest scans, partic-
ipants were instructed to keep their eyes open, with a blank
screen in front of them. During the motivated encoding task,
participants were instructed to intentionally encode 150 pairs
of common objects, each preceded by a cue (in pictorial or
word form), indicating a reward value (penny, dime, or dollar)
that they may earn if they remembered the object pair in a later
memory test (Fig. 1b). The object pairs were drawn from a set
0f 300 color photographs of objects and randomly assigned to
one of the six reward-cue conditions, resulting in 25 pairs per
condition. Participants were informed that they would receive
a cash bonus indicated by the reward cue for correctly
recalling the associations in a cued-recall task that immediate-
ly followed the scanning session. Trials from all conditions
were presented in a randomized order, with a balanced number
of presentations in each of the five encoding runs. A self-
paced cued recall test was completed following the scanning
session, approximately 20-30 minutes after the post-encoding
rest. During each test trial, participants were shown the left
object of each pair and asked to name aloud the associated

object, followed by a source memory test during which par-
ticipants selected the reward cue that preceded that object (Fig.
Ic). Participants were not informed that they would be tested
on the cue identity prior to the test. Source memory for cue
identity was at chance in the fMRI sample (Zeithamova et al.,
2018) and is not considered further in this report.

For each participant, the mean proportion of correctly
recalled associations following each of the six possible cues
was computed. A 2 (form: picture, word) x 3 (value: penny,
dime, dollar) repeated measures ANOVA examined the
within-subjects effect of reward value and form on memory.
For significant effects, follow-up pairwise comparisons were
conducted to determine the differences between the mean ac-
curacies of each condition. The behavioral data were used to
index individual differences in reward modulation of memory.
Because the behavioral effect of reward was found to be U-
shaped in the fMRI sample, we used the difference between
dollar and dime trial accuracy as a measure of memory sensi-
tivity to reward. We refer to this score as the behavioral re-
ward modulation (BRM) score. Additionally, a median split of
BRM scores sorted participants into two groups: modulators
(those who demonstrated memory sensitivity to reward), and
nonmodulators (those whose memory scores were insensitive
to reward). A confirmatory analysis of the reward effect on
memory was performed within each group to verify that
“modulators” indeed showed a memory advantage for dol-
lar trials while “nonmodulators” did not. We refer to this
dichotomized measure of memory sensitivity to reward as
a modulator status.

a b Reward Cue
Task Stages: w
. Pre-encoding
6 mins + 3
Rest Scan W
; 1.5s BASEBALL LIG +
9mins| Monetary Incentive 6.5 5 SSBUL
per scan Encoding Task ' 6.5s
c Associative Memory
] Name the paired | Source Memory
6 mins object.
~ 30 min Post-scan BASEBALL 772
delay| Cued Recall Task

Fig. 1. Behavioral procedures. a The task consisted of three scanning
stages: the pre-encoding rest scan, the monetary incentive encoding task,
and the post-encoding rest scan. The final stage consisted of a cued recall
task that was conducted outside of the scanner. b Participants performed a
modified monetary incentive task. They were asked to intentionally
encode pairs of common objects. Preceding each object pair was a reward

cue that indicated how much money the participant would earn for cor-
rectly remembering the object pair. ¢ In a post-scan cued recall task,
participants had to name the object previously paired with the one pre-
sented. A surprise source memory task for the associated reward cue
followed each trial
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fMRI acquisition

Functional and structural MR images were collected at the
Imaging Research Center at the University of Austin at
Texas using a 3T Siemens Skyra MRI scanner. Functional
images were collected in 72 oblique axial slices, approximate-
ly 20 degrees from the AC-PC line, using echo-planar imaging
sequences with multiband acceleration factor = 3, GRAPPA
factor=2, TR =2,000 ms, TE =31 ms, flip angle = 73°, 128 x
128 x 72 matrix resulting in 1.7-mm isotropic voxels. Using
the same parameters, two 6-minute resting-state fMRI scans
were conducted, one preceding and one following the
encoding task. A Tlweighted high-resolution MPRAGE
anatomical image (256 x 256 x 192 matrix, 1-mm isotropic
voxels) was collected. An additional T2-weighted image was
collected in an oblique coronal plane perpendicular to the
hippocampal axis (TR = 13,150 ms, TE = 82 ms, 512 x 60
x 512 matrix, 0.4- x 0.4-mm in-plane resolution with 1.5-mm
slices, no gap).

Regions of interest

Because prior studies on motivated encoding have primarily
focused on midbrain, little is known about how other reward-
related regions may affect memory sensitivity to reward. Our
goal was to include a wider reward-related network in the
current investigation, irrespective of whether they have been
previously implicated in reward modulation of memory. To
obtain ROIs related to reward processing, a meta-analysis of
671 studies including the term “reward” was collected from
the Neurosynth database (http:/neurosynth.org). We used the
“reverse inference” map (currently referred to as the
“association test”), which displays regions that preferentially
activate in studies that include the term “reward” compared
with studies that do not include the term “reward” and as such
is considered diagnostic of the term in question (Yarkoni et al.,
2011). Because the default Neurosynth threshold (FDR p < 0.
01) yielded large clusters with multiple peaks in anatomically
distinct regions, we further thresholded the maps with a voxel-
wise threshold of Z = 5.3 to obtain clusters that did not extend
across multiple anatomical regions. This meta-analysis result-
ed in five reward-related ROIs that centered on the anterior
cingulate cortex (ACC), midbrain, medial prefrontal cortex
(MPFC), orbitofrontal cortex (OFC), and ventral striatum
(VS). Clusters centered on the midbrain and VS were dispro-
portionately larger than the prefrontal ROIs and extended be-
yond the anatomical boundaries of their respective regions,
thus these clusters were further reduced to the top 500 voxels.
The localization of the resulting five reward-related ROIs in
the standard space is presented in Fig. 2a. The reward-related
ROIs were reverse transformed from standard space to native
space of each participant using FLIRT, a part of FSL (http:/
www.fmrib.ox.ac.uk/fsl). Finally, the reward ROIs were
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resampled to the functional space of the participant to serve
as masks for extracting timeseries.

Given the number of reward-related regions, only hippo-
campus and PHC were selected as memory regions of interest
to limit the total number of connections considered.
Hippocampus and PHC were selected as our a priori memory
ROIs, because they have been consistently implicated in stud-
ies of reward effects on memory (Gruber et al., 2016; Wolosin
etal., 2012, 2013). To obtain unbiased ROIs, we defined hip-
pocampus and PHC anatomically in each participant’s native
space. We did not use a functional definition (e.g.,
Neurosynth) as it was not apparent whether standard memory
voxels in these regions must be also most relevant for memory
modulation by reward. However, the Neurosynth “memory”
maps do cover essentially the whole anatomical hippocampus
and PHC and would thus yield the same results. Anatomical
ROIs were obtained by cortical parcellation and subcortical
segmentation of the T1 anatomical scan via Freesurfer (https://
surfer.nmr.mgh.harvard.edu). The T1 anatomical scan was
then coregistered to the first functional scan using Advanced
Normalisation Tools (ANTS, http://picsl.upenn.edu/software/
ants/), and the coregistration parameters were applied to the
Freesurfer segmentations. Finally, the participant-specific,
Freesurfer-defined hippocampus and PHC were trans-
formed into the space of their functional scans to be used
as masks for extracting hippocampal and PHC timeseries.
Hippocampus and PHC ROIs are presented for an example
subject in Fig. 2b.

