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Abstract1

Humans do not remember all experiences uniformly. We remember certain moments better2

than others, and central gist better than detail. Current theories focus exclusively on surprise3

to explain why some moments are better remembered, and do not explain gist memory. We4

propose that humans uniformly sample incoming information in time, which explains both5

non-uniform memory and gist. Rather than surprise, this model predicts that the mutual6

information between a given moment and the rest of the experience drives memory. To7

test this model, participants listened to narrative stories and recalled them immediately8

afterward. Using large language models to quantify the information structure of narrative9

stories and participants’ recall, we found that our parsimonious uniform sampling model10

explained memory better than earlier theories. These findings suggest an alternative, simpler11

account of human memory that does not rely on costly feedback mechanisms for prioritizing12

encoding of specific information.13

1 Introduction14

We experience a constant stream of information every day, and yet we do not remember15

everything equally well [1, 2]. For example, why are some parts of narrative stories remem-16

bered better than others [3, 4]? One leading theory holds that surprising moments lead to the17

subjective perception of event boundaries and hence are better remembered [5, 6]. However,18

surprisal poorly predicts event boundaries in narratives [7], questioning the validity of this19

account. Selectively encoding event boundaries also requires constant, resource-intensive20

top-down control. And because this strategy focuses on selectively encoding specific mo-21

ments, it fails to explain how humans extract the global gist of a narrative, a crucial ability22

for understanding continuous experience. Instead, an e�cient memory system must consider23

that natural experiences do not unfold randomly. Narratives are highly structured because24

they are governed by the physical properties of the world and the communicator’s intent25

[8, 9, 10]. This structure allows humans to learn patterns that they can use to compress26

information and predict future experiences [11, 12, 13]. We propose that taking advantage of27

these patterns obviates the need to selectively encode stimulus information entirely. Memory28

behaviors explained by selective encoding, such as better memory at event boundaries, can29

emerge from a simple mechanism in which humans uniformly sample incoming information30

from a structured stimulus. We show that uniform sampling at a constant rate better ac-31

counts for memory than selective encoding and also explains individuals’ ability to recall32

global narratives.33

To assess how humans use the structure of our experience to form memories, one major34

challenge is quantifying the patterns in naturalistic stimuli. Past research has used easily35

quantifiable, discrete stimuli to show that humans e�ciently perceive [14, 15, 16] and re-36

member [17, 18, 19, 20, 21] information. However, naturalistic stimuli such as narratives37

have more complex statistics. We overcome this challenge by using large language models38

(LLMs) to estimate the information structure of narrative stories. These powerful models39

were trained to capture patterns in natural language based on massive text corpora. We40

used LLMs to measure mutual information between di↵erent moments of a narrative stim-41

ulus (Fig. 1a), as well as individuals’ recall of these moments (Fig. 1b). These mutual42

information estimates enable us to measure how much information is shared across moments43

of a narrative (green outlines in Fig. 1a, overlapping areas in Fig. 1c). For example, in the44

first part of the story the narrator mentions, “I quit the job”, which shares mutual infor-45

mation with a later statement, “I’m gonna find my next path”. This significantly extends46
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: Mutual information between two parts of the story 

: Mutual information between recall and a part of the story 
I'm gonna find my next path there 
by the side of the road in Arizona...

So, the story was about a guy who used to work in IT, but he 
quit his job because he thought this wasn't his "real job"...

I quit the job as a custom 
database application engineer...

I'm gonna find my next path there 
by the side of the road in Arizona...

a

b

c

d e 

Time

CRUISE

Number of available samples for surprisal and surprisal-weighted sampling:

Surprisal-weighted samplingSurprisal

Figure 1: Leveraging mutual information estimates to assess memory. a. Mutual information
between di↵erent parts of a story shows how much is shared. b. Mutual information between part of a
story and a person’s recall of the story shows how much is remembered. c. Our proposed model, constant-
rate uniform incremental sampling for encoding (CRUISE). Ovals represent the information in each part
(X1, X2, X3) of a story. The listener samples the information during each part uniformly in time (darts).
Because information is shared across the story (overlapping areas), samples for one part can also pertain
to other parts. The amount remembered about each part is the total number of samples that fall within
it, meaning that parts with more shared information will be remembered better. d. Event segmentation
theory proposes that humans selectively encode surprising information. Here, samples for each part of the
story only fall within the surprising information of that part (dark shaded regions). The number of samples
taken during each part of the story is proportional to surprisal. e. A middle ground, surprisal-weighted
sampling, combines features of CRUISE and the surprisal model. It is similar to CRUISE in that one still
samples uniformly within the total information of each part of the story, but here the number of samples is
proportional to a part’s surprisal instead of duration, as in CRUISE.
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current models of memory of narratives, because models that only explain memory for dis-47

crete moments could not account for the semantic and causal relationships across parts of48

the story [22, 23].49

The ability to calculate mutual information across a narrative enables us to make two50

important predictions about memory under our uniform sampling model. First, uniform51

sampling prioritizes information shared across the story, unlike selective encoding models52

that prioritize surprise. If each part of the story is uniformly sampled, parts that share more53

information with other parts (overlapping colors in Fig. 1c) will e↵ectively be sampled more54

frequently. We predict that those parts will be better remembered. Second, by oversampling55

information shared across many parts of a story, uniform sampling also automatically pri-56

oritizes extracting the central gist of a narrative. The level of gist versus detail in memory57

should then correspond to the overall sampling rate during encoding. Selective encoding, by58

focusing on unique information, fails to account for the extraction of gist.59

To test these predictions, we recruited participants to listen to eight narrative stories,60

mark event boundaries, and then immediately recall the stories. The uniform sampling model61

better predicts participant recall data than selective encoding. Quantifying information62

characteristics also showed that e↵ects usually attributed to event boundaries are equally63

well explained by uniform sampling. Further, uniform sampling explains gist extraction, as64

central information shared across an entire narrative is automatically oversampled. Overall,65

these results suggest that human memory of natural narratives is best explained by simple66

uniform sampling of incoming information.67

2 Results68

2.1 How do we sample information to encode into memory?69

To understand how humans remember natural narratives, we consider the scenario in which70

a human participant Y listens to a story X, and then recalls the story out loud, producing71

a recall RY . We first divide the story into n sequential parts X1, X2, . . . , Xn, in which a72

“part” is an arbitrary span of time in seconds. If the listener uniformly samples information73

at a constant rate, then the number of bits sampled during each part of the story should be74

the duration of that part multiplied by the sampling rate. Because the story is a natural75

narrative, each part will share some information with the other parts. Thus, after the listener76

has heard the entire story, the total amount of information accumulated about part Xi will77

be larger than just the amount sampled during Xi, as some of the information sampled78

during other parts also pertains to Xi (Fig. 1c). The amount of information gained about79

Xi during another part Xj will be proportional to the amount of information shared between80

Xi and Xj (overlapping areas in Fig. 1c) divided by the total information in Xj (ovals in81

Fig. 1c), measured here in bits. The fraction of Xj bits that pertain to Xi can then be82

multiplied by the duration of Xj and sampling rate to find the number of bits about Xi that83

were sampled during Xj. Finally, the total number of bits accumulated for Xi across the84

story will be the sum of these values across all parts.85

We assume that the number of bits listener Y remembers about part Xi, i.e., the mutual86

information between Xi and their recall RY , is proportional to the number of bits that the87

listener accumulated about Xi. Because both this “memory rate” and the sampling rate are88

unknown constants, we treat their product as a single sampling⇥memory rate constant, g.89

We instantiate this proposed model mathematically as the Constant-Rate Uniform Incre-90

mental Sampling for Encoding (CRUISE) model, in which the amount of information that91
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a listener will remember about the i-th part of the story, I(Xi;R), is92

I(Xi;R) =
X

j

I(Xi;Xj)

H(Xj, P
Y

Xj
)
glj (1)

=
X

j

I(Xi;Xj)

H(Xj) +DKL(PXj ||P Y

Xj
)
glj, (2)

where I(Xi;Xj) is the mutual information between parts Xi and Xj measured in bits; H(Xj)93

is the total information in part Xj in bits (i.e., the amount of information in Xj when it is94

presented out of context); g is the rate of sampling⇥memory in bits per second; lj is the95

length of Xj in seconds; and H(Xj, P
Y

Xj
) is the cross-entropy of Xj under listener Y ’s model96

of the world, indicating the total number of bits listener Y needs to perfectly recall Xj.97

By the definition of cross entropy, H(Xj, P
Y

Xj
) is the sum of the true entropy H(Xj) and98

a term that captures how di↵erent the listener’s model of the world P
Y

Xj
is from the true99

distribution underlying the story PXj , i.e., the Kullback–Leibler divergence of PXj from P
Y

Xj
100

(See details in Supplemental Methods: Assumptions of CRUISE). In Fig. 1c, I(Xi;R) is the101

total number of samples falling within H(Xi), and I(Xi;Xj) is the overlapping area between102

H(Xi) and H(Xj).103

Because we cannot explicitly measure how well a listener’s world model captures the104

statistics of the stimuli, we assume that the cost of representing Xj under listener Y ’s model105

is proportional to the amount of information in Xj,106

DKL(PXj ||P Y

Xj
) = ↵H(Xj), (3)

where ↵ is a positive, unitless constant that represents how ine�ciently the listener models107

this story. Thus, CRUISE (Eq. 2) becomes108

I(Xi;R) =
X

j

I(Xi;Xj)

(1 + ↵)H(Xj)
glj (4)

=
g

1 + ↵

X

j

I(Xi;Xj)

H(Xj)
lj. (5)

This form conveniently combines the unknown factors g and ↵ into a single multiplicative109

constant g

1+↵
that will be estimated using linear regression.110

An alternative proposition to CRUISE is that humans selectively encode surprising in-111

formation [5]. Under this theory, the number of bits a listener remembers about a part of112

the story should be proportional to its surprisal (Fig. 1d):113

I(Xi;R) =
g

1 + ↵
H(Xi|X1, ...Xi�1), (6)

in which g is a unitless sampling rate in bits stored per bit perceived and H(Xi|X1, ...Xi�1)114

is the surprisal of part Xi. In Fig. 1d, the samples only fall into the shaded regions115

