

Data Science for Al and Robotics

This is an intermediate course that explores essential data science principles for artificial intelligence and robotics applications.

Course Outline

Week starting on / Module	Module Topic
Week 1	Module 01: The Evolution of Data Science Across Al Paradigms
Week 2	Module 02: Al Data Taxonomy, Sources & Infrastructure
Week 3	Module 03: Data Preprocessing for Machine Learning
Week 4	Module 04: Data Preprocessing for Deep Learning
Week 5	Module 05: Data Preprocessing for Generative AI
Week 6	Module 06: Feature Engineering in ML
Week 7	Module 07: Word Embeddings
Week 8	Module 08: Evaluating and Optimizing ML Models
Week 9	Module 09: Advanced Neural Network Data Handling
Week 10	Module 10: Enterprise Data Pipelines for Al
Week 11	Module 11: Cloud Platforms for Al Implementation
Week 12	Module 12: Data Science for Agentic Al
Week 13	Module 13: Ethical and Responsible Al Data Practices
Week 14	Module 14: Ethical and Responsible Al Data Practices
Week 15	Module 15: Course Wrap up and Review
Week 16	Module 16: Final Exam / Project Due

Course Outline Details

Module 01: The Evolution of Data Science Across Al Paradigms

- Historical Context of Al Evolution: Development from traditional ML to deep learning to generative Al and agent systems
- Five Key Paradigms: Traditional Machine Learning, Deep Learning, Generative Al, Large Language Models, and Agent Thinking
- Comparative Analysis: Data requirements, processing methods, and training approaches across paradigms
- Future Trends and Implications: Emerging developments in AI data science and their potential impact
- Lab: Comparative Data analysis across Al Paradigms

Module 02: Al Data Taxonomy, Sources & Infrastructure

- Data Taxonomy in Al: Structured, semi-structured, and unstructured data types and their applications
- Data Preparation Approaches: Requirements for traditional ML vs. deep learning vs. generative AI
- Sources of Al Training Data: Public datasets, private collections, and synthetic data generation
- Cloud Platforms for Al Data Management: Solutions like Snowflake, AWS, Azure, and Google Cloud Storage
- Lab: Exploring Al Data Sources and Taxonomy

Module 03: Data Preprocessing for Machine Learning

- Data Quality Assessment: Identifying and addressing missing values, outliers, and format issues
- Data Transformation Fundamentals: Scaling, normalization, and encoding techniques
- Feature Selection Introduction: Methods for identifying the most relevant features
- Dimensionality Reduction: PCA, t-SNE, and UMAP techniques for handling highdimensional data
- Lab: Data Quality and Preprocessing Pipeline

Module 04: Data Preprocessing for Deep Learning

- Deep Learning Data Pipeline: Specialized preprocessing requirements for neural networks
- Image Data Preprocessing: Resizing, normalization, augmentation, and feature extraction
- Text Data Preprocessing: Tokenization, stop word removal, and text normalization
- Additional Data Types: Preprocessing for audio, time series, graph, and multimodal data
- Lab: Image Data Preprocessing for Neural Networks

Module 05: Data Preprocessing for Generative Al

- Generative Al Data Requirements: Quality, diversity, and specificity considerations
- Model-Specific Preprocessing: Techniques for GANs, diffusion models, and transformers
- Data Quality and Ethics: Best practices, quality checks, and ethical guidelines
- Data Augmentation Methods: Innovative techniques for generating additional training examples
- Lab: Text Data Preprocessing for Generative Models

Module 06: Feature Engineering in ML

- Feature Engineering Evolution: Changes in approach from traditional ML to deep learning
- Feature Generation Techniques: Transformation, encoding, and feature combination methods
- Feature Analysis and Selection: Evaluating importance, distributions, and relationships
- Feature Stores: Centralized repositories for managing and serving features
- Lab: Feature Engineering for Improved Model Performance

Module 07: Word Embeddings

- Text Representation Fundamentals: Converting words into meaningful vectors
- Sparse Representations: One-hot encoding, Bag of Words, and TF-IDF
- Dense Representations: Word2Vec, GloVe, and FastText
- Contextualized Embeddings: ELMo, BERT, GPT, and specialized embeddings like CLIP
- Lab: Building and Comparing Word Embeddings