Deriving functional connectivity measures

Preprocessing was conducted using tools from FSL version
5.0 and ANTS. The functional and anatomical images were
brain extracted using BET. Functional images were motion
corrected within each run using FLIRT from FSL, realigned
across runs to the first functional image using ANTS, and
high-pass filtered (128-s cutoff). Functional connectivity was
measured during the pre-encoding rest scan, the five encoding
scans, and the post-encoding rest scan using similar process-
ing procedures. As connectivity measures may be affected by
noise in the BOLD signal evoked by motion and physiological
processes (Murphy, Birn, & Bandettini, 2013; Power, Barnes,
Snyder, Schlaggar, & Petersen, 2012), we followed the pre-
processing procedures outlined by Power et al. (2012) to re-
move noise-related signal fluctuations. First, time courses
were extracted for cerebrospinal fluid (CSF), white matter
(WM), and the whole brain, because signal changes in these
regions provide a good proxy to signal changes driven by
motion and other confounds. The six realignment motion pa-
rameters, framewise displacement (FD), and global signal
change (DVARS) also were extracted. We then created a
“scrubbing” mask using the time series for FD and DVARS.
Time points that exceeded either threshold (FD > 0.5 mm or
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Anterior Cingulate Midbrain (MID)

Cortex (ACC)

Medial Prefrontal
Cortex (mPFC)

Orbitofrontal
Cortex (OFC)

Ventral Striatum (VS)

B Hippocampus (HIP)
B Parahippocampal Cortex (PHC)

Fig. 2. Regions of interest. a Localization of five reward-related ROIs extracted from Neurosynth. b Memory ROIs were anatomically defined

hippocampus and PHC, shown on an example subject in native space

DVARS > 0.5%) were marked for removal, as was one time
point before and two time points after (Power et al., 2012).
Additionally, the first two time points in each scan were re-
moved. The scrubbing masks were applied to the time courses
for each subject, removing on average approximately 6% of
the time points from the pre-encoding scan, 9.5% from the
post-encoding scan, and an average of 8% of time points
across all five encoding scans.

To extract the background connectivity during the
encoding scans, we low-pass filtered the encoding time series,
removing signal at or above the task frequency (task frequen-
cy = 0.056 Hz, filter threshold = 0.045 Hz). The low-pass filter
removed task-related fluctuations while keeping the low-
frequency (background) signals that are more reflective of
intrinsic activity (Newton, Morgan, Rogers, & Gore, 2011;
Tambini, Rimmele, Phelps, & Davachi, 2016). Because low-
pass filtering also removes high-frequency noise, leading to
higher connectivity estimates (Van Dijk et al., 2010), we ad-
ditionally low-pass filtered the rest timeseries at the same fre-
quency when comparing connectivity across task and rest.
Low-pass filtering was performed after computing FD and
DVARS but before scrubbing of problematic timepoints.

Connectivity measures were obtained by partial correla-
tions of the pre-processed, scrubbed timeseries between each
ofthe memory ROIs and each of the five reward-related ROls,
controlling for WM, CSF, whole brain signal, motion param-
eters, and their derivatives. The resulting Pearson’s r coeffi-
cients from the partial correlation analysis were Fisher z trans-
formed to conform to the assumptions of normality before
being submitted to further analyses. For the encoding scans,
connectivity was measured and Fisher z transformed within
each run. The normalized connectivity values were then

averaged across the five encoding scans to produce a single
measure of background connectivity during encoding.

Analysis of variance approach

To test whether connectivity patterns related to memory sen-
sitivity to reward and whether this relationship is stable across
task stages, the connectivity values were submitted to two
repeated-measures ANOVAs. The first ANOVA only includ-
ed rest data (pre-encoding, post-encoding), akin to prior work
on resting state connectivity (Gruber et al., 2016). The second
ANOVA included all three task stages (pre-encoding rest,
encoding task, post-encoding rest), with low-pass filtered rest
timeseries for comparison with task timeseries. In addition to
task stage as a within-subject factor, both ANOVAs also in-
cluded memory structure (hippocampus, PHC) and reward
structure (ACC, midbrain, MPFC, OFC, VS) as within-
subject factors and modulator status (modulator,
nonmodulator) as a between-subjects factor.

The following effects were relevant to our questions of
interest: (1) the main effect and interactions of modulator sta-
tus, testing whether connectivity patterns relate to individual
differences in memory sensitivity to reward; (2) the main ef-
fect and interactions of the task stage factor, testing the idea
that connectivity patterns may be relatively stable across task
and rest as well as track individual differences in memory
sensitivity to reward; (3) the interactions of the reward region
factor with the modulator status, testing whether all reward
regions contribute similarly or differentially. Of note, the main
effect of reward region and the main effect of memory region
were not of interest as the overall functional connectivity val-
ue may depend on physical distance between regions and a
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size of a region, and may not be easily interpretable (Honey
et al., 2009; Salvador et al., 2005). When an interaction was
found, we followed up with an investigation of the locus of the
interaction. While the report focuses on the effects of interest,
full ANOVA results are reported in tables. Greenhouse
Geisser corrections were used when appropriate, reported in
the tables as “GG.” To validate that our findings were not
driven by treating memory sensitivity to reward as a binary
variable, we retested significant effects of interest from both
ANOVAs using ANCOVA, with the continuous measure of
behavioral reward modulation as a covariate.

Functional relationships among connections

Observing comparable or differential modulator effects across
multiple reward ROIs in the ANOVAs provides one indication
for unique or uniform contributions of reward regions to re-
ward modulation of memory. To test more directly whether
the reward regions are a part of the same functional network,
we additionally examined their cross-correlational structure.
We performed two principal component analyses: one on rest-
only connectivity values (no low-pass filter to maintain infor-
mation on high-frequency fluctuations), and one that included
all of the connectivity values across task and rest (using low-
pass filtered timeseries for comparable task and rest pre-pro-
cessing). Components were considered for further analysis
when they explained at least 10% of variance. For each
considered component, we further tested the likelihood of
obtaining such component by chance, using a comparison
to a null distribution of components. To obtain the null
distribution, we performed 10,000 simulated principal
component analyses on data obtained by randomly shuf-
fling connectivity values across participants, separately for
each connection. The percent of variance explained by
each component (first most informative, second most in-
formative, etc.) was then compared to the null distribu-
tion’s percent explained. The same results would be obtain-
ed by testing eigenvalues.

Loadings on each component were compared for the
five reward ROIs using one-way ANOVA, and component
scores were then related to behavioral reward modulation
using multiple regression. Using dimensionality reduction
before the multiple regression allowed us to test how un-
derlying components, or potential networks of regions,
contributed to the connectivity-behavior relationship while
taking into account the collinearity between connectivity
values and limiting in a data-driven manner the number of
predictors considered.

Connectivity pattern classification

While traditional inference tests, such as analysis of vari-
ance, test the probability that observed differences between
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groups arose by chance alone, machine learning classifica-
tion approaches allow us to quantify more directly how
well the participants can be distinguished from one another
based on their connectivity pattern. We used Support
Vector Classification (SVC) to test the degree to which
participants can be classified as either modulators or non-
modulators based on their pattern of connectivity across
the ten ROI connections (2 memory ROIs x 5 reward
ROIs).

SVC was implemented using the “e1071” (Meyer,
Dimitriadou, Hornik, Weingessel, & Leisch, 2017) statistical
analysis package of R (https://www.r-project.org/) and
conducted separately within each task stage. The default
parameters for nu-classification were used (C=1, ¢ =0.1, vy
= 0.1, no tuning) with a radial basis function kernel. We used a
leave-one-subject-out cross-validation approach, training the
model on N-1 subjects and then applying the trained classifier
to predict the withheld subject’s modulator status. The process
was repeated as each subject in turn was withheld from the
training set and used to test the model. The accuracy for the
model was recorded as the percentage of correct classifica-
tions. A permutation test was used to test for significance.
We conducted 5,000 simulations, each time randomly shuf-
fling the modulator status labels across participants and then
computing the same leave-one-subject-out cross-validated
classification accuracy as with the real data. The true classifier
accuracy was compared to the distribution of the simulated
classification accuracies to derive the probability of obtaining
such accuracy by chance alone. Accuracy that occurred with
probability less than p = 0.017 was considered significant,
reflecting Bonferroni correction across three task stages for
an overall alpha = 0.05.