H(Xi|X1, ...Xi�1), and the number of samples is proportional to the area ofH(Xi|X1, ...Xi�1).116

We have expressed this theory in similar terms to CRUISE to facilitate comparison. Notably,117

because this theory only focuses on surprisal, it does not consider shared information.118
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We also consider a third formulation, which we call surprisal-weighted sampling, that119

combines CRUISE with selective encoding. Under this model, information is still sampled120

uniformly within each part of the story, but the number of bits sampled is proportional to121

surprisal rather than duration (Fig. 1e). This di↵ers from the surprisal model in that it122

factors in the shared information structure in the narrative, and di↵ers from the CRUISE123

model in that it preferentially samples surprising parts of the story. This model is given by124

I(Xi;R) =
g

1 + ↵

X

j

I(Xi;Xj)

H(Xj)
H(Xj|X1, ...Xj�1), (7)

where the sampling rate g is unitless (bits per bit) and tells us what fraction of the surprising125

bits lead to samples. Note that if information density is perfectly uniform across time126

[24, 25, 26, 27, 28], then H(Xj|X1, ...Xj�1) / lj and surprisal-weighted sampling is identical127

to CRUISE. However, if information density varies, CRUISE and surprisal-weighted sampling128

will make di↵erent predictions.129

2.2 Estimating information quantities130

To evaluate these models we used LLMs to estimate the entropy of text, something that131

was previously intractable using traditional experimental methods. At each position in text,132

LLMs output a probability distribution over possible next tokens—roughly equivalent but133

not identical to words. This distribution is used to calculate cross entropy, which is the134

amount of information added by each token that could not be predicted from the preceding135

tokens in the story. The total information is thus the sum of cross entropy across all tokens.136

If two parts of a story share information, the second part will have lower cross entropy if137

the LLM has already read the first part, as each token will be predicted more accurately138

using the shared information. This reduction in cross entropy defines mutual information139

between the two parts (I(Xi;Xj) = H(Xj)�H(Xj|Xi); see details in Methods: Information140

estimates). We use the same method to estimate the mutual information between the recall141

and each part of the story, I(Xi;R). This metric closely tracks human annotations of recall142

(Fig. S3).143

To validate LLMs’ ability to capture mutual information we performed several analyses.144

We know that mutual information should be symmetric, i.e., I(A;B) = I(B;A), and non-145

negative, i.e., I(A;B) � 0. We used these theoretical properties to evaluate the reliability146

of six open LLMs and selected the LLM with the best symmetry and non-negativity scores147

among those with the needed capabilities, Llama3-8b-Instruct [29], for further analyses (see148

Methods: Estimating the mutual information of recall and a part of the story I(R;Xi)).149

Experimental results were robust to choice of LLM (see Fig. S4).150

2.3 Experiment and model evaluation151

To test CRUISE against selective encoding, we performed a behavioral experiment in which152

participants listened to narrative stories from The Moth Radio Hour while simultaneously153

performing event segmentation (pressing a button whenever, in their judgment, one mean-154

ingful event ends and the next one begins [30]), and then verbally recalled the stories imme-155

diately afterward. These event segmentation judgments allowed us to later inspect partici-156

pants’ non-uniform memory at consensus event boundaries. We used eight narrative stories,157

each of which was heard and recalled by about 50 participants recruited from Prolific, yield-158

ing a total of 413 participants (216 female, 184 male, 13 non-binary, see Table S1). The159
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mean story word count was 1834 words (mean duration: 11.19 minutes) and the mean recall160

word count was 429 words. We transcribed the recalls using Whisper-large-v3 and manually161

checked the automated transcripts for errors (see Methods: Behavioral data analysis).162

a b c

d e

Figure 2: Humans uniformly sample information in time. a.-c. Models predicting the mean amount
of information participants’ recall captured about each equal-duration text window using a. CRUISE, b.
surprisal, as predicted by event segmentation theory, and c. surprisal-weighted sampling. Shaded areas
indicate 95% confidence intervals. Each marker is one story window, with di↵erent colors for di↵erent
stories. d. R2 of models predicting the mean amount of information participants’ recall captured about
each equal-duration window using linear regression. Each predictor is fitted in a separate linear regression
model. Each story is allowed to have its own slope. CRUISE predicts memory the best, followed by surprisal-
weighted sampling. e. Significance testing of di↵erences between models. Colors indicate the number of
stories (out of 8) in which the row predictor predicts significantly more participants’ recalls than the column
predictor. Stars indicate the significance of the second-level binomial test: whether the number of stories in
which the row predictor significantly better predicted more participants than the column predictor is greater
than chance. CRUISE significantly outperforms all other models.

Using this dataset we tested how well three models—CRUISE, surprisal, and surprisal-163

weighted sampling—predicted participants’ recall behavior. We first divided each story into164

non-overlapping windows of approximately equal duration, X1, . . . , Xn, with the beginning165

and end of each window adjusted minimally to match phrase boundaries (see Methods:166

Creating equal-duration windows of story text). We measured I(Xi;R) for each participant167

and then averaged across participants, giving a single value showing how well each window168

was remembered on average. We then fit linear regression models to predict the mean169

I(Xi;R) across participants using each of the CRUISE, selective encoding, and surprisal-170

weighted sampling models. Each regression model included the constant term g

1+↵
, which is171

estimated as a regression coe�cient. Initial examination of the data showed that participants172

tended to produce recalls of similar duration regardless of the story duration, leading to173
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lower apparent sampling rate for longer stories. Our experiment required recalls to reach174

a minimum length but did not give any incentive for longer recalls, so this likely reflects a175

reward-maximizing strategy for the participants. To account for this e↵ect we fit a separate176

slope term for each story.177

Results from these regression models show that both CRUISE and surprisal-weighted178

sampling predicted the mean amount of information participants recall about each window179

quite well (CRUISE: Adj.R2 = 0.385, surprisal-weighted sampling: Adj.R
2 = 0.322, Fig.180

2a,b). In contrast, the surprisal-only model was a poor predictor of recall (Fig. 2c, Adj.R2 =181

0.151). The e↵ectiveness of CRUISE and surprisal-weighted sampling was not explained by182

the general tendency of some text to share more information with others (See Supplemental183

Results: Ruling out the shared information confound).184

We also compared CRUISE and surprisal-weighted sampling to several controls. It is185

possible that people remember more about windows in the story that contain more infor-186

mation, or are simply longer. To test these possibilities, we calculated the amount of total187

information in each window (H(Xi)), the length of each window in tokens, and the length of188

each window in seconds. We then fit linear regression models separately for each of these pre-189

dictors, allowing each story to have a di↵erent slope as before. None of the control models’ fit190

exceeds the fit of either CRUISE or surprisal-weighted sampling (Fig. 2d, total information:191

Adj.R
2 = 0.179, duration: Adj.R2 = 0.164, number of tokens: Adj.R2 = 0.146, also see Fig.192

S5, and results from other LLMs in Fig. S4).193

To statistically compare these models, we performed a slightly di↵erent analysis. First,194

we tested how well each model predicted each individual participant’s recall by computing195

the correlation between the predictor and participant recall values I(RY
, Xi). A one-tailed196

binomial test was then used for each story and pair of models to assess whether one model197

consistently yielded higher correlation than the other across participants. Finally, we used198

a second one-tailed binomial test across stories to assess whether the number of stories in199

which one model outperforms another was greater than chance level. This procedure was200

used to compare CRUISE and surprisal-weighted sampling to surprisal and control models,201

and to compare CRUISE to surprisal-weighted sampling. Results show that both CRUISE202

and surprisal-weighted sampling significantly outperformed surprisal and the other controls203

(Fig. 2e). CRUISE also significantly outperformed surprisal-weighted sampling.204

Overall, these results support our hypothesis that participants sample uniformly from205

natural language. We replicated these analyses using consensus events segmented by par-206

ticipants (Fig. S7, Methods: Behavioral data analysis), showing that our evidence for the207

uniform incremental sampling strategy is robust to how the continuous narrative is divided.208

2.4 Uniform incremental sampling predicts memory at event bound-209

aries210

Given that CRUISE outperforms the surprisal model, we next tested whether CRUISE ex-211

plains memory at event boundaries (wherein one “coherent situation” ends and the next one212

begins), which is what event segmentation theory was developed to explain. Past research213

has found that information around event boundaries is better remembered than information214

within an event [31, 32, 33, 6]. Event segmentation theory proposes that event bound-215

aries are better remembered because surprise at boundaries triggers extensive processing216

to prioritize encoding [5]. This process requires both feedforward processing, in which one217

uses long-term memory to compare expectation with the incoming information, and a feed-218

back mechanism to prioritize the encoding of surprising information. We propose that this219

explanation is unnecessary, as non-uniform memory at boundaries can arise from uniform220

sampling if boundaries contain more shared information, a feedforward-only mechanism. If221
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true, CRUISE should predict higher memory at event boundaries and knowledge about when222

boundaries occur should explain no additional variance in behavior.223

To test whether CRUISE explains superior memory around event boundaries, we first224

divided stories into windows of equal length in tokens (Fig. 3a). Windows containing one or225

more event boundaries were designated “boundary” windows, and those without as “inner”226

windows. To balance the number of boundary and inner windows while minimizing the227

number of windows containing multiple boundaries, we chose the number of windows to be228

1.5 times the number of events in each story. The edges of each window were minimally229

adjusted to match phrase boundaries (See Methods: Memory at event boundaries). Note230

that here we divided the story into windows of even number of tokens instead of duration231

as before because windows of even number of tokens have approximately equal information.232

Results using windows of equal duration (Fig. S10, Supplemental results: Alternative event233

boundary analysis) show a consistent pattern with these results.234

We next examined the information properties of event boundaries. While boundary235

windows and inner windows do not di↵er in the number of tokens or surprisal (p > 0.2),236

countering the prediction of event segmentation theory (Fig. 3b), boundary windows have237

significantly longer duration than inner windows (Fig. 3c, F = 42.153, p = 5.85 ⇥ 10�10).238

