
Grids User Guide
info@raven-apps.com

Introduction to the Grids App
Grids by RavenApps allows you to build flexible grids that can be added to lightning pages.

The LWC complement ‘Grids > by RavenApps’ is used to add grids to a lightning page. The
component allows you to show any records and any fields on a page from any part of the
Salesforce database, i.e. not restricted to child or parent relationship records.

Where can you place grids?
1. Record Pages

E.g. such as showing all Contacts on all Accounts within a hierarchy:

2. Lightning App Pages
E.g. showing all your Opportunity Products

3. RavenApps Explorer
This is a tab that allows you to quickly switch between all grid that have ‘Visible on Explorer’
checked true.

1

mailto:info@raven-apps.com

The application has been built to align with the latest Salesforce LWC (Lightning Web
Component) framework so as to align and benefit from future developments from Salesforce.

Grid Wizard Builder
Each Grid is represented by a Salesforce record which must have a SOQL Query and at least 1
Column using JSON (a text-based format for representing structured data) and there are many
additional optional features that can be added in. There is a Grid wizard builder that allows you
to create the SOQL Query and JSON columns using clicks; for some of the more advanced
features entering JSON directly is required and this user guide takes you through the structure
of these with some examples (we also respond very quickly to any questions at
info@raven-apps.com).

Please upgrade to the latest version of Grids to have all features - this
can be done in 2 minutes by following the steps here.

Pro licenses have additional features in Production orgs compared to Basic licenses,
this can be seen here. In sandboxes (after version 4.105) full features are available for
you to test.

2

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
mailto:info@raven-apps.com
https://raven-apps.com/pricing

3

How to install and setup Grids by RavenApps
3 simple steps:

1. Installing the package*:
a. Go to the Salesforce AppExchange Grids page by clicking here
b. Click ‘Get It Now’
c. Choose to Install in Production or in Sandbox
d. Agree to the T&Cs and click ‘Confirm and Install’, you will be prompted to

provide the credentials for this org.
e. Choose to ‘Install for Admins’, ‘Install for All Users’ or ‘Install for Specific Profiles’

then click ‘Install’
2. Adding permissions:

a. In Setup under ‘Installed Packages’ find the Grids package, click ‘Manage
Licenses’ and add users as required.

b. See Permission Set section for optionally adding this for users.
3. Click on the 9 dot waffle button on the top left of the screen and search for the ‘Grids’

application to view Sample Grids and create your own Grids (see How to Build a Grid).

4

https://appexchange.salesforce.com/appxListingDetail?listingId=a0N4V00000FZb3XUAT

How to build a Grid (in 4 steps)
3 Easy Steps:

1. Create the Grid record
2. Add the ‘Grids > by RavenApps’ component to the relevant Lightning page
3. Reference the Grid record in the component
4. Optional: Add additional features to grid

See 1 minute video here running through the above 3 steps for a Related List Grid.

1. Create the Grid Record

Grid Wizard Builder
Go to the ‘Grids’ Object and click ‘New’ for the Grid Wizard to appear. You can create either a
Related List Grid (to be put on a record page) or an Explorer Grid (a stand alone grid).

Related List Grid
Under the Related List Grid you must enter a Related List Object (e.g. Opportunity Line Item)
and then the object / relationship field you wish to place this on (e.g. Opportunity)

After this you select the field you want to appear on the Grid.

Explorer Grid
For the Explorer Grids all fields as above are needed except the ‘Parent Object Field’ is omitted
as Explorer Grids are org wide and not on record pages.

5

https://vimeo.com/866422232

Editing Grids
The Wizard Grid Create allows you to quickly create flexible grids. If you then need to make
additional updates you can do this through editing the Grid records.

Some more details on particular fields are included below:

Actions
Defines which actions are available on the Grid for the user. Standard Salesforce access
permissions are followed so users can only CRED (create, read, edit and delete) as per their
allowed Salesforce access.

Action Description

Delete Record Allows delete of a record through the drop down selection

Mass Delete Allows multiple records to be selected and deleted using the delete icon
at the top right of the page

Download Allows the grid data to be downloaded to csv using the download icon at
the top right of the grid

6

New Record Allows creation of a new record for the main object type at the top right of
the grid

Quick View Allows individual records to be opened to view in a modal from the record
drop down

Quick Edit Allows individual records to be opened to edit in a modal from the record
drop down

Search Includes the search box at the top right of the grid.