To verify the results were not driven by the median split
approach, Support Vector Regression (SVR) was used to pre-
dict the continuous measures of behavioral reward modulation
(BRM score) for each participant from connectivity measured
at each task stage. The same statistical package, default pa-
rameters, and leave-one-subject out cross-validation approach
were used for SVR as were used for SVC. The predicted BRM
values for each subject were then correlated with the observed
BRM values to assess whether the individual differences in
connectivity patterns contain information about individual dif-
ferences in behavioral reward modulation of memory. We
employed Bonferroni corrections for the three correlations
(alpha = 0.05/3 = 0.017).

Complementary connectivity analyses

In addition to the main questions of interests, the current study
provides data suitable to address questions from prior studies
on reward modulation of memory. We conducted two sets of
exploratory analyses that maintain the focus on connectivity
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and may be informative for the readers, even though they do
not directly address the main goals of the study.

Correlations between connectivity changes and behavior The
ANOVA, PCA, and machine learning approaches are well
suited for testing the role of a broad set of reward regions
and the connectivity fingerprint hypothesis, especially for
the larger set of related connections considered here. In con-
trast, prior studies on reward modulation of memory have
typically focused on single connections and learning-related
effects, reporting first-order correlations relating pre-to-post
encoding connectivity increases. While a disproportionate
role of post-encoding rest could be indicated by a signifi-
cant modulator by task stage interaction in our ANOVA,
we also wanted to generate data directly comparable to
prior studies. We thus additionally computed pre-to-post
connectivity changes for each connection and correlated
it with BRM. Because increased dopamine availability in
the medial temporal lobe may enhance encoding in general
(Duncan et al., 2014; Lisman et al., 2011), we also corre-
lated the connectivity values with overall recall rates for
each participant.

Anterior and posterior differences within hippocampus
Previous work suggests there are functional differences be-
tween the anterior and posterior portions of the hippocampus
(Brunec et al., 2018; McKenzie et al., 2014; Poppenk,
Evensmoen, Moscovitch, & Nadel, 2013). In the context of
reward motivated learning, however, evidence for differential
contributions of anterior and posterior hippocampus is lacking
or conflicting (Murty et al., 2017; Wolosin et al., 2013). We
have performed exploratory analyses of anterior/posterior hip-
pocampal connectivity patterns to test whether their connec-
tivity patterns or connectivity changes are differentially relat-
ed to behavior in our paradigm.

The middle slice of each participant’s hippocampus ROI
was used as a boundary for the anterior and posterior divi-
sions. For participants that had an odd number of slices in
their hippocampus ROI, the middle slice was assigned to
the posterior portion. The ROIs were then used to extract
the timeseries during each rest and task scan. Connectivity
between anterior and posterior hippocampus with each re-
ward region was measured using the procedures outlined
above. Functional differences between anterior and poste-
rior hippocampus were tested using repeated measures
ANOVA with hippocampal ROI (anterior, posterior) x task
stage (pre-encoding, encoding, post-encoding) x reward
ROI (ACC, midbrain, MPFC, OFC, VS) as within-
subject factors and modulator status as a between-
subjects factor. Of main interest was the interaction be-
tween hippocampal ROI and modulator status, testing
whether anterior and posterior hippocampus differentially
related to reward modulation of memory.

Results
Behavioral results

Mean overall cued recall performance was 0.48 (SD = 0.19).
A 2 (reward cue visual form) x 3 (reward cue value) repeated
measures ANOVA revealed a marginally significant effect of
reward value (F(1.18,27.03) = 3.86, p = 0.054, nzp = 0.14,
GQG), with a significant quadratic (F(1,23) = 9.93, p = 0.004,
n2p = 0.30) rather than a linear effect (F(1,23) = 1.97, p =
0.174). Follow-up pairwise comparisons revealed that the
quadratic effect was driven by greater recall on dollar trials
(M=0.53,SD =0.20; #23) =2.41, p = 0.024), and unexpect-
edly, penny trials (M = 0.47, SD = 0.22; #(23) = 245, p =
0.022) compared with dime trials (M = 0.44, SD = 0.22).
The difference between dollar and penny trials did not reach
significance (#23) = 1.40, p = 0.174). There was no main
effect of visual form (F(1,23) = 0.04, p = 0.840, 172,, =
0.002) nor an interaction between form and value (F(2,46) =
1.66, p = 0.202, 7721, = 0.07). Thus, accuracies were collapsed
across visual form and used for all subsequent analyses. Cued
recall rates for each reward value and form condition are pre-
sented in Fig. 3a.

A separate behavioral sample (n = 20) revealed a signifi-
cant main effect of value (#(1.23, 27.6) = 14.1, p = 0.001,
GQG), comparably described as linear (#(1,19) = 15.5, p =
0.001) or quadratic (F(1,19) = 10.8, p = 0.004). Similar to
the fMRI sample, cued recall accuracy was greater for dollar
trials (M = 0.61, SD = 0.19) than for dime trials (M = 0.44, SD
=0.21; #19) = 3.83, p = 0.001). Unlike the fMRI sample, the
behavioral sample showed a memory advantage for dollar
trials compared to penny trials (M = 0.44, SD = 0.19; #(19) =
3.94, p = 0.001) and no differences between penny and dime
trials (#(19) = 0.17, p = 0.87).

While the U-shaped pattern of recall accuracies in the fMRI
sample was unexpected and did not replicate in the separate
behavioral sample, non-linear reward effects are plausible
(Elliott, Newman, Longe, & Deakin, 2003). For example,
penny trials may have been perceived as a loss relative to
the (neutral) dime trials, making them more salient for
encoding (Bartra, McGuire, & Kable, 2013; Seymour &
McClure, 2008; Shigemune, Tsukiura, Kambara, &
Kawashima, 2014; Tversky & Kahneman, 1981). Because
the difference between dollar and penny trials was not signif-
icant and because both penny and dollar may have increased
salience for individuals sensitive to reward, we instead used
the memory advantage of dollar over dime trials (replicated
across both behavioral and fMRI samples) as a measure of
individual differences in memory sensitivity to reward. The
raw dollar minus dime difference scores ranged from —0.25 to
0.75 (median of 0.07) and were not significantly correlated
with the overall accuracy (Fig. 3b), suggesting that reward
modulation of memory affected which events are
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Fig. 3. Behavioral results. a Mean cued recall rates in each reward cue condition. b Correlation between overall accuracy and raw behavioral reward
modulation (dollar minus dime) scores. ¢ Mean cued recall rates for each reward value condition, separately for modulators and nonmodulators

preferentially remembered rather than providing an overall
memory advantage. Because the raw difference scores were
skewed by an outlier (>3 SD from the mean), we used a rank
order of these scores in all subsequent analyses when corre-
lating memory sensitivity to reward with connectivity mea-
sures. We refer to the dollar-dime difference score as a raw
behavioral reward modulation (raw BRM) score and the rank-
order measure used for all subsequent analyses as a behavioral
reward modulation (BRM) score.