This reflects lower speech rate (Fig. 3d, F = 37.117, p = 5.14⇥ 10�9) and lower information239

rate (Fig. 3e, F = 18.318, p = 2.83 ⇥ 10�5) in boundary windows, violating the uniform240

information density commonly observed in language [27, 24, 34]. Furthermore, by averaging241

the time courses of surprisal (Fig. 3j), speech rate (Fig. 3k) and information rate (Fig.242

3l) around event boundaries, we found that rather than an increase in surprisal, there is243

a sharp decrease in speech rate and information rate within 5 seconds of event boundaries.244

Comparing the surprisal around event boundaries to randomly sampled windows from stories,245

we again confirmed that boundaries are not more surprising (Fig. S11). These results argue246

against the surprisal account of event segmentation theory.247

Next, we tested whether event boundaries were better remembered in our data. A two-248

way ANOVA (Window type ⇥ Story) confirmed that the main e↵ect of window type was249

significant (Fig. 3f, F = 4.155, p = 0.043), meaning that participants recalled more informa-250

tion in boundary windows than inner windows (mean boundary I(Xi, R) = 34.26 bits, mean251

inner I(Xi, R) = 31.14 bits). The main e↵ect of story (F = 4.06, p = 0.0003) was significant,252

while the window type ⇥ story interaction was not (p = 0.938). (Also see Supplemental253

results: Alternative event boundary analysis).254

We next tested whether our uniform incremental sampling strategies predicted partic-255

ipants’ recalls for these boundary and inner windows. As before, we fit linear regression256

models separately for CRUISE, surprisal-weighted sampling, and controls to predict the257

mean amount of information that recalls captured about each window (Fig. 3h). Each story258

was allowed to have a separate slope. Results show that CRUISE and surprisal-weighted259

sampling explain more variance in I(Xi, R) than surprisal and other control models, with260

CRUISE having the best performance (CRUISE: Adj.R2 = 0.298, surprisal-weighted sam-261

pling: Adj.R2 = 0.268, surprisal and controls: Adj.R2
< 0.12). We next asked how CRUISE262

and surprisal-weighted sampling were able to account for participants’ memory at boundaries.263

CRUISE could predict stronger memory at boundaries in two ways: first, if event boundaries264

have higher shared information than non-boundaries; and second, by storing more bits at265

boundaries due to the lower speech rate and longer duration. Surprisal-weighted sampling,266

on the other hand, can only predict the stronger memory at boundaries if shared information267

is higher, because surprisal does not di↵er between boundaries and non-boundaries. The fact268

that both CRUISE and surprisal-weighted sampling predicted participants’ recall suggested269

that boundary windows have higher shared information. The contribution of shared informa-270

tion at boundaries is further corroborated by duration poorly predicting recall, even though271

boundary windows are significantly longer.272
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Figure 3: Uniform incremental sampling predicts memory at event boundaries. a. We divided
stories into windows of equal length in tokens, minimally adjusted to phrase boundaries. The number of
windows is 1.5 times the number of events. “Boundary windows” contain at least one event boundary;
“inner” windows do not. b. Boundary and inner windows do not di↵er in surprisal (p > 0.2, shading
indicates 95% confidence intervals. Colors correspond to di↵erent stories.) c. Boundary windows have
significantly longer duration (p = 5.85 ⇥ 10�10), d. significantly lower speech rate (p = 5.14 ⇥ 10�9), e.
significantly lower information rate (p = 2.83 ⇥ 10�5), f. and are significantly better recalled than inner
windows (p = 0.043). g. CRUISE predicts that boundary windows are significantly better recalled than
inner windows (p = 0.015). h. R2 of predicting mean recall using linear regression. Crosshatched bars show
models with explicit event boundary information. Boundaries do not explain additional information on top
of CRUISE. i. Schematic of information properties at event boundaries. Surprisal remains constant but
speech rate decreases, lowering the information rate. The amount of shared information increases, enabling
better memory for boundaries with constant memory encoding rate. j.-l. Average surprisal, speech rate, and
information rate around event boundaries in 500 ms bins. Shaded areas indicate standard error. Boundary
(time 0) occurs at the right edge of the center bin. Mutual information estimates are not meaningful at the
word level, so shared information and memory rate were not computed. At event boundaries, j. Surprisal
remains constant, k. speech rate decreases, and l. information rate decreases.
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Token index
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Figure 4: Events are coherent in their semantic content. a. Mutual information is calculated for
segment pairs within an event versus across one event boundary. A segment pair belongs to the within-event
condition when there is no event boundary from the start of the first segment to the end of the second segment.
A segment pair belongs to the boundary condition if there’s exactly one event boundary between the end of
the first segment and the start of the second segment, and there are no boundaries within the second segment.
b. The di↵erence between the mean amount of mutual information for within-event pairs and boundary
event pairs, separated for stories and distance between two segments. Considering the eight stories together,
within-event pairs had higher mutual information than boundary pairs (F = 12.652, p = 3.79⇥ 10�4). Stars
indicate the FDR-corrected significance of post-hoc Welch’s t-tests comparing whether mutual information
di↵ers for within-event and boundary pairs for each story and each distance bin.

Next, we conducted a two-way (Window type ⇥ Story) ANOVA to test whether CRUISE273

and surprisal-weighted sampling predict that participants better remember boundary win-274

dows than inner windows. Only CRUISE predicts that boundary windows are significantly275

better remembered than inner windows (Fig. 3g, significant main e↵ect of window type,276

F = 5.993, p = 1.51⇥ 10�2, non-significant window type ⇥ story interaction, p > 0.1), while277

surprisal-weighted sampling does not (main e↵ect of window type p > 0.3). These results278

suggest that shared information alone is not su�cient to predict memory at event bound-279

aries: explicitly considering the slower speech rate and information rate at event boundaries280

is also crucial.281

It is possible that even though CRUISE predicts memory at event boundaries, there is282

still additional variance captured by the presence of boundaries that is not explained by283

CRUISE. To test this possibility explicitly, we added either an intercept term for window284

type (Inner vs. Boundary), an interaction between the continuous predictor and window285

type, or both (Fig. 3h). A significant intercept term would suggest that participants’286

memory still di↵ers for boundary versus inner windows even after accounting for CRUISE.287

A significant interaction between window type and CRUISE would suggest that the rate288

of sampling di↵ers for boundary and inner windows. However, we found that neither the289

intercept nor the interaction explains additional variance on top of CRUISE (Window type290

intercept only: p = 0.25, interaction of window type with CRUISE only: p = 0.295). The291

window type intercept marginally explains additional variance on top of surprisal-weighted292

sampling (intercept only: p = 0.051, interaction only: p = 0.113). When both intercept293

and interaction are added to the regression models, neither is significant for CRUISE or294

surprisal-weighted sampling (p > 0.1). These results suggest that CRUISE fully accounts295

for any variance in participants’ memory that is explained by event boundaries, but surprisal-296

weighted sampling does not.297

So far, we know that event boundaries are better remembered because they have lower298
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information rate and higher shared information, but does the meaning of information change299

at event boundaries? Here we used mutual information to quantify the changes in semantic300

meaning between pairs of windows within an event versus pairs on di↵erent sides of an event301

boundary (Fig. 4a, see Methods: Mutual information within event vs. across an event302

boundary). We found that on average, within-event pairs have higher mutual information303

than pairs across a boundary (Fig. 4b, mean per-token mutual information between an304

across-boundary pair = 0.100 bits, between a within-event pair = 0.324 bits, a 3-way story305

⇥ distance bin ⇥ pair type (across one boundary vs. within-event) ANOVA showed a306

significant main e↵ect of pair type, F = 12.652, p = 3.79⇥ 10�4), even though the distances307

between segment pairs were the same (see Methods: Mutual information within event vs.308

across an event boundary). This di↵erence in mutual information within an event versus309

across a boundary was robust to the number of distance bins (six, seven, and eight), and310

to a normalized shared information measure that corrects for the mean cross entropy of311

each specific token. Across all variations, 3-way ANOVAs showed higher per-token shared312

information within-event than across a boundary (p < 0.001). These results suggest that313

events are coherent in their semantic content, and event boundaries indicate shifts in such314

coherence.315

Overall, these results suggest that stronger memory at event boundaries can be explained316

by uniformly sampling the incoming information at a constant rate (Fig. 3i, teal line). Thus,317

event boundaries are better remembered not because they are more surprising (Fig. 3b, j) or318

sampled at a higher rate by the listener, but because they share more information with the319

rest of the story as implied by CRUISE (Fig. 3i), and are delivered at a slower speech rate320

(Fig. 3k), yielding a lower information rate (Fig. 3l). The increase in shared information and321

decrease in information rate at boundaries are accompanied by a shift in semantic meaning.322

These results argue against the surprisal account of event segmentation theory.323

2.5 How do humans form a coherent memory of the narrative?324

The preceding results suggest that by utilizing shared information, uniform sampling explains325

why some parts of a narrative are better remembered. But how do we form a coherent326

memory of the entire narrative? Selective encoding strategies like event segmentation theory327

do not o↵er an explanation because they only focus on how discrete parts of a narrative328

are remembered. One way to conceptualize how a coherent memory is formed is to view329

memory as a lossy compression problem, in which the source (a narrative) is compressed330

into memory imperfectly. The standard framework for this type of problem is rate-distortion331

theory [35], which was developed to understand lossy compression in communication. Given332

limited capacity of the information channel (in this case, human memory) and noise in the333

transmission process, one cannot spend infinite number of bits and distortion is inevitable.334

Rate-distortion theory suggests that, for a given source and a fixed distortion d, which335

measures how much the compressed memory deviates from the story, there exists a minimal336

achievable rate r(d), the number of resources in bits that are used to remember the stimulus,337

representing the best-case scenario. The function r(d) is represented as a rate-distortion338

curve (Fig. 5a, black line). r(d) is a monotonically decreasing function of d, suggesting a rate-339

distortion trade-o↵: one can only achieve lower distortion by spending higher rate. Systems of340

di↵erent e�ciencies are manifested as di↵erent rate-distortion curves: more e�cient systems341