Remember you can use the wild cards * and ? to help your search (more
detail here).

Search functionality covers all indexed fields (see Salesforce standard
indexed field here).
For custom fields all of the below field types are automatically indexed
and hence searchable:

● Name
● All custom auto-number fields and custom fields that are set as

an external ID (no need to enter leading zeros)
● All custom fields of type email and phone
● All custom fields of type text, text area, long text area, and rich

text area

Records will be returned if the match is found in the query, even if the
column is not on the page.

Filters Defines if the filter button is available to users. The filters functionality
below will function regardless of if this action is included for the user.

Filters are generally recommended over search as they cover all
matches while Salesforce Search is not always clear what fields it is
searching.

Full Screen This allows users to expand a grid to be full screen by clicking on an icon
at the top right of the grid. This will show on grids created through the
custom component ‘Grids > by RavenApps’ but not on Explorer Tab as
these are already full screen.

Go To Record Allows user to click the drop down arrow and click to go to the record

Sorting Allows the pre-set sorting to be viewed at the top right of the page and
for the user to remove these individually.

Summaries Allows summaries to be displayed at the top of the page (see Summaries
section below)

New Record (Row) Allows new records to be created inline in the grid, all required fields
must be on the grid for this to work. It can be used in conjunction with
New Record Row Defaults to auto populate lookup fields or other fields

7

https://help.salesforce.com/s/articleView?id=000337766&type=1
https://help.salesforce.com/s/articleView?id=sf.search_fields_lex.htm&type=5

Column Settings Allows end users to add, remove and rearrange columns, see more
details here

Clone Allows a line(s) to be cloned on a grid, see more details here

Grid Views Allow end users to create their own grid views, see more details here

Editable Parent Fields Allow parent fields to be edited in the grid, see more details here

These actions appear at the top left of the grid when selected, e.g.

Some actions will not work for some objects due to Salesforce limitations. RavenApps have
selectively enhanced some of these areas and welcome feedback on other areas that are
required (info@raven-apps.com).

2. Add the ‘Grids > by RavenApps’ component to the relevant
Lightning page
For Related List Grids: Drag the ‘Grids > by RavenApps’ LWC into the Lightning App page:

OR

8

mailto:info@raven-apps.com

Use the RavenApps Explorer tab and select the grid you wish to view, only Grids with the
‘Visible on Explorer’ field will be available to select

3. Reference the Grid record in the component
For Related List Grids: Click on the ‘Grids > by RavenApps’ component and add the Grid Id
(this is a field on the Grid record) to the Grid Id box:

Optionally you can also set the visibility settings of the component and link to the Custom
Permission / Permissions Set as detailed below.

4. Optional: Add additional features to grid
There are a number of areas that can be enhanced in a grid after it has been created using the
grid wizard. These can be split into 2 areas:include

● Where an update to the grid record is needed
● Where a formula field needs to be created followed by an update to the grid record to

reference the formula field
The features fall into these 2 areas as below:

Feature Update to Grid record Formula field required

Sorts

9

Filters

Summaries

Parent Field edits

Launch a flow

Grid Views

Column Settings

Clone Row

Conditional Formatting

Completion Bar Columns

Sparklines

Related Child Grids

Dynamic Grids

Default values for inline create

Field Header Icons

Image Cells

Invoke ChatGPT*

*Message us as info@raven-apps.com for access

Query
The SOQL is automatically created by the Grid Wizard but you can subsequently update to add
in extra fields such as parent fields.. All fields referenced in Columns, Sorts, Filter and
Summaries must be included in the SOQL query. The SOQL query can be tested in Workbench
or the developer console to check the query is working correctly.

Columns
Define the Columns in the Grid using JSON. The minimum information for each record should
be Label and FieldName. E.g. for each field
{"label":"Name","fieldName":"record.Name"}

Other details can be included such as Type, Sortable, Editable, initialWidth and Alignment in the
cell (see Appendix 1 for more details). For example:
{"label":"Quantity*","fieldName":"record.Quantity","value":"Quantity","type":"number","sortable":true,"
editable":true,"initialWidth":120,"cellAttributes": { "alignment": "center" }},
{"label":"Subtotal","fieldName":"record.Subtotal","value":"Subtotal","type":"currency","sortable":true,"
editable":false}
In the above example 2 fields will display and each of these fields is separated by a comma
after the curly brackets have closed.