For visualization and analysis purposes, we also construct-
ed a dichotomized measure of reward modulation of memory
using a median split of BRM scores. This approach created
two groups of participants that we refer to as modulators
(sensitive to reward) and non-modulators (insensitive to re-
ward). We performed confirmatory analyses to validate that
the median split of participants yielded sensible groupings.
Figure 3¢ shows cued recall accuracy per value, separately for
each group. There was no effect of reward value in non-
modulators (one-way ANOVA F(1.15,12.7) = 1.36, p =
0.273, GG), with raw BRM scores (dollar-dime difference)
not different from zero (M = —0.02, #11) =—0.98, p = 0.348),
confirming that memory performance in this group was not
significantly affected by reward value. In contrast, modula-
tors showed an effect of reward value (one-way ANOVA
F(1.18,13.01)=8.69, p = 0.009, 7721, =0.44, GG), with greater
accuracy for dollar trials than for dime trials (i.e., significant
raw BRM scores; M = 0.21; #(11) = 3.59, p = 0.004), and
greater accuracy for dollar trials than for penny trials (#(11) =
2.43, p = 0.033). Thus, the median split generated two sensi-
ble groups of participants that differ in their memory sensi-
tivity to reward.

ANOVA results

Rest-only ANOVA We first addressed the relationship between
rest connectivity and memory sensitivity to reward in a
repeated-measures ANOVA with rest period (pre-encoding,
post-encoding), memory ROI (hippocampus, PHC), and re-
ward ROI (ACC, midbrain, MPFC, OFC, VS) as within-
subjects factors and modulator status as a between-subjects
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factor. The rest timeseries were not low-pass filtered for this
analysis, as such a preprocessing step is not ordinarily applied
during rest timeseries analyses as it may remove meaningful
high-frequency fluctuations. All connections are depicted in
Fig. 4a, and the complete ANOVA results are reported in
Table 1.

Modulator status was marginally significant (p = 0.051),
with modulators (M = 0.36, SD = 0.10), demonstrating numer-
ically greater hippocampus/PHC-reward network connectivi-
ty than nonmodulators (M = 0.29, SD = 0.06). Modulator
status significantly interacted with reward structure. This in-
teraction was driven by greater hippocampus/PHC connectiv-
ity with ACC, OFC, and VS in modulators than non-
modulators (all £ > 2.15, all p < 0.045), with no effect of
modulator status in hippocampus/PHC-midbrain and
hippocampus/PHC-MPFC connectivity (both # < 1.4, p >
0.18). When reward modulation of memory was treated as a
continuous measure using ANCOVA, the results were similar
but weaker. The main effect of BRM (#(22) = 0.35; F(1,22) =
3.12, p =0.091, 172 p = 0.12) remained marginally significant,
but the interaction between reward structure and BRM did not
(F(2.83,62.22) = 1.99, p = 0.128, GG).

The ANOVA additionally revealed a main effect of rest
period, with connectivity increasing from the pre-encoding
(M =0.30, SD = 0.10) to post-encoding rest scan (M = 0.36,
SD =0.11). Rest period did not interact with modulator status
(p > 0.6) or BRM in the ANCOVA (p > 0.3), indicating that
although the overall connectivity increased from pre-encoding
to post-encoding, its relationship to behavior did not change
significantly.

Omnibus ANOVA across rest and encoding task To compare
rest connectivity with background task connectivity, we used
connectivity measures from low-passed filtered timeseries to
match task and rest preprocessing. Connectivity measures were
submitting to the same ANOVA as reported above, with
the task stage factor having three values (pre-encoding,
encoding, post-encoding). This analysis allows us to directly
test the hypothesis that patterns of connectivity and their rela-
tionship to behavior are stable across task and rest. The results
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Fig. 4. ANOVA results. a Pre-encoding and post-encoding connectivity
between memory (hippocampus, PHC) and reward (ACC, midbrain,
OFC, VS, MPFC) ROIs are shown separately for modulators and non-
modulators. b Low-frequency background connectivity between memory

of the ANOVA are reported in Table 2, and all connectivity
values are depicted in Fig. 4b. From the effects of interest, we
found a main effect of modulator status, with greater connec-
tivity in modulators (M = 0.52, SD = 0.14) than non-modulators
(M =0.32, SD =0.21). We also found a significant interaction
between modulator status and reward structure. Follow-up two-
sample #tests showed that the interaction was driven by signif-
icant differences between modulators and non-modulators in
hippocampus/PHC connectivity with ACC, MPFC, OFC, and
VS (all #22) > 2.1, p < 0.05) but not with midbrain (1(22) =
0.90, p = 0.377). The effect of modulator status and the

and reward ROls are plotted across the three task stages (pre-encoding,
encoding, post-encoding) separately for modulators and non-modulators.
HIP = hippocampus; MID = midbrain

interaction between modulator status and reward structure were
not driven by a median split of participants and were replicated
when memory sensitivity to reward was treated as a continuous
measure using ANCOVA (main effect of BRM: F(1,22)=7.13,
p = 0.014, °p = .25; BRM*reward structure interaction:
F(2.80,61.58) = 3.25, p = 0.031). We found no effect of task
stage and no interaction between task stage and modulator sta-
tus in this analysis (both p > 0.2), suggesting connectivity be-
tween memory and reward networks and its relationship to
behavior remained relatively stable across the pre-encoding,
encoding, and post-encoding scans.
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Table 1  Rest-only ANOVA

Source dfopoct dforror F p 77172
Modulator 1 22 4.26 0.051 0.16
Task stage* 1 22 6.33 0.020 0.22
Task stage x modulator 1 22 0.24 0.630 0.01
Memory ROI*#* 1 22 18.16 0.000 0.45
Memory ROI x modulator 1 22 321 0.087 0.13
Reward ROI *** (GG) 3.03 66.72 31.93 0.000 0.59
Reward ROI x modulator* (GG) 3.03 66.72 3.78 0.014 0.15
Task stage x memory ROI 1 22 0.95 0.340 0.04
Task stage x memory ROI x modulator 1 22 0.01 0.932 0.00
Task stage x reward ROI 4 88 1.78 0.140 0.08
Task stage x reward ROI x modulator 4 88 1.15 0.339 0.05
Memory ROI x reward ROI** (GG) 2.84 62.46 4.36 0.008 0.17
Memory ROI x reward ROI x modulator (GG) 2.84 62.46 1.91 0.141 0.08
Task stage x memory ROI x reward ROI (GG) 2.50 55.05 2.17 0.112 0.09
Task x Memory x Reward x Modulator (GG) 2.50 55.05 0.23 0.842 0.01

The rest ANOVA examined memory structure (HIP, PHC), reward structure (ACC, MID, OFC, VS, MPFC), rest period (pre-encoding, post-encoding)
and modulator status (modulator, nonmodulator). *p < 0.05, **p < 0.01, ***p < 0.001

Summary of the ANOVA findings Both omnibus and rest-only
ANOVAs showed an effect of modulator status on memory-
reward region connectivity and revealed that the modulator
effect was not driven by all connections equally. A set of
reward regions disproportionately drove the overall effect:
ACC, OFC, and VS connectivity with hippocampus/PHC
consistently differed between modulators and nonmodulators,

whereas midbrain connections consistently did not. While we
found an overall increase in connectivity between reward and
memory regions from pre-encoding to post-encoding in the
rest-only ANOVA, there were no interactions between modu-
lator status and task stage in either analysis. These results are
consistent with the idea that there are stable individual differ-
ences in brain connectivity patterns that relate to behavior.