(blue curve) could achieve the same distortion with a lower rate, while less e�cient systems342

(red curve) need a higher rate.343

To apply rate-distortion theory to our data, we operationalized rate as the mutual infor-344

mation between story and recall, I(X;R), and distortion as the Levenshtein distance between345

story and recall, which measures the minimum number of word insertions, deletions, or sub-346
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Figure 5: Participants vary along gist vs. detail at similar levels of e�ciency. a. Based on rate-
distortion theory, rate is the number of resources one spent on memorizing the stimuli. Distortion is the
deviation between one’s memory and the stimuli. With less e�cient memory (larger ↵ in our model), one
needs larger rate to achieve the same level of distortion. At each level of e�ciency, varying the sampling
rate g trades o↵ rate with distortion. b. We prompted an LLM to generate recalls of the same stories heard
by our participants. c. To manipulate g in LLMs, we modified the attention weights from each token in
the recall to the story using additive smoothing, while leaving other attention weights intact. The degree of
smoothing is controlled by an “attention temperature” parameter, where a value of 0 indicates no smoothing,
and higher temperatures make the attention more uniform. d. Rate-distortion plots of individual human
recalls (blue) and model-generated recalls averaged within each attention temperature (orange-pink). Error
bars for model-generated recalls indicate the standard error of all recalls for an attention temperature. We
operationalized rate as the mutual information between the recall and the story, and distortion as Levenshtein
distance. Human recalls are colored by the mean attention entropy of an induction head from the recall to
the story, indicating the level of detail (darker) vs. gist (lighter). Model-generated recalls are colored by the
attention temperature used for generation. For both humans and the LLM, more detailed recalls have lower
distortion but higher rate. Gray line represents simulated recalls of an individual with no knowledge of the
English language, corresponding to the worst-case ↵ in CRUISE.
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stitutions required to transform the recall transcript into the story. As expected, the human347

recalls show a rate-distortion tradeo↵ (Fig. 5d). However, rate-distortion theory does not348

explain what information is being lost as distortion increases. Uniform sampling theory, on349

the other hand, predicts that shared information is e↵ectively oversampled (Eq. 5). Thus,350

as rate decreases, information shared across the entire story (gist) will be automatically pre-351

served while unique details are lost. If participants adopted the uniform sampling strategy,352

then recalls with low rate and high distortion would seem more gist-like, summarizing the353

story. Otherwise, at a low rate and high distortion, participants could recall parts of the354

story in high detail but have no memory of other parts. In line with predictions of uniform355

sampling, recalls with varying levels of detail versus gist fall along a rate-distortion curve356

(Fig. S13). Recalls with a lower rate and a higher Levenshtein distance were rated by human357

annotators as more gist-like (Fig. S14a,b, ps < 0.001). These results suggest that partici-358

pants adopted uniform sampling, which e�ciently compresses the story and automatically359

extracts the gist, instead of selectively remembering few parts of the story in high detail.360

The variation in gist versus detail in one’s recall is then achieved by trading o↵ rate and361

distortion.362

Given that uniform sampling explains what information is remembered as we trade363

o↵ rate and distortion, how does uniform sampling determine where one lies on the rate-364

distortion plot? To answer this question, we re-expressed the uniform sampling model to365

explain how the entire story is remembered. Under uniform sampling, the amount of infor-366

mation one remembers about a given story, or rate, I(X;R), is simply the total number of367

samples that fall within H(X):368

I(X;R) =
H(X)

H(X,P
Y

X
)
gl (8)

=
H(X)

DKL(PX ||P Y

X
) +H(X)

gl (9)

=
gl

1 + ↵
, (10)

in which g is still the constant sampling rate in bits per second, and l is the duration of the369

entire story in seconds. We again assume DKL(PX ||P Y

X
) = ↵H(X), in which ↵ is a positive370

constant. Thus, for a given story X, how much one remembers about the story only depends371

on two factors: the sampling rate g and how inadequately one’s prior knowledge captures the372

stimuli, ↵. We hypothesize that ↵ and g predict two independent facets of rate-distortion373

theory: the shape of the rate-distortion curve and where one lies on the curve.374

In rate-distortion theory, the shape of the rate-distortion curve is determined by how the375

information coding scheme maps to the source stimulus. In the case of human memory, this376

is exactly equivalent to how well the listener’s existing knowledge P Y

X
captures the statistics377

of the stimulus PX , determined by ↵ in our uniform sampling model. Once we established378

the shape of the rate-distortion curve, for a given source and coding scheme, one’s position379

on the curve is then limited by the channel capacity. One cannot achieve a rate higher than380

the channel capacity, which is gl in the uniform sampling model. Because l is fixed for a381

given story, the sampling rate g controls capacity, thereby controlling one’s position on a382

rate-distortion curve.383

2.6 Prior knowledge influences memory e�ciency384

We first validated whether ↵ a↵ects the shape of the rate-distortion curve, equivalent to one’s385

memory e�ciency. We did not directly measure or manipulate ↵ in our participants, but we386
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simulated the worst-case scenario of ↵ to demonstrate how prior knowledge a↵ects the shape387

of the rate-distortion curve. The worst-case ↵ represents a person with no knowledge of the388

English language trying to memorize the stories. This person could not exploit shared infor-389

mation to compress information, so they would have to memorize the entire story word by390

word. We mimicked this condition by creating “verbatim recalls” that were simply samples391

from the story of varying lengths.392

We compared the memory e�ciency under this worst-case ↵ with the memory e�ciency of393

our participants. A memory is more e�cient if it uses a smaller rate to achieve the same level394

of distortion, or, equivalently, achieves lower distortion with the same rate (Fig. 5a). Thus,395

if prior knowledge determines memory e�ciency and participants exploited prior knowledge396

(smaller ↵) to remember the stories, they would lie below the rate-distortion curve of the397

worst-case ↵. In Fig. 5d, the rate-distortion curve for the worst-case ↵ (gray line) is indeed398

above recalls for all stories, except for 3 human recalls in Story 8. This result supports our399

hypothesis that ↵, which measures how di↵erent one’s prior knowledge is from the story,400

a↵ects the shape of the rate-distortion curve. Moreover, it shows that our participants used401

prior knowledge to e�ciently compress the stories into memory.402

2.7 Rate of sampling predicts the variation of gist versus detail403

We next tested whether g controls the rate-distortion tradeo↵ as predicted by our uniform404

sampling model. While we did not measure the sampling rate behaviorally, we could model405

the sampling rate using LLMs. When predicting a new token, LLMs take weighted combi-406

nations of information from previous tokens where the weights are computed by dot-product407

attention[36]. The entropy of these attention weights is thus related to how much informa-408

tion can flow from past inputs (the story) to future predictions (recall of the story) [37]. At409

low attention entropy, each recall token can draw from very specific story tokens, e↵ectively410

sampling from the story at a high rate. Conversely, at the highest attention entropy, infor-411

mation is simply averaged across the story tokens, e↵ectively sampling at a very low rate.412

Attention entropy should thus be inversely proportional to the sampling rate g in humans,413

both determining channel capacity.414

If the sampling rate g controls the rate-distortion tradeo↵ and the level of detail in one’s415

recall, so should our proxy of g, the attention entropy. To test this hypothesis, we focused416

on a particular type of attention head inside the LLMs called induction heads [38], which417

were found independently (see Methods: Evaluation of the attention entropy of induction418

heads). We concatenated the story and the recall, and calculated the attention entropy from419

each recall token to the story, then averaged the attention entropy across all recall tokens.420

We found that recalls corresponding to high attention entropy in the strongest induction421

head are rated to be more gist-like, having low rate and high distortion, and vice versa (Fig.422

S15,S14c). These results suggest that sampling rate correlates with the level of detail in one’s423

recall and the rate-distortion tradeo↵. This also shows that it may be possible to quantify424

how gist-like a person’s recall is by measuring the attention entropy.425

Finally, to further test whether the sampling rate g causally drives the rate-distortion426

tradeo↵, we generated recalls while manipulating g in LLMs, but keeping ↵ constant. If g427

drives the rate-distortion tradeo↵ as predicted by the uniform sampling model, increasing the428

attention entropy (equivalent to decreasing g) should make the LLM generate more gist-like429

recalls with low rate and high distortion. To do this, we prompted an LLM to generate recalls430

after “reading” the story (Fig. 5b). We manipulated the attention entropy while preserving431

the ability of LLMs to generate coherent recalls by applying smoothing to the attention432

weights from recall tokens to story tokens (Fig. 5d). This process contains one parameter,433

the “attention temperature” (see Methods: Attention entropy manipulation). An attention434

temperature of 0 represents the original model without smoothing (low attention entropy),435
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in which the attention heads can precisely sample information from each story token, akin436

to a high sampling rate g. As we increase the temperature, attention entropy increases (Fig.437