Module 08: Evaluating and Optimizing ML Models

- Evaluation Metrics: Accuracy, precision, recall, F1-score, ROC curves, and AUC
- Optimization Techniques: Cross-validation, regularization, and hyperparameter tuning
- Bias-Variance Tradeoff: Understanding and addressing overfitting and underfitting
- Model Comparison and Selection: Techniques for choosing the best model for specific data
- Lab: Model Evaluation and Hyperparameter Tuning

Module 09: Advanced Neural Network Data Handling

- Architecture-Specific Optimization: Data techniques tailored to CNNs, RNNs, and Transformers
- Professional Annotation Systems: Platforms, quality assurance, and semisupervised approaches
- Production-Ready Data Pipelines: Scaling from development to production environments
- Data Debugging and Diagnostics: Identifying and resolving data-related issues in neural networks
- Lab: Optimizing Data Pipelines for CNNs

Module 10: Enterprise Data Pipelines for Al

- Evolution of Al Data Requirements: From experimental to production-scale systems
- Components of Enterprise Data Pipelines: Ingestion, storage, processing, and serving
- Implementation Patterns: Feature engineering pipelines, training data preparation, and deployment
- Workflow Orchestration: Tools and techniques for coordinating complex data workflows
- Lab: Designing an Enterprise Data Pipeline

Module 11: Cloud Platforms for AI Implementation

- Introduction to Cloud for AI: Benefits of cloud computing for AI data management
- Cloud Service Models: laaS, PaaS, and SaaS options for Al data workloads
- Major Cloud Platforms: Microsoft Fabric, AWS, Google Cloud Platform, and Snowflake
- Implementation Strategies: Best practices for leveraging cloud platforms for Al data
- Lab: Deploying a Data Workflow on a Cloud Platform

Module 12: Data Science for Agentic Al

- Data Requirements for Agentic Systems: Contrasting data needs between predictive models and agentic systems
- Environmental State Representation: Structuring and vectorizing state data for agent environments
- Agent Memory Systems: Data structures for episodic experiences and semantic knowledge
- Tool Use and API Data Patterns: Standardized formats for agent-tool interactions
- Agent Feedback Data: Reward signal design, human feedback collection, and performance metrics
- Data Pipeline Design for Agents: Real-time processing considerations and multimodal input handling
- Lab: Data Pipeline for an Agentic Al System

Module 13: Synthetic Data and Data Augmentation

- How synthetic data improves AI training (e.g., GANs for image generation)
- Applications: Robotics (e.g., simulated environments), medical AI, computer vision
- LLMs for data generation: Synthetic text or sensor data
- Hands-on Lab: Generate synthetic data (e.g., images or time-series) for an Al model, such as a robotics simulation
- Lab: Generating Synthetic Data for Robotics Simulation

Module 14: Ethical and Responsible Al Data Practices

- Ethical Foundations in Al Data Science: Key principles and potential harms in data-driven systems
- Bias Detection and Mitigation: Methods for measuring and addressing bias in training data
- Privacy-Preserving Data Science: Techniques including differential privacy, federated learning, and data anonymization
- Data Documentation and Transparency: Creating comprehensive dataset documentation and tracking provenance
- Data Governance Frameworks: Designing systems for responsible data management throughout the Al lifecycle
- Case Studies in Responsible Data Practices: Real-world examples across healthcare, computer vision, and NLP domains

Module 15: Course Review and Wrap-up

- Integrated Data Science Workflow: Connecting preprocessing, feature engineering, and model evaluation
- Advanced Topics Discussion: Emerging trends and future directions in Al data science
- Future Learning Pathways: Resources and directions for continued growth in Al data science

Module 16: Final Submission

Final date for Comprehensive project submission

Teaching Methods and Strategies

Total Course Duration: 96 contact hours; 16 weeks

Weekly Contact Time: 6 hours

Weekly Structure:

o Lecture: 2-3 hours

o Lab: 3-4 hours