Table2 Omnibus ANOVA

Source e dferror F P ’
Modulator* 1 22 7.15 0.014 0.25
Task stage 2 44 1.44 0.248 0.06
Task stage x modulator 2 44 1.10 0.343 0.05
Memory ROI 1 22 3.75 0.066 0.15
Memory ROI x modulator 1 22 2.59 0.122 0.11
Reward ROI **#* (GG) 2.87 63.24 9.69 0.000 0.31
Reward ROI x modulator** (GG) 2.87 63.24 4.78 0.005 0.18
Task stage x memory ROI (GG) 1.53 33.67 2.00 0.159 0.08
Task stage x memory ROI X modulator (GG) 1.53 33.67 0.19 0.765 0.01
Task stage x reward ROI 8 176 1.92 0.060 0.08
Task stage x reward ROI x modulator 8 176 1.53 0.150 0.07
Memory ROI x reward ROI 4 88 1.35 0.256 0.06
Memory ROI x reward ROI x modulator 4 88 0.61 0.656 0.03
Task stage x memory ROI x reward ROI (GG) 4.84 106.4 0.69 0.631 0.03
Task X memory x reward x modulator (GG) 4.84 106.4 0.97 0.436 0.04

The omnibus ANOVA examined the effects of memory structure (HIP, PHC), reward structure (ACC, MID, MPFC, OFC, VS), task stage (pre-encoding,
encoding, post-encoding), and modulator status (nonmodulator, modulator). *p < 0.05, **p < 0.01, ***p < 0.001
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Functional relationships among connections

Rest-only PCA To investigate which reward regions may be a
part of the same functional network, we investigated the cross-
correlation structure of connectivity values across participants.
Pairwise correlations of all rest-based connectivity values are
presented in Fig. 5a. After separating them into principal com-
ponents, we found four components that explained at least
10% of variance in the connectivity values and were retained
for further analyses (Fig. 5b). Monte Carlo simulations (Fig.
6a) indicated that all components explained more variance
than expected by chance (all p < 0.01), except for component
3, which was marginal (p = 0.083). Preferential loading of

a
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each reward region on different components was tested using
one-way ANOVA (Fig. 6b).

The first component explained 28.2% of variance in con-
nectivity scores and loaded preferentially on ACC, OFC, and
VS connections and, to a lesser extent, MPFC and midbrain
(one-way ANOVA, F(4,15) = 3.91, p = 0.023). The second
component explained 16.6% of variance and was loading
preferentially on midbrain connections and, to a lesser extent,
negatively on OFC and MPFC connections (one-way
ANOVA, F(4,15) = 38.2, p < 0.001). The third component
explained 12.5% of variance and loaded comparably across all
reward regions (one-way ANOVA F(4,15)=0.74, p = 0.580).
The fourth component explained 11.6% of variance and was

0.75

0.50

0.25

0.00

0.32 0.33 031 0.14 03

. 0.34 . 0.35 0.44 0.1 .

PHC-MID- 0.26 0.29 0.08 -0.03 0.35 0.06 .-0.02-0.14 0.06 0.26 . 0.09 -0.02 0.27 0.11

PHC-MPFC- -o.13. 0.35 0.08 -0.03 0.19 0.15 . 0.23 0.11 0.28 0.08 . 026 0.3 . 0.08

PHC-OFC- 0.05 -0.13 0.18 0.48 0.27 0.03. 0.14 0.44 0.25 0.12 0.02 0.19. 0.38 0.18 -0.17 0.23

—  PHC-VS- 034 o001 ozs.. 017 001 0.34 051 044 03 0.08 0.03 oas.oas 032 024.

-0.25

0 00%0 000.70 OO‘OO 00
@@\OQQA@@OQQA@@\QQQA@@OQQ

KNP T A
K *\\Ox\c’o T RN

NS

@

Post-Encoding

Pre-Encoding
b

Q"
O, M 1, QR S, B OO
’°o Lo R R %Oo% 0%

| | | | |
Component 1* 013 0 0.13 0.25 0.28 0.16 0.11 0.2 .. 0.21 0.14 0.06 0.11 0.26 . 015 0.2 0.21 .
Component 2- 0.09 . 0 -0.07 0.1 -0.01. -0.2 .-0.06 0.07 .—0.01 -0.1 0.02 0.01 . -0.1 --0.05
Component 3--0.18 0.09 0.02 0.17 —0.05...—0.12. 0.13 | 03 o0.21 - 0.16 0.11 -0.03 0.06 0.28 0.08

Component 4—.. 0.09 .. 0.09 017 026 -0 -0.17 0.15 0.06

. -0.04 -0.08 0.3 0.07 .—0.13 -0.18

Fig. 5. Relationships among connections. a Pairwise, cross-participant correlations of all rest-based connectivity measures. b Loadings of each pre-
encoding and post-encoding connection on the four components that were generated by PCA
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Fig. 6. The loadings of each reward ROI’s connections on PCA
generated components. a The percent of variance explained by each
component in both the rest only PCA (left) and omnibus PCA (right).
The gray dotted line denotes the upper threshold for chance (p < 0.05) of
percent explained by each component. b The relative contribution of each
reward ROI (ACC, MID, MPFC, OFC, VS) on each of the four retained

loading preferentially on MPFC connections (one-way
ANOVA F(4,15) = 5.26, p = 0.008). Multiple regression then
tested the relationship between the component scores and be-
havioral reward modulation across participants. The first com-
ponent score significantly tracked behavioral reward modula-
tion (beta = 7.09, SE = 3.13, p = 0.03) while the remaining
components did not (all p > 0.18). These results indicate ACC,
OFC and VS connectivity with hippocampus/PHC co-vary
and jointly track memory sensitivity to reward. Midbrain
and MPFC connectivity covaried to a lesser degree with the
other reward-related regions and with each other.
Furthermore, the components that midbrain and MPFC most
strongly loaded on did not track memory sensitivity to reward,
opening the possibility that they may each be a part of func-
tionally different systems.

The lack of differentiation between modulators and non-
modulators based on hippocampus/PHC-midbrain was

@ Springer

PCA-derived components on pre-encoding and post-encoding resting
state connectivity between memory and reward ROIs. ¢ The relative
contribution of each reward ROI on the two retained components derived
from the omnibus PCA across task and rest. In both b and ¢, bars with
stars denote significant pair-wise differences in loadings

unexpected, especially given that significant effects of connec-
tivity were observed for other reward-related regions in both
ANOVA and PCA. While reward modulatory effects on mid-
brain interactions with memory regions have been documented
previously (Gruber et al., 2016; Wolosin et al., 2012), the effect
may not result in increased sensitivity to reward per se. Instead,
overall greater interactions—irrespective of external rewards—
may lead to greater dopamine availability in the hippocampus
and greater memory overall (Duncan et al., 2014; Lisman et al.,
2011; Tompary et al., 2015).

To test this idea, we performed a second multiple regres-
sion with component scores as predictors but this time using
overall accuracy as an outcome. The second component sig-
nificantly predicted the overall accuracy across participants
(beta = 0.28, SE = 0.11, p = 0.02), while the other three com-
ponents did not (all p > 0.5). Thus, a distinct pattern of resting
state connectivity, captured by the second component loading
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preferentially on the hippocampus/PHC-midbrain connectivi-
ty, also was relevant to behavior but tracked overall memory
rather than memory sensitivity to reward.

Omnibus PCA across task and rest To test the degree to which
cross-correlations may remain stable across task and rest, a
second PCA was performed on the whole set of 30 connectiv-
ity values per subject (10 connections for each pre-encoding,
encoding, and post-encoding periods). Connectivity values
derived from low-pass filtered timeseries were used to match
pre-processing across task and rest. Three components ex-
plained more than 10% of variance. Monte Carlo simulations
(Fig. 6a) indicated that only components 1 and 2 explained
more variance than expected by chance (both p < 0.001).
Component 3 did not (p = 0.8) and thus was not considered
further. The loadings of each reward regions on the two
retained components are presented in Fig. 6¢.