5c), reducing LLMs’ ability to sample specific information, akin to a low g.438

Indeed, at temperature 0, the generated recalls of the Llama3-8b-instruct model tended to439

be rather detailed, often quoting exact expressions from the story (Fig. 5d, also see example440

generations in Supplemental Tables S2,S3). As we increased the attention temperature, akin441

to lowering g and restricting the channel capacity, the generated recalls used fewer bits at442

the cost of higher distortion (Fig. 5d), similar to gist-like human recalls. These results443

suggest that manipulating the sampling rate g drives the rate-distortion tradeo↵. Further,444

generating recalls at a high attention temperature explicitly enforces uniform sampling with445

a low sampling rate, again demonstrating that uniform sampling automatically extracts the446

gist of a story. Moreover, manipulating attention temperature in LLMs not only drives447

the rate-distortion tradeo↵ but also generates human-like recalls in terms of their rate. In448

seven out of eight stories, we found attention temperatures in which the model-generated449

recalls matched the human recalls using the same generation prompt. For the remaining450

story, we also found matching attention temperatures when prompting the LLM to generate451

more detailed recalls (Fig. S16). These results suggest that LLMs are capable of producing452

human-like recalls.453

Overall, these findings suggest that uniform sampling not only explains why parts of the454

story are better remembered, but also how a coherent memory of a narrative is formed. By455

sampling uniformly, participants automatically extract the gist of the story by e↵ectively456

oversampling information shared across the story. Participants’ memory e�ciency, or the457

shape of their rate-distortion curve, is influenced by how inadequately one’s prior knowledge458

captures the stimuli, ↵. For a given ↵ and a given story, the level of detail versus gist459

in participants’ recalls, or the position along a rate-distortion curve, is determined by the460

sampling rate g, which controls the capacity of the memory channel. While we did not461

measure ↵ and g behaviorally, future work should manipulate participants’ prior knowledge462

and their sampling rate to test their contribution to memory.463

3 Discussion464

In this study we found evidence that humans uniformly sample information from continuous465

naturalistic stimuli into memory. While existing theories only address why some parts of466

a narrative are better remembered, uniform sampling can explain both non-uniform and467

gist memory by e↵ectively oversampling shared information. Our theory also predicts that468

a person’s ability to utilize shared information depends on how well their prior knowledge469

captures the stimulus statistics. The level of gist versus detail is then determined by one’s470

uniform sampling rate. Overall, our uniform sampling model is mechanistically parsimo-471

nious, eliminating the need for a feedback mechanism to decide whether to encode or discard472

information. These results replicate across multiple narrative stories with distinct themes,473

and are robust against various methods for quantifying stimulus structure. Our approach ex-474

tends information-theoretic perspectives that have been used to show that humans e�ciently475

perceive [14, 15, 16, 39] and remember [17, 18, 19, 20, 21] by compressing redundant infor-476

mation. This information-theoretic model uniquely accounts for how non-uniform memory477

and gist extraction arise from a single computational mechanism.478

Our theory is a simpler account of human memory than even segmentation theory, which479

holds that humans better remember event boundaries due to a feedforward-feedback mech-480

anism that detects surprisal and resets event models, triggering prioritized encoding [5, 32].481

That theory arose from a series of experiments using manipulations wherein stimulus change482

is used as a proxy for surprise [6, 40, 4, 41], or interrupted continuous viewing to ask for483
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subjective surprisal judgments, invoking task demands that may have altered perception of484

surprise [32] (c.f. [42, 43]). However, experiments using natural narratives have found that485

surprisal as measured by language models poorly predicts the perception of event bound-486

aries [7]. Our results show that event boundaries are, in fact, not more surprising than487

non-boundaries (Fig. 3i, red line). Rather, boundaries are simply shifts in semantic con-488

tent, such that mutual information is higher within an event than across an event boundary.489

This aligns with earlier results connecting event boundaries to semantics [3, 44, 45]. Our490

results also align with recent work showing better memory for events with stronger causal491

and semantic centrality [22, 23]. However, those experiments used human annotations to492

identify causal connections and text embedding distances to quantify semantic connections.493

Our model simplifies these computations by directly measuring mutual information using494

large language models, capturing both semantic and causal connections in a single measure.495

Mechanistically, event segmentation theory suggests that event boundaries elicit a sur-496

prise signal through feedforward comparison, which feeds back to hippocampus to prioritize497

encoding [46, 32]. In contrast, our theory proposes a parsimonious, feedforward-only mech-498

anism, wherein uniform sampling alone can account for why some moments, including event499

boundaries, are better remembered. We suggest that event boundaries share more informa-500

tion with the rest of the story than non-boundaries (Fig. 3i, green line). Thus, information501

at event boundaries is e↵ectively oversampled even with uniform sampling in time. We also502

found that speech rate is slower at event boundaries, leading to a lower information rate (Fig.503

3i, orange and yellow lines). Slower speech rate makes more samples available for encoding504

at event boundaries than non-boundaries, despite the constant sampling rate (Fig. 3i, teal505

line) and surprisal (Fig. 3i, red line).506

Our theory also provides a straightforward account of the experimental observation that507

less recent boundaries are better remembered than more recent ones [6]. Because surprise508

alone cannot account for these temporal di↵erences in memory, event segmentation theory509

proposes an additional, computationally expensive process wherein working memory is reset510

at boundaries. In contrast, uniform sampling explains this e↵ect by proposing that memories511

of earlier boundaries are strengthened as one experiences other parts of the narrative that512

share information with those earlier boundaries.513

Importantly, because uniform sampling e↵ectively oversamples information that is shared514

across a narrative, it also automatically extracts the gist of a story, a process not accounted515

for by event segmentation theory. Variation in the level of detail versus gist in one’s recall is516

then controlled by the sampling rate, g. While the level of gist was traditionally measured517

using subjective human ratings, we also present a novel, theory-driven measure of gist: the518

attention entropy of induction heads in an LLM. Attention entropy quantifies how specif-519

ically each part of the recall corresponds to the narrative. Low attention entropy reflects520

a verbatim recall of the narrative, while high attention entropy corresponds to gist-like re-521

call. Our method provides an automatic and easy-to-compute measure of gist, opening up522

possibilities for future work that could rigorously examine neural mechanisms of gist recall523

without expensive human ratings. Further, we showed that LLMs could achieve human-like524

recall by manipulating the attention temperature. These results add to previous literature525

showing that LLMs can produce human-like event segmentation patterns [47, 48]. Besides526

the sampling rate g, our theory also predicts that one’s memory e�ciency depends on ↵,527

or how well one’s prior knowledge captures the statistics of the stimuli. Future studies528

could directly study the e↵ects of ↵ and g by comparing participants with varying levels529

of prior knowledge (e.g. adult versus children, experts versus non-experts), or instructing530

participants to produce more detailed or gist-like recalls. Our theory also o↵ers a novel531

quantitative framework for exploring how prior knowledge ↵ influences the sampling rate g532

through hippocampal-cortical crosstalk. Overall, our theory provides a major advancement533

in narrative understanding and opens several new directions for empirical research.534
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Uniform sampling theory also has implications for communication as an interactive pro-535

cess. Linguistic theories argue that speakers make optimal use of limited communication536

bandwidth [10, 9] by modulating their speech rate and word choice to achieve approximately537

uniform information density over time [24, 25, 26, 27, 28, 49]. However, information den-538

sity is known to be locally non-uniform [26, 50]. We argue that local non-uniformity could539

be explained if speakers are actually optimizing for e�ciency of the listener’s long-term540

memory system. This would suggest that speakers slow down not only during moments of541

high information, but also during moments of high shared information, making more sam-542

ples available for encoding crucial content. Our results support this, showing that event543

boundaries have lower speech rate and information density but higher shared information,544

allowing listeners’ memory sampling rate to remain constant. Existing literature in sentence545

processing has long suggested that processing cost scales with listeners’ working memory546

demand [49, 8, 51, 52]. Here we extend those ideas to the level of narratives. Future research547

should test whether modifying the shared information structure and the information rate548

using LLMs could manipulate what one remembers in a targeted manner.549

Our work highlights the importance of considering the information structure of the stimuli550

[53], thereby accounting for natural statistics of the stimulus modality and the intention of551

the speaker. One important question for future research is whether our theory extends to552

other stimulus modalities. For instance, language and visual stimuli have di↵erent statistical553

properties that could interact with memory. Commercial movies are intentionally edited554

to orchestrate interest and agreement among viewers [54], which could lead to non-uniform555

information density. While our uniform sampling theory could recover the stimulus structure556

e�ciently for language stimuli with locally non-uniform information density, it is possible557

that humans could employ alternative strategies to selectively encode information in other558

modalities. Future work should explore whether humans uniformly sample information in559

visual or multi-modal stimuli. As the field of artificial intelligence continues to develop560

multi-modal models [55, 56, 57], we can better capture the statistics of multi-modal stimuli.561

One limitation of the current study is that our estimates of entropy and mutual informa-562

tion are not perfect. Although LLMs are the state-of-the-art at capturing language statistics,563

they nonetheless provide only an upper-bound estimate of cross entropy. LLMs achieve super-564

human performance in next-word prediction [58, 59, 60], suggesting the upper-bound is lower565

than humans’ estimates. Yet here they allow us to quantify the interaction between stimuli566

structure and human memory, a previously intractable problem. To ensure we obtained the567

best possible mutual information estimates, we selected the method of estimation based on568

two theoretical properties of mutual information: symmetry and non-negativity. We also569

replicated our results across five LLMs, and showed that prior exposure to the stimuli did570

not a↵ect our results by fine-tuning Llama3.2-3b-inst on 301 stories from the Moth Radio571

Hour (See Methods: Fine-tuning on Llama3.2-3b-inst). With future advances in LLMs, we572

expect to obtain increasingly accurate information estimates.573

Overall, while prior theories of narrative memory only explain memory of discrete mo-574

ments with a process-intensive mechanism, our uniform incremental sampling model o↵ers575

a parsimonious mechanism to explain both why certain moments are better remembered,576

and how humans form a coherent memory of the entire narrative. Our theory substantially577

extends the current literature on narrative understanding, suggesting that future narrative578

studies should consider the information structure of the stimuli, the intent of the commu-579

nicator, listeners’ prior knowledge, and memory capacity. These advancements would not580

be possible without LLMs, enabling us to estimate the information structure of narrative581

language.582
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4 Methods583

4.1 Participants584

A total of 413 participants were recruited from the online platform Prolific (216 female, 184585

male, 13 non-binary; mean age 40.16 years, s.d. = 12.22 years, not including one participant586

who misreported their age as 569 years). All participants were native English speakers.587

Informed consent was obtained in accordance with experimental procedures approved by588

the Institutional Review Board at the University of Texas at Austin. Participants were589

compensated at the rate of around $10.14 per hour. The target sample size of 50 participants590

per story was determined by simulating how much a sample size recovers the consensus event591

boundaries of a previously collected public dataset [61]. We bootstrapped the dataset for592