The first component explained 31.4% of variance and
showed marginal differences between loadings among reward
regions (one-way ANOVA F(4,25) = 2.30, p = 0.086), with
numerically greatest loadings of ACC and VS. The second
component explained 18.0% of variance and most strongly
loaded on midbrain connections (F(4,25) = 4.78, p = 0.005).
Multiple regression with component scores as predictors and
BRM as an outcome showed that the first component was a
significant predictor of BRM (beta = 2.99, SE = 1.00, p =
0.007), while the other was not (p > 0.09). A second multiple
regression with the overall accuracy as an outcome did not
reveal any significant effects (all p > 0.2). Thus, the omnibus
PCA partially replicated the rest-only PCA. Taken together,
the PCA findings indicate that: (1) connectivity patterns of
ACC, VS, and potentially OFC are functionally coupled, with
a composite connectivity score that most strongly loaded on
these regions tracking memory sensitivity to reward, (2) mid-
brain and potentially MPFC connectivity patterns co-vary to a
lesser degree with the other reward regions and each other, and
(3) resting state hippocampus/PHC-midbrain connectivity
may be more predictive of overall memory performance than
memory sensitivity to reward.

Predicting memory sensitivity to reward
from connectivity patterns using machine learning

The ANOVA and PCA findings reported above showed that
connectivity between memory and reward-related regions
tracked individuals’ memory sensitivity to reward and that this
relationship may be relatively preserved irrespective of task
stage. To more directly quantify how well patterns of connec-
tivity may differentiate between modulators and
nonmodulators, we applied SVC to predict modulator status
from connectivity patterns in each task stage (inputs = 10 con-
nectivity values, outputs = modulator status). Classification ac-
curacy that occurred with a probability of less than 0.017 (0.05/

3 to correct for multiple comparisons) was considered signifi-
cant. Using cross-validation, we found that classification of
modulator status from connectivity patterns was reliably above
chance in the pre-encoding scan (accuracy = 79.2%, p = 0.010)
and the encoding scan (accuracy = 75%, p = 0.006).
Classification based on the post-encoding scan was lower and
not reliably different from chance (accuracy = 58.3%, p =
0.157; Fig. 7a). Although the classification accuracy based on
post-encoding connectivity did not reach significance, we did
not find evidence that the probability of misclassification would
be reliably greater at post-encoding compared to pre-encoding
or encoding task stages (both x° < 2.1, p > 1.5).

To verify that successful classification did not depend on
treating reward modulation as a dichotomized variable, e-
SVR was conducted to predict behavioral reward modulation
as a continuous measure. Consistent with the SVC findings,
cross-validated SVR revealed that connectivity between mem-
ory and reward regions reliably predicted BRM during the
encoding scan (= 0.51, p = 0.010), and marginally predicted
during the pre-encoding rest scan (» = 0.46, p = 0.024). The
SVR on post-encoding connectivity did not reach significance
(r=0.35, p = 0.098; Fig. 7b).

Complementary connectivity analyses

Correlations between connectivity changes and behavior
Though we did not find interactions between task stage and
reward modulation of memory in the rest-only ANOVA, a
changing relationship between connectivity and behavior
may be better characterized by a correlation of task-induced
increases in connectivity with behavior (Gruber et al., 2016;
Murty et al., 2017; Tambini et al., 2010). To test the effect of
connectivity increases on behavior, we ran exploratory corre-
lations between pre-to-post connectivity increases and both
BRM and overall accuracy (Table 3). None of the memory-
reward ROI connections predicted BRM (all p > 0.15, uncor-
rected for multiple comparisons) nor overall cued recall rates
(all uncorrected p > 0.05). There was a marginal correlation
between PHC-midbrain connectivity and overall accuracy (r =
0.40, p = 0.052), providing a partial replication of prior reports
on midbrain connectivity changes tracking behavior (Duncan
et al., 2014; Gruber et al., 2016).

Anterior and posterior differences within hippocampus
Functional differences between anterior and posterior hippo-
campus were tested in a 3 (task stage) x 2 (hippocampus ROI:
anterior, posterior) X 5 (reward ROI) repeated measures
ANOVA with modulator status as a between-subjects factor.
The results for the ANOVA are reported in Table 4, and all
connections are displayed in Fig. 8. We found a main effect of
modulator status, indicating that hippocampal connectivity
with reward regions tracked memory sensitivity to reward.
We also found a significant interaction between reward ROI

@ Springer



516

Cogn Affect Behav Neurosci (2019) 19:503-522

Pre-encoding

90 25 r=.46,p=.024
&
> 20 )
[}
® = e
5 o )
8 m 15 e 0 0@
©
© o ° ... ®
c -
K] %10 )
© ® e oo ®
e
£ o ° ®
5 5
(%]
<
o 0
0 5 10 15 20 25

Enc Post

Pre

Observed BRM

Fig. 7. Predicting memory sensitivity to reward from connectivity
patterns. a Support vector classification accuracy of connectivity
predicting modulator status at each of the task stages. The classifier
accuracy for both pre-encoding and encoding connectivity were reliably

and hippocampal division, indicating that anterior and poste-
rior hippocampus are preferentially connected to distinct re-
ward regions. Of main interest were interactions between hip-
pocampal division and modulator status that would indicate
that anterior and posterior portions of the hippocampus differ-
entially predict reward modulation of memory. However, all
interactions that included modulator status and hippocampal
ROI as factors were non-significant (all F < 1.5, p > 0.3),
providing no evidence for such dissociation.

As a last analysis, we tested whether connectivity increases
from pre- to post-encoding rest may be differentially related to
behavior for anterior and posterior hippocampus. Thus, we cor-
related BRM with post-pre connectivity changes in each con-
nection, separately for anterior and posterior hippocampus. No
significant correlations were found (all || < 0.32, all p > 0.05).

Discussion

The current study measured functional connectivity between
memory and reward regions before, during, and after a mon-
etary incentive encoding task. Using both standard and

Table 3  Correlations of post—pre resting connectivity changes with
behavior

Connection BRM () Accuracy (r)
HIP-ACC 0.07 0.15
HIP-MID -0.05 0.13
HIP-MPFC -0.24 0.24
HIP-OFC -0.16 0.11

HIP-VS -0.26 -0.28
PHC-ACC 0.08 0.07
PHC-MID -0.14 0.40
PHC-MPFC -0.34 0.02
PHC-OFC -0.23 0.30
PHC-VS -0.13 0.12
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machine learning approaches, we observed that connectivity
of hippocampus and PHC with reward-related regions tracked
individual differences in memory sensitivity to reward. This
effect was differentially driven by a subset of reward regions:
ACC, OFC, and VS connectivity patterns co-varied together
across participants and were consistently predictive of individ-
ual differences in reward modulation of memory. Midbrain
connectivity with hippocampus and PHC was not related to
memory sensitivity to reward, and the MPFC connectivity
with memory regions varied across analyses. The relationship
between connectivity and reward modulation of memory was
present prior to encoding and during encoding, with weaker
but not reliably different effects during post-encoding rest.
Overall connectivity between memory and reward regions
increased from pre- to post-encoding rest, but connectivity
changes were not significantly related to behavior. These re-
sults demonstrate stable individual differences in intrinsic
communication between memory and reward-related regions
that track individual differences in reward modulation of
memory. Furthermore, the results implicate a wider set of
reward-related regions in memory modulation by reward than
previously considered.

Theoretical perspectives have emphasized the role of mid-
brain, and to some degree VS, in memory modulation by
reward (Lisman & Grace, 2005). A central finding of the cur-
rent study is that connectivity of reward regions VS, ACC, and
OFC with hippocampus and PHC was related to the degree to
which individuals’ memory was impacted by reward. The role
of VS in reward modulation of memory is predicted by current
models, which postulate that VS integrates and relays dopa-
mine signals from the hippocampus to the midbrain (Lisman
& Grace, 2005). A prior study on reward-motivated encoding
found univariate activation in VS covaried with hippocampus
and PHC, further tracking the impact of reward on memory
(Adcock et al., 2006). Our study, however, is the first to show
connectivity between VS, jointly with OFC and ACC, and
memory centers in hippocampus and PHC predicted individ-
ual differences in reward modulation of memory, irrespective



Cogn Affect Behav Neurosci (2019) 19:503-522 517
Table 4  Anterior versus posterior hippocampus ANOVA table

Source dfopoct Aforror F p 77172
Modulator* 1 22 4.96 0.037 0.18
Task stage 2 44 0.86 0431 0.04
Task stage x modulator 2 44 1.49 0.237 0.06
Hippocampus ROI 1 22 1.89 0.183 0.08
Hippocampus ROI x modulator 1 22 0.03 0.856 0.00
Reward ROI*#* 4 88 6.07 0.000 0.22
Reward ROI x modulator* 4 88 3.56 0.010 0.14
Task stage x hippocampus ROI 2 44 0.12 0.892 0.01
Task stage x hippocampus ROI x modulator 2 44 1.23 0.302 0.05
Task stage x reward ROI 8 176 1.93 0.058 0.08
Task stage x reward ROI x modulator 8 176 0.65 0.738 0.03
Hippocampus ROI x reward ROI (GG)*** 291 63.97 10.53 0.000 0.32
Hippocampus x reward ROI x modulator (GG) 291 63.97 0.61 0.609 0.03
Task stage x hippocampus x reward ROI (GG)** 4.04 88.93 4.04 0.005 0.16
Task x hippocampus x reward x modulator (GG) 4.04 88.93 1.06 0.382 0.05

ANOVA included within-subject effects of task stage (pre-encoding, encoding, post-encoding), hippocampus ROI (anterior, posterior), and reward ROI
(ACC, midbrain, MPFC, OFC, VS), with modulator status (nonmodulator, modulator) as a between-subjects factor. *p < 0.05, **p < 0.01, ***p < 0.001

of when connectivity was measured. Interestingly, back-
ground VS-hippocampal connectivity is also observed in pro-
cedural learning when procedural learning is rewarded
(Hamann, Dayan, Hummel, & Cohen, 2014). Thus, while
the traditional multiple memory systems view postulates a
division of labor between hippocampus, supporting declara-
tive memory, and striatum, supporting procedural memory
(Squire, 1992), there may be a strong degree of interactions
between these systems supporting both episodic memory and
procedural learning (Doll, Shohamy, & Daw, 2015; Hamann

AHIP-ACC

AHIP-MID

1.00
0.75

0.50 ’ ++

0.25 W
0.00

AHIP-MPFC

et al., 2014; Kafkas & Montaldi, 2015; Wimmer, Daw, &
Shohamy, 2012).

Our study also implicated two reward regions previously
not considered in the context of reward motivated learning—
the OFC and ACC—which showed similar profiles to VS.
While novel in the area of reward modulation of memory,
prior work has reported hippocampal connectivity with
ventromedial/orbitofrontal regions across various contexts of
learning (Gluth, Sommer, Rieskamp, & Biichel, 2015;
Ranganath, Heller, Cohen, Brozinsky, & Rissman, 2005;

AHIP-OFC

AHIP-VS

N
>
S Pre Enc Post Pre Enc Post Pre Enc Post Pre Enc Post Pre Enc Post
S
2 PHIP-ACC PHIP-MID PHIP-MPFC PHIP-OFC PHIP-VS
g 1.00
O

0.75 +

0.50 +

0.25 m

0.00

Pre Enc Post Pre Enc Post Pre Enc Post Pre Enc Post Pre Enc Post
Task Stage
—Non-Modulator = =Modulator

Fig. 8. Connectivity of anterior and posterior hippocampus with reward ROIs. Background connectivity between reward ROIs and anterior/posterior
hippocampus across the three task stages are presented separately for modulators and non-modulators

@ Springer



518

Cogn Affect Behav Neurosci (2019) 19:503-522

Tsukiura & Cabeza, 2008; Zeithamova, Dominick, & Preston,
2012). For instance, background hippocampal-OFC connec-
tivity inversely tracks transfer of learned reward to related
experiences (Gerraty et al., 2014). In a sensory precondition-
ing paradigm, participants encoded face-face pairs and then
were trained to associate a gain, loss, or no value with one of
the faces. Hippocampal-OFC connectivity was negatively cor-
related with transfer, meaning that participants with stronger
connectivity showed lesser tendency to extend the learned
face value to related faces. Thus, although the role of interac-
tions between memory regions and OFC may vary depending
on the specific task, our study converges with prior work to
show that participants with greater hippocampal-OFC connec-
tivity are more likely to differentiate events based on their
explicitly assigned values.

The functional relevance of ACC in memory in humans is
currently less understood. During rest, ACC demonstrates
functional connectivity with both hippocampus and PHC
(Cao et al., 2014; Margulies et al., 2007). In rodents, the
ACC has been implicated in consolidation of learned associ-
ations into long-term memory, showing coordinated cellular
changes with the hippocampus (Wang, Tse, & Morris, 2012;
Weible, Rowland, Monaghan, Wolfgang, & Kentros, 2012).
Here, ACC, OFC, and VS connectivity with hippocampus and
PHC covaried across participants. While intrinsic, coordinated
activity between the hippocampus, ventral striatum, and OFC
has been reported previously (Gerraty et al., 2014; Kahn &
Shohamy, 2013), our data implicate that ACC may comprise a
functional network with VS and OFC.

Although ACC and OFC may show distinct functions in
some tasks (Luk & Wallis, 2013), the ACC, OFC, and VS all
share similar functions during reward processing, such as
tracking anticipated reward values and outcomes (Amiez
et al., 2006; Bialleck et al., 2011; Knutson, Taylor,
Kaufman, Peterson, & Glover, 2005; Yan et al., 2016) and
signaling the value of choices (Boorman, Behrens, Woolrich,
& Rushworth, 2009; Rogers et al., 2004; Strait, Blanchard, &
Hayden, 2014). Together, these regions may serve to promote
motivationally salient behaviors or suppress motivationally
irrelevant behaviors (Hare, O’Doherty, Camerer, Schultz, &
Rangel, 2008; Kaping, Vinck, Hutchison, Everling, &
Womelsdorf, 2011; Nieuwenhuis & Takashima, 2011;
O’Doherty, 2011; Walton, Chau, & Kennerley, 2015).
Greater background hippocampal and PHC interactions with
ACC, OFC, and VS may reflect greater availability of reward
signals to memory structures, resulting in enhanced modula-
tion of memory by reward in our paradigm. While the unique
contribution of each region will require further inquiries into
their individual roles in motivated learning, our data provide
several new insights into their functional interactions.

An unexpected aspect of the current data was the U-shaped
relationship between reward value and memory found in the
fMRI sample. While this finding was unexpected and not
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replicated in the accompanying behavioral sample, it is
neurobiologically plausible. U-shaped responses to reward
have been identified in the medial frontal and medial
orbitofrontal cortices (Elliott et al., 2003): notably, regions,
such as the ACC and VS, signal the reward prediction error,
or the discrepancy between expected and experienced rewards
(Abler, Walter, Erk, Kammerer, & Spitzer, 2006; Fiorillo,
Tobler, & Schultz, 2003; Montague, Dayan, & Sejnowski,
1996; Silvetti, Seurinck, & Verguts, 2011). These signals do
not reflect the absolute value of losses and gains but rather the
relative value, flexibly scaling around an expected reference
point (Seymour & McClure, 2008; Tobler, Fiorillo, & Schultz,
2005). In the current task, the dime trials may have served as a
reference condition, with dollar trials being perceived as re-
wards and penny trials as relative losses. The salience of both
losses and gains can impact performance (Bartra et al., 2013;
Shigemune et al., 2014), manifesting as the U-shape in cued
recall accuracy across the reward conditions. Taken together,
reward effects on memory may reflect the influence of reward
prediction error signals on encoding, which may be non-linear
in nature.