1000 iterations. On each iteration, the dataset was randomly split into two halves, in which593

one half (102 participants) was used to calculate the target consensus segmentation, and n594

participants were sampled from the other half without replacement to calculate the sample595

consensus segmentation. A sample size of n = 50 reaches the point of diminishing returns596

in the number of exact word-level consensus boundaries recovered (65% on average).597

Participants who had technical di�culties with audio recordings, whose audio recordings598

were inaudible, and those who recalled the story with minimal e↵ort (for example, those599

who only spoke for two sentences or recalled little to no relevant information about the600

story) were excluded from both the segmentation and the recall analyses. Additionally,601

two participants were excluded from the recall analyses because they reported forgetting to602

press the recording button and thus recalled twice. One additional participant indicated603

that they attempted to take notes during story listening, and were excluded for the recall604

analyses. For the event segmentation analyses, participants were excluded if they did not605

segment or answered fewer than 3 out of 5 comprehension checks correctly, which indicated606

that they paid little attention to the story. Moreover, for Story 1, the first 13 participants607

were excluded from the recall analysis due to an experiment programming error, in which608

the recall task was erroneously placed after the comprehension check, potentially biasing609

participants’ recall. All participants, except for one in Story 4, one in Story 7, and one610

in Story 8, had not been previously exposed to the stories. These three participants were611

included in the analyses because the number of times they segmented is within 2SD of the612

sample. See a full breakdown of participant exclusion in Fig. S1 and the sample size for613

each story in Table S1. After applying the exclusion criteria, 399 participants were included614

in at least one analysis (212 female, 175 male, 12 non-binary; mean age 40.12 years, s.d. =615

12.08 years, not including one participant who misreported their age as 569 years).616

4.2 Stimuli617

The audio stimuli consisted of eight spoken autobiographical narratives from the Moth Radio618

Hour, ranging from 7 to 14 minutes long. All audio tracks were normalized to -23 LUFS.619

For the story “Pie Man”, the transcript and timing was obtained from [61]. The rest of620

the stories were manually transcribed by one listener, and the Penn Phonetics Lab Forced621

Aligner (P2FA) [62] was used to automatically align the audio to the transcript [63]. Praat622

[64] was used to manually check and correct the alignment.623
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4.3 Experimental Procedures624

Before entering the study, participants were asked to make sure they had at least 20 minutes625

of uninterrupted time. The experiment contains three sections, story listening, verbal recall,626

and comprehension check. During the story-listening phase, participants were instructed to627

press a button on the screen whenever, in their judgment, one meaningful event ends and628

another begins. They were informed that at the end of the story, they would be asked to629

recall the story they just heard and answer five multiple-choice questions. They were also630

instructed not to take notes.631

Before the participants listened to the actual story, they were prompted to adjust their632

volume based on a story from the Moth Radio Hour that was not part of the current stimuli633

set. They then received a practice trial to make sure they understood the segmentation634

instructions. The practice trial involved a 30-second story narrated by the experimenter.635

After the practice trial, the segmentation instructions were re-emphasized, and participants636

were told that there was no right or wrong way to perform the segmentation.637

Upon entering the main task, participants listened to the story in one setting, while per-638

forming event segmentation. Immediately after the story ended, participants were instructed639

to verbally describe the story they just heard in as much detail as they could while being640

recorded. Participants were not allowed to end their recording before a 2-minute timer was641

up. In the last section of the experiment, participants answered 5 four-alternative-forced-642

choice questions to test their understanding of the story. These questions were designed643

such that they could be easily answered if one paid attention to the entire story. They also644

indicated whether they had heard the story before participating in the experiment.645

4.4 Behavioral data analysis646

Event segmentation For each participant, the timings of their button presses were ex-647

tracted, and aligned to the last word before each button press. To extract the consensus648

event segmentation for each story, we calculated the proportion of participants who seg-649

mented after each word. The time course was then smoothed with a Gaussian kernel with650

a standard deviation of 2.5 words. The smoothed time course was then thresholded at 95%651

percentile, and peaks above the threshold were identified as the consensus event segmentation652

of the story. This procedure follows an earlier publication [61].653

Recall transcription Recall audios were first automatically transcribed using Whisper-654

large-v3 [65]. Then the automatically generated transcripts were manually checked against655

the audio recording and corrected for errors.656

Recall coding Recall transcripts of Story 1, 2 and 3 were coded using a coding scheme657

adapted from the Autobiographical Memory Interview (AMI) coding scheme [66] to validate658

the LLM-derived information measures. Given the number of participants and the length of659

the recall transcripts, the remaining stories were not coded. Modifications to the AMI coding660

scheme were made to consider the fact that our participants were recalling the narrator’s661

autobiographical story, not their own. As in the AMI coding scheme, a recall transcript was662

divided into individual units named “details”, each conveying unique meaning. Each detail663

was then assigned to a category. Specifically, all details pertaining to the content of the story664

itself could be categorized as event, place, time, perceptual, emotion/thought, and semantic665

details. We added a category of participant-related details to accommodate participants’666

reactions and inference of the story. Participants’ thoughts and emotions during the story667

listening were categorized as emotion/thought-Participant (e.g. “I was really laughing during668
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that part of the story”). Semantic information inferred by the participants was categorized669

as semantic-Participant. For instance, if the story only mentioned that the narrator went to670

college in the Bronx, while the participant recalled “in the Bronx, in New York”, “in New671

York” is categorized as semantic-Participant because it is inferred by the participant. Lastly,672

repetitions of previously mentioned details were categorized as “repetitions”. Details that673

do not reflect recollection, such as meta-cognitive statements (“Let me see if I can remember674

that”), subjective comments about the story (“I like it it’s a really funny story”), inference675

about the context of story-telling (“it sounded like a comedian was on the stage”), and676

messages to the experimenter were categorized as “other”.677

All details pertaining to the story itself were considered in subsequent analyses. Details678

categorized as participant-related, “repetitions”, and “other” are excluded. Each detail was679

marked either as correct or incorrect. We then traced each detail back to its origin in the680

story, recording the first consensus-derived event in which it appeared. For each correct681

detail in the recall, we then compared the detail to how it was originally described in the682

story, and assigned a rating to indicate its level of richness on a scale of 1 to 3. Following683

the original AMI coding scheme, 3 indicates that the participant’s recall of the detail fully684

captures the way this detail was described in the original story; 2 indicates that the recall of685

the detail captures some but not all specific information about how this detail was described686

in the original story; 1 indicates that the recall only captures general, nonspecific information687

about the original detail.688

Before coding the actual dataset, all coders were trained on the thirteen Story 1 recall689

transcripts that were excluded from the recall analysis due to an experiment programming690

error. Three primary coders each coded all recalls for one of the three stories. A single relia-691

bility coder coded 10 recalls (about 20% of participants) for each story. A fifth independent692

coder divided all three stories into details using the same coding scheme above. The primary693

and reliability recall coders were blind to the story coding during their coding process. After694

coding was completed, each recall coder was informed of the number of details of each event695

in the story. Each coder then reviewed their coding to ensure that the number of details696

recalled per event did not exceed those in the story. The primary coders agree highly with697

the reliability coder (Cronbach’s alpha of the number of correct details per event: Story 1:698

0.98, Story 2: 0.90, Story 3: 0.90; Cronbach’s alpha of the mean level of richness per event:699

Story 1: 0.91, Story 2: 0.84, Story 3: 0.85).700

Creating equal-duration windows of story text To divide the story into windows of ap-701

proximately equal duration (which we used to evaluate how much participants recalled about702

each part of the story in Fig. 2), we first split the story into equal-duration windows, in703

which the number of windows equal to the number of consensus events for each story. The704

start and end time of each window were then mapped to the corresponding story text. To705

avoid abnormally high cross entropy due to syntax violations, the beginning and ends of706

each window were minimally adjusted to match phrase boundaries. For example, a window707

that starts with “it all so I just blurted out what happened to me” was adjusted so that “it708

all” was moved to the previous window, so the previous window now ends with “I couldn’t709

really appreciate it all”, and the current window now starts with “so I just blurted out what710

happened to me”.711

4.5 Information estimates712

Language models Transformer-based large language models were used to estimate various713

information measures. These models were trained on large corpora of text to learn the statis-714

tics of language, and represent text as subword tokens. We adopted the following language715
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models in this paper: Llama-3-8B-Instruct [29], Llama-3-8B-Base [29], Mistral-7B-Instruct-716

v0.3 [67], Llama-3.2-3B-Instruct [68], and Gemma-2-9b-it [69]. All models are openly avail-717

able on HuggingFace. Inference was performed on a compute node with 3 NVIDIA A100718

40GB cards.719

Estimating total information of a part of a story H(Xi) and the total information of a720

recall H(R) We used cross-entropy of the language model to estimate the total information721

in a part of the story. Each part Xi was tokenized using the pre-trained tokenizer and fed722

separately into the language model without preceding context. For each token in Xi, the723

language model outputs a cross-entropy loss, indicating how inaccurately it predicted the724

next token based on preceding inputs. Because we used a base-2 logarithm in the cross-725

entropy calculation, this also gives the number of bits needed to specify the correct next726

token under the probability distribution of the language model. The total cross-entropy of727

the part H(Xi, Z) under the language model Z is thus the sum of cross entropy of all tokens728

in the part. Given that H(Xi, Z) = H(Xi) +DKL(PXi ||PZ

Xi
) and LLMs are the state-of-the-729

art at language modeling, we assume that DKL(PXi ||PZ

Xi
) is relatively small and consistent730

across di↵erent texts, and use H(Xi, Z) as an estimate of H(Xi). Under the same logic, the731

total information in a recall H(R) is estimated by the sum of cross entropy of all tokens in732

the recall.733

Estimating the surprisal of a part H(Xi|X1, . . . , Xi�1) The surprisal of a part of the734

story was estimated by passing the entire story into the LLM, thus presenting each part in735

context of preceding parts of the story. We then took the sum of cross entropy of all tokens736

in the part. Because all stories are shorter than the maximum context length of the language737

models, at each token in a story, the cross entropy output of the language model takes into738

account the context of prior text in the story.739

Estimating the mutual information of a pair of parts I(Xi;Xj) The mutual information740

of a pair of parts I(Xi;Xj) represents the amount of information reduction in Xj when Xi is741

provided as context, I(Xi;Xj) = H(Xj)�H(Xj|Xi). H(Xj) is estimated by passing Xj to742

the LLM and taking the sum of cross entropy of all tokens. H(Xj|Xi) is estimated by directly743

concatenating the text of Xi and Xj, and taking the sum of cross entropy for all tokens in744