Contrary to prior studies, we did not find a relationship
between hippocampal-midbrain connectivity and reward
modulation of memory, even when the hippocampus was sep-
arated into anterior and posterior sections (Adcock et al.,
2006; Gruber et al., 2016; Murty et al., 2017; Wolosin et al.,
2012). Rather, we found a correlation between a component
score from the PCA that loaded preferentially on midbrain-
hippocampus/PHC connections and overall accuracy. While
this finding was not expected a priori, it is consistent with the
proposal that interactions between midbrain and medial tem-
poral regions are not unique to externally motivated rewards
but support encoding and consolidation in general (Lisman
et al., 2011). Consistent with this view, midbrain has been
shown to interact with hippocampus in encoding tasks that
do not involve reward (Duncan et al., 2014; Zeithamova,
Manthuruthil, & Preston, 2016), with both background con-
nectivity during encoding (Duncan et al., 2014) and rest con-
nectivity after encoding (Tompary et al., 2015) tracking asso-
ciative memory. Our findings suggest that midbrain connec-
tivity during reward motivated encoding may be more rele-
vant to overall associative memory than reward modulation of
memory and potentially plays a distinct functional role in
memory from other reward-related regions.

Of note is the relatively short delay between encoding and
test in our paradigm that also may affect the pattern of mid-
brain effects observed. Reward-related memory effects have
been documented during immediate tests of memory (Gruber
et al., 2016; Wolosin et al., 2012, 2013) but appear stronger
after overnight consolidation (Patil, Murty, Dunsmoor,
Phelps, & Davachi, 2017; Tompary et al., 2015; Wittmann
et al., 2005). The delayed impact of reward on memory per-
formance is thought to reflect enhancement of dopamine-
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dependent consolidation processes by rewards (Lisman et al.,
2011). Thus, while midbrain interactions with hippocampus
and PHC predicted overall memory in our paradigm, it is
possible that an additional midbrain contribution to reward-
enhanced consolidation would be observed if recall had been
performed after a 24-hour interval had elapsed.

One reward region that did not show a consistent rela-
tionship to behavior in our paradigm was MPFC.
Connectivity with MPFC was predictive of memory sensi-
tivity to reward in the omnibus ANOVA across rest and
task, but the relationship to behavior did not replicate in
other analyses. Although prefrontal reward regions like
OFC and MPFC are spatially proximal and often consid-
ered together, the PCA results indicate that they may par-
ticipate in partially distinct networks. A more conclusive
characterization of the role of MPFC in motivated
encoding and memory in general awaits future studies.

In addition to implicating a broader set of reward regions in
motivated encoding than previously considered, a second key
contribution of our study is novel evidence for the connectiv-
ity fingerprint hypothesis (Finn et al., 2015; Gratton et al.,
2018). Measuring patterns of connectivity before, during,
and after motivated encoding, we found that individual differ-
ences in reward modulation of memory were predicted by
connectivity between memory and reward regions, irrespec-
tive of when connectivity was measured. Though post-
encoding connectivity was less consistently related to behav-
ior, we found no reliable differences in predictability of be-
havior between the task stages. These results are in line with
the recent findings of stable connectivity patterns and their
relationship to individual differences in cognition (Finn
et al., 2015; Gratton et al., 2018; Poole et al., 2016;
Touroutoglou, Andreano, Barrett, & Dickerson, 2015; Wang
et al., 2010), newly extending them to the area of motivated
encoding.

Our focus on stable, individual differences in connectivity
complement other approaches to linking connectivity to be-
havior, including memory. Resting state functional connectiv-
ity can change on a short time-scale in response to a task
(Tambini et al., 2010; Urner, Schwarzkopf, Friston, & Rees,
2013), with learning-related connectivity changes relating to
memory performance (Gruber et al., 2016; Murty et al., 2017;
Tambini et al., 2010; Urner et al., 2013). During task perfor-
mance, across-region coupling may change even more rapid-
ly, differentiating between memory task conditions at the or-
der of minutes or even from individual trial to individual trial
(Kafkas & Montaldi, 2015; Rissman, Gazzaley, &
D’Esposito, 2004; Zeithamova et al., 2012; Zeithamova
et al., 2016). For example, Kafkas and Montaldi (2015)
showed that hippocampal-VS connectivity was greater during
encoding of unexpected versus expected stimuli. Thus, both
the stable and variable aspects of connectivity provide infor-
mation relevant to cognition.

Which aspects of connectivity (stable or task-induced) are
more pronounced or most relevant to behavior is an open
question (Gratton et al., 2018) but may depend on the task
and the specific region. For example, Gruber et al. (2016)
found reward modulation of memory related to task-induced
connectivity changes, whereas we found that stable connec-
tivity patterns predicted behavior. Regarding task differences,
the Gruber et al. (2016) study tested incidentally encoded
scene-object associations, with four possible scenes repeated
many times across encoding. Two scenes were always low-
value and two high-value. Performance on a forced-choice test
asking which of the four scenes was previously associated
with a given object (with “unsure or new” as a fifth option)
could thus partially rely on remembering the object’s value,
which is plausible given that object-scene memory was rela-
tively close to chance. In contrast, the present study required
intentional encoding of trial-unique object pairs, with trial
value being unrelated to the memoranda. Regarding regional
differences, Gruber et al. (2016) found midbrain connectivity
changes that tracked behavior, which was partially replicated
in our data. In contrast, we found stable connectivity patterns
of other reward-related regions with memory regions to relate
to behavior. Although speculative at this time, these common-
alities and differences across findings open up a new avenue
for inquiry regarding the factors that determine how stable vs.
dynamic aspects of connectivity may relate to different aspects
of cognition.

Complementary to our main questions of interest, we
further conducted an exploratory analysis of potential
functional differences between the anterior and posterior
hippocampus. While anterior/posterior differences have
been previously documented in various memory paradigms
(Bowman & Zeithamova, 2018; Brunec et al., 2018;
McKenzie et al., 2014; Poppenk et al., 2013), the evidence
within the domain of motivated encoding is sparse and
varying. For example, Murty et al. (2017) reported a stron-
ger link between anterior hippocampal connectivity and
behavior while Wolosin et al. (2013) found reward modu-
lation effect in posterior hippocampus. We found anterior/
posterior differences with respect to connectivity with dis-
tinct reward regions, however, the relationship to memory
sensitivity to reward was comparable for anterior and pos-
terior hippocampus. These studies indicate that reward
modulation of memory may not be strongly dissociated
along the anterior/posterior axis.

In summary, the current study significantly expands our
understanding of motivational influences on memory, new-
ly demonstrating the role of stable, individual differences
in connectivity in predicting how individual’s memory is
impacted by reward. The results also demonstrate a role for
several reward-related regions in motivated encoding that
have not been previously considered, highlighting the im-
portance of both theoretically and empirically driven
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approaches in understanding brain-behavior relationships.
More broadly, the work informs current theories on func-
tional differentiations within the reward processing net-
work and brings new evidence for the fruitfulness of uti-
lizing individuals’ connectivity patterns in the study of
cognition (Finn et al., 2015; Gratton et al., 2018).
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