Xj in the context of Xi. To avoid potential confusion of the LLMs when parts are presented745

out of order, which could yield a superfluous DKL(PXi|Xj ||PZ

Xi|Xj
), we concatenated the parts746

according to their order in the story. In other words, for a pair of parts Xi and Xj, where747

i < j, Xj is always concatenated after Xi, i.e., I(Xi;Xj) = I(Xj;Xi) = H(Xj)�H(Xj|Xi).748

The mutual information of a part with itself is equivalent to the total information of that749

part, I(Xi;Xi) = H(Xi).750

Estimating the mutual information of recall and a part of the story I(R;Xi) The751

mutual information I(R;Xi) of recall R and a part Xi represents the amount of information752

reduction in Xi when R is provided as context, or equivalently, the amount of information753

reduction in R when the part Xi is presented in context. Because theoretically mutual754

information is symmetric, I(R;Xi) = H(Xi)�H(Xi|R) = H(R)�H(R|Xi) = I(Xi;R), and755

there is no explicit ordering of the text of the recall and the part of the story (unlike when756

there is an order between two parts of the same story), I(Xi;R) can be estimated in both757

directions: subtracting H(Xi|R) from H(Xi), or subtracting H(R|Xi) from H(R).758

22

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2025. ; https://doi.org/10.1101/2025.07.31.667952doi: bioRxiv preprint 

https://doi.org/10.1101/2025.07.31.667952
http://creativecommons.org/licenses/by-nc/4.0/


To achieve the former, we estimated H(Xi) by directly passing the part of the story to759

the model, and taking the sum of cross entropy of all tokens. We then pass the model with760

a direct concatenation of the recall text with the segment from the story:761

{recall}{segment}762

and took the sum of cross entropy of all tokens in the story segment in the concatenation as763

H(Xi|R).764

Alternatively, to estimate I(Xi;R) by subtracting H(R|Xi) from H(R), we estimated765

H(R) by directly passing the entire recall to the model, and taking the sum of cross entropy766

of all tokens. To estimate H(R|Xi), we directly concatenated a segment of the story and767

then the recall, and took the sum of cross entropy of all recall tokens in the concatenation768

as H(R|Xi):769

{segment}{recall}770

We directly concatenated the recall and a part of the story in the estimations above.771

Alternatively, it is also possible that informing LLMs where the text of R and Xi begin772

using prompting can allow LLMs to better estimate the relationship between R and Xi. To773

achieve prompting, for instruction-tuned models, we adopted chat templates and split the774

instructions into system prompts and user prompts. For base models, we simply presented775

the same instructions without the chat templates. The prompts we used are as follows:776

To estimate the total information of a part of the story H(Xi), we used the following777

prompt, and summed across the cross entropy of all tokens in Xi:778

System prompt: You are going to read a segment from a story.779

User prompt: Here’s the segment from the story: {segment text}780

To estimate the total information of a recall text H(R), we used the following prompt, and781

summed across the cross entropy of all tokens in R:782

System prompt: You are going to read a human’s recall of a story.783

User prompt: Here’s the recall: {recall text}784

To estimate the conditional information of the recall text when presented in the context of785

a part of the story H(R|Xi), we used the following prompt and summed across the cross786

entropy of all tokens in the recall text:787

System prompt: You are going to read a segment from a story, along788

with a human’s recall of the entire story this segment belongs789

to.790

User prompt: Here’s the segment from the story: {segment text}.791

Here’s the recall of the story: {recall text}792

Similarly, to estimate the conditional information of a part in a story given a recall as context793

H(Xi|R), we used the following prompt and summed across the cross entropy of all tokens794

in the story segment:795

System prompt: You are going to read a human’s recall of a story,796

and segment from a story.797

User prompt: Here’s the recall of the story: {recall text}. Here’s798

the segment from the story: {segment text}799
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Thus we have four possible ways to estimate I(Xi;R) (2 concatenation methods: direct800

concatenation or instruction prompting ⇥ 2 concatenation orders: presenting recall text then801

a part of the story, hereon “recall first”, or presenting a part of the story then recall text,802

hereon “recall last”). These methods do not give exactly the same estimates. To select the803

most valid method of estimation, we developed two metrics based on theoretical properties804

of mutual information.805

The first metric assessed the symmetry of I(Xi;R) estimates by taking the root mean806

square of I(Xi;R) estimated by presenting recall first versus recall last, for all pairs of story807

parts Xi and recalls Rj. This symmetry metric is formulated as follows:808

s =

vuut
P

i,j

⇣
Î(Xi;Rj)recall last � Î(Rj;Xi)recall first

⌘2

ij
. (11)

The second metric assessed the theoretical property that mutual information is non-809

negative. While theoretically I(R,Xi) is always non-negative, practically, the conditional810

information H(Xi|R) estimated by a language model could be greater than the estimates811

of H(Xi). If Ĥ(Xi|R) > Ĥ(Xi), it is a sign that the language model failed to correctly812

extract the relationship between the recall and a part of the story. The same holds for813

Ĥ(R|Xi) > Ĥ(R). Thus, for each method to estimate I(Xi;R), we calculated the proportion814

of negative Î(Xi;Rj) for all pairs of story parts Xi and recalls Rj,815

p =
1
Î(Xi;Rj)<0

ij
. (12)

We selected the LLM and estimation method pair based on the symmetry and non-816

negativity metrics. For both metrics, lower values signal that the mutual information esti-817

mates provided by the LLM are more valid. To accomplish our goal of recall generation,818

a core analysis to investigate the sampling rate g (Fig. 5), we needed an instruction-tuned819

model. We also tested a non-instruction tuned model (Llama3-8b) in Supplemental results820

(Fig. S4, S8). Across the eight stories, we computed an average of each metric for parts821

of stories derived from the consensus event segmentation and by splitting the story into822

windows of equal duration. We first selected the instruction-tuned language model and the823

concatenation method pair (direct concatenation or prompting) that yielded the lowest root824

mean square s (highest symmetry): Llama3-8b-inst with direct concatenation. We then se-825

lected the concatenation order (recall first or recall last) that yielded the lower proportion826

of negative mutual information estimates. Based on these metrics, we selected Llama3-8b-827

inst while directly concatenating the recall before the part of the story, and reported those828

results in the main section of the paper. It might seem odd that an instruction-tuned model829

provides the best mutual information estimate without instruction prompting. We note that830

an instruction-tuned model could still preserve the language modeling ability even without831

instruction prompting, and it is possible that instruction prompting systematically alters the832

probability distribution output by the LLM, leading to worse mutual information estimates,833

which is not what LLMs are trained for. We noted that while estimating I(Xi;R) using834

Llama3-8b base model with prompting and presenting recall first yielded the best p and s835

metrics overall (Fig. S2), the base model failed to generate recalls of the story, an essential836

analysis to uncover the role of sampling rate in Fig. 5. Thus for the coherence of the main837

results section, results of Llama3-8b base model and others were reported in the Supplemen-838

tal Results (Fig. S4, S8). All models with reasonable symmetry and non-negativity metrics839

suggest that CRUISE predicts I(Xi;R) while surprisal and other controls perform poorly.840
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Estimating the mutual information of recall and the entire story I(R;X) Given that841

directly concatenating the recall before the part of the story using Llama3-8b-inst yields the842

most valid mutual information estimates between a part in a story and a recall text, we843

adopted the same method and order of estimation to estimate I(R;X). In other words, we844

calculated the change in cross entropy of the story tokens when recall is concatenated before845

the story compared to when the story is presented to the model alone. This represents the846

amount of information reduction in X when R is provided as context, or the amount of847

information R explains about the story X.848

4.6 Linear modeling849

We fitted linear regressions to test how well CRUISE, surprisal-weighted sampling, surprisal,850

and other controls models predicted participants’ memory of each part of the story. For each851

story, we calculated the mean I(Xi;R) averaged across all participants’ recalls. For each852

model, we separately fitted a linear regression using data from all eight stories, where the853

mean I(Xi;R) is the response variable. Each regression has the following predictors: an854

intercept term, the model of interest, and an interaction term between the model and a855

categorical variable indicating which story the data point belongs to (i.e. a separate slope856

for each story). The interaction term was included because participants tended to produce857

recalls of similar durations regardless of the duration of the story, leading to lower apparent858

sampling rates for longer stories. Given that the study was conducted online, we believe this859

reflects a reward-maximizing strategy, instead of a di↵erence in participants’ actual sampling860

rate and understanding of the story.861

4.7 Significance testing of CRUISE, surprisal-weighted sampling862

and controls863

We tested whether CRUISE and surprisal-weighted sampling outperformed controls, and864

whether CRUISE outperformed surprisal-weighted sampling in a pairwise manner. We ex-865

amined for each pair, whether one model significantly better predicted more participants’866

recall than the other. One potential approach is to collapse across participants from all eight867

stories and perform a one-tailed binomial test with a success probability of 0.5. This approach868

would yield highly significant results after FDR correction, suggesting that when the stories869

were split into windows of even duration, both CRUISE and surprisal-weighted sampling870

outperformed surprisal and other controls, and CRUISE outperformed Surprisal-weighted871

sampling. When stories were split into consensus events, CRUISE did not outperform872

surprisal-weighted sampling, but both CRUISE and surprisal-weighted sampling still outper-873

formed surprisal and other controls. However, by observing the data, it is clear that there is874

between-story variance: recalls of some stories were better predicted by certain models than875

others. To capture the between-story variance, we conducted a two-level binomial test for876

each pair of models. At the first level, we tested whether one model significantly better pre-877

dicted more participants’ recalls than another within each story using a one-tailed binomial878

test with a success probability of 0.5, and ↵ = 0.05. Then, for each pairwise comparison,879

we counted the number of stories in which the first-level comparison was significant. Then a880

second-level binomial test was performed to test whether out of the eight stories, obtaining881

k significant stories at the first level was not due to random chance. In other words, at the882

second-level, we performed a one-tailed binomial test with H0 : p = 0.05 and H1 : p > 0.05,883

n = 8, and k = the number of significant stories for that comparison at the first level. Re-884

sults using the two-level test replicated those from collapsing across all participants’ recalls885
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across eight stories.886

4.8 Memory at event boundaries887

We tested whether the uniform sampling hypothesis explains participants’ memory at event888

boundaries. We divided each story into windows of even number of tokens. The beginning889

and ends of each window were then slightly adjusted to the nearest syntax boundaries, so890

that the language model would not produce abnormally high cross entropy due to syntax891

violations. The number of windows of each story equals to 1.5 times the number of events.892

Each window was classified as a boundary window if it contained at least one event boundary,893

or an inner window if not. The multiplying factor 1.5 was chosen to balance the number894

of boundary and inner windows in each story, and to minimize the number of boundary895

windows with more than one event boundary. We estimated I(Xi;R) using each window.896

To test whether event boundaries explain additional variance beyond CRUISE, surprisal-897

weighted sampling, or control predictors, we ran a linear regression to predict the average898

I(Xi;R) across participants. The model contains a target predictor (CRUISE, surprisal-899

weighted sampling, or a control predictor), an interaction term with the categorical variable900

story, and either a dummy variable window type (boundary vs. inner), or an interaction901

between window type and the target predictor, or both. We additionally performed similar902

boundary analysis by dividing the story into windows of equal duration, and reported the903

results in the Supplement Results: Alternative event boundary analysis.904

4.9 Time courses of information properties of event boundaries905

We calculated the speech rate, information rate and surprisal around consensus event bound-906

aries in two ways: either for a fixed time window (-5s to 5s around the boundary), or a fixed907

number of words (5 words before to 5 words after the boundary). Because our consensus908

event boundaries were determined at the word level, for the fixed time window version in909

the main text, we took the midpoint between the o↵set of the last word in the pre-boundary910

event and the onset of the first word in the post-boundary event as the event boundary. We911

then created 500 ms bins, where the right edge of the center bin corresponds to the timing912

of the consensus event boundary. A word is considered to belong to a bin if the midpoint of913

that word is within the bin edges. The speech rate is computed as the number of words in914

the bin divided by bin duration; the information rate is the total cross entropy of all words915

in the bin divided by bin duration; surprisal is the mean cross entropy of all words in the916

bin. We averaged time courses of all event boundaries across 8 stories. For the version with917

a fixed number of words in Fig. S12, event boundary (word index 0) is the last word in the918

pre-boundary event. The speech rate of each word is 1
Onset of the next word-onset of the current word ;919

the surprisal of the word is the sum of cross entropy of all tokens in the word; the information920

rate of each word is Word surprisal
Onset of the next word-onset of the current word .921

4.10 Mutual information within event vs. across an event bound-922

ary923

To calculate the mutual information between two segments within an event or across an event924

boundary, we ablated chunks of text and observed the change in cross entropy of a range of925

future text at a fixed distance bin from the ablated text. Ablations are generated in a sliding926

window manner across the entire story. Target lengths of ablations are 10, 30, 50, 70, 90,927
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110, 130, and 150 tokens. To avoid sub-word ablations yielding superfluous cross entropy,928

we extended the end of each ablation until the ablation respected word boundaries. Each929

token was guaranteed to be ablated at least 10 times, except for the final tokens in the story930

that could not meet the minimum ablation length. For each ablation window, we calculated931

the amount of mutual information between the ablated window and a window of future932

text, operationalized as the change in cross entropy of a range of future tokens post-ablation933

- pre-ablation. A greater di↵erence in cross entropy post-pre ablation indicates that the934

ablated text has greater mutual information with the range of future tokens. Because cross935

entropy has a power-law relationship with the ablation distance, we took k equally spaced936

log bins as the ranges of future tokens for which the change in cross entropy was calculated.937

We separately determined the largest bin edge for each story as the mean consensus event938

length + 1 standard deviation. We showed results with k = 5 log bins in the main text,939

and replicated the results with k = 6, 7, 8. For a pair of ablated text and a range of future940

tokens to qualify for the within-event condition, there needs to be no event boundary from941

the end of the ablation to the end of the range of future tokens. For a pair of ablated text942

and a range of future tokens to qualify for the across one event boundary condition, there943

needs to be exactly one event boundary between the end of the ablation and the start of944

the range of future tokens, while there are no event boundaries within the range of future945

tokens itself. Because semantic relationship emerges over relatively long ranges of text, we946

only compared the di↵erence of mutual information between within-event vs. across an947

event boundary conditions for the 3 farthest log bins out of the k total bins. Moreover,948

to correct for the possibility that cross entropy might be di↵erentially a↵ected by ablations949

due to confounds such as token frequency, we additionally calculated a normalized mutual950

information measure between the ablated text and the window of future text. To do so,951

we normalized the change in cross entropy of each token by the mean cross entropy of that952

token across 301 stories from the Moth Radio Hour. Results across all variations replicated953

those in the main text.954

4.11 Estimation of rate and distortion955

Rate is defined as the number of bits one spent on compressing the stimuli, I(X;R). We956

estimated I(X;R) by calculating the amount of information reduction in the story given the957

recall, I(X;R) = H(X) � H(X|R), see details above. Distortion is operationalized as the958

word-level Levenshtein distance between the recall transcript and the story transcript. The959

word-level Levenshtein distance is calculated by mapping each unique word to a unique char-960

acter, and applying the Python library Polyleven [70]. The Levenshtein distance represents961

the number of single-word edits required to change the recall text to the story text.962

4.12 Simulation of the worst case ↵963

The worst-case ↵ represents the scenario when one has no knowledge of the stimuli, thus964

they could not utilize the shared information to compress the stimuli, and would have to965

attempt to remember the story in a verbatim manner. We simulated the rate-distortion966

curve of this scenario by evaluating the rate and distortion of cumulative recalls, in which967

recalls incrementally include the first 10, 20, 30 words of the story, and so on.968
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4.13 Evaluation of the attention entropy of induction heads969

To model the sampling rate of human recalls, we measured the attention entropy of induction970

heads from recall tokens to the story. An induction head is defined as an attention head that971

looks for previous instances of the current token and attends to the token after the previous972

instance [38]. We independently detected induction heads by concatenating three consecutive973

presentations of a text segment back-to-back [60]. Thus, in the second presentation, an974

induction head would look at the token after the previous instance in the first repetition,975

and in the third presentation, an induction head would look at the corresponding tokens976

in the first and second repetition. We used the beginnings of stories 1, 2, and 3 as three977

separate test stimuli. We then calculated, for each test stimulus and each attention head978

(Llama3-8b-Instruct has 32 layers and 32 heads), the proportion of instances that the head979

displayed the desired induction head behavior. We then averaged the proportions across980

three test stimuli to obtain an induction head score. We selected the attention head with981

the highest induction head score (layer 15, head 30) for further analysis. Code for induction982

head detection is heavily based on TransformerLens [71].983

We then evaluated the attention entropy [37] of the strongest induction head from a recall984

transcript to the story text. We first concatenated the story and the recall transcript. We985

normalized the attention from each recall token to all story tokens so that they sum to 1986

to control for di↵erent amounts of attention to the story versus the recall itself. We next987

calculated the entropy of the normalized attention distribution from the recall token to all988

story tokens. We then averaged these values across all recall tokens to obtain the mean989

attention entropy from recall tokens to story tokens.990

4.14 Recall generation in language models991

We prompted Llama3-8b-inst to “read” the story and generate a recall. We applied the992

Huggingface chat template with the following prompt:993

System prompt: You are a human with limited memory ability. You’re994

going to listen to a story, and your task is to recall the story995

and summarize it in your own words in a verbal recording. Respond996

as if you’re speaking out loud.997

User prompt: Here’s the story: {story text} \nHere’s your recall:998

Because LLM-generated recalls for Story 6 using the above prompt did not reach I(X;R) of999

human recalls, we subsequently prompted the LLM to generate in more detail for Story 6:1000

System prompt: You are a human with limited memory ability. You’re1001

going to listen to a story, and your task is to recall the story1002

in your own words in as much detail as you can in a verbal recording.1003

Respond as if you’re speaking out loud.1004

User prompt: Here’s the story: {story text} \nHere’s your recall:1005

4.15 Attention entropy manipulation1006

To manipulate the degree of gist in the model-generated recalls, we modified the attention1007

entropy from the recall to the story while keeping the attention elsewhere intact. The1008

attention entropy was modified using additive smoothing, while the sum of attention from a1009

recall token to the story remains the same. Let pij be the original attention score from recall1010
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token i to story token j. Let si =
P

k

j=1 pij be the total attention from a recall token i to1011

all story tokens, in which k is the total number of story tokens. Using additive smoothing,1012

we modified the attention from a recall token i to a story token j to be qij =
si(pij+↵)
si+k↵

. The1013

free parameter ↵ 2 R+, which we called the attention temperature, controls the degree of1014

additive smoothing. When ↵ is 0, qij = pij. When ↵ ! 1, qij ! si
k
, and the attention from1015

the recall token i to all story tokens approaches the uniform distribution, thus producing1016

high attention entropy. All attention heads of all layers were manipulated with the same ↵.1017

We then passed the recall generation prompt above to LLMs to generate recalls of the story.1018

4.16 Data availability1019

The data underlying this study will be made publicly available at OSF before publication.1020

4.17 Code availability1021

The code underlying this study is made publicly available at: https://github.com/HuthLab/1022

CRUISE/tree/main.1023
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