10

mailto:info@raven-apps.com
https://workbench.developerforce.com/login.php?startUrl=%2Fquery.php

Initial Width
By default columns have no initial width so will dynamically expand to the page size. To set an
initial width on a column simply add the below into the columns JSON:
“initialWidth”: 150

Example
{"label":"Quantity*","fieldName":"record.Quantity","value":"Quantity","type":"number","sortable":tr
ue,"editable":true,"initialWidth":150}

Example 2
For ra_textArea field you will need to set both the initialWidth and the width attribute with the
later being slightly less than the former:
{"label":"Description", "fieldName":"record.Description", "value":"Description",
"type":"ra_textArea", "sortable":true,"wrapText":"true", "initialWidth":522,
"typeAttributes": {"rowId": { "fieldName": "record.Id" }, "field":"Description", "height":"50px",
"width":"490px" }}

Read Only / Non editable Columns
To make a column non editable simply use the JSON “editable":false
Example
{"label":"Quantity*","fieldName":"record.Quantity","value":"Quantity","type":"number","editable":false}

For any custom field type (picklist, lookup, name, long text, rich text, etc..) columns if you wish
to make these not editable in the grid then you will need to add the JSON section
"editable":false within the typeAttributes section of the JSON.
Example 2
{"label":"Stage", "fieldName":"record.StageName", "value":"StageName",
"type":"ra_picklist","typeAttributes": {"rowId": { "fieldName": "record.Id"
},"editable":false,"objectDotField": "Opportunity.StageName"}}
Example 3
{"label":"Name","fieldName":"record.Name","value":"Name","type":"ra_name", "sortable":true,
"initialWidth": 200, "typeAttributes": {"rowId": { "fieldName": "record.Id" },"editable":false}}

Sorts
Define the default sorting of the records presented using JSON. It allows multiple sorting, below
is example for sorting Case based on Rating descending then Name ascending:

{"order":1, "label":"Rating: ASC", "field":"Rating", "direction": "asc"},
{"order":2, "label":"Name: ASC", "field":"Name", "direction": "asc"}

You can define at the column level if you want a column to be sortable or not. By default it will be
sortable but you can restricted this by using adding the JSON "sortable":false
E.g.
{"label":"Subtotal","fieldName":"record.Subtotal","value":"Subtotal","type":"currency","sortable":false}

Example
The below grid has 4 pre-sorts and then the end users can remove these or add new sorts:

11

The JSON for the 4 Sorts above is:
{"order":1, "label":"Stage: DESC", "field":"StageName", "direction": "desc"},
{"order":2, "label":"Forecast Category: DESC", "field":"ForecastCategoryName", "direction": "desc"},
{"order":3, "label":"Amount: DESC", "field":"Amount", "direction": "desc"},
{"order":4, "label":"Close Date: DESC", "field":"CloseDate", "direction": "desc"}

Filters
Populate this field with JSON to filter the data before it is presented in the Grid (this is on top of
any filters applied in the Query.
To populate the filter include:

1. Label
2. Field
3. Value
4. Function, options are:

a. =
b. !=
c. >
d. <
e. >=
f. <=
g. Contains

5. Type: options are:
a. Text

i. Supports comma separated filters. E.g. for the Account filter using
“Apple, Google” will return both values (or any other values containing
these if using contain function)

b. picklist
c. datetime
d. date
e. checkbox
f. number
g. currency

Blank filters can be used by setting the value to “” or null so that the filter is then available on
the Grid. E.g.for the these 3 filters
{"order":1,"label":"Name","field":"Name","value":"","function":"contains","type":"text"},

12

{"order":2, "label":"Type","field":"Type","value":null,"function":"contains","type":"text"},
{"order":3, "label":"Industry","field":"Industry","value":null,"function":"contains","type":"text"}
The Grid will display the below when the filter button is clicked on:

Filter logic is automatically set to AND across so that all filters included will all need to be met
for records to be included in the grid. If an OR statement is needed then it is suggested to use a
formula field that includes OR logic and base the filter on this field. E.g. to create a filter on
records created in the last 7 days with priority equal to ‘High’ use this formula field equals
IF(OR(DATEVALUE(CreatedDate) > TODAY() - 7,ISPICKVAL(Priority,"High")),"Yes","No")

Filtering using Variable

Filters can also reference Variables which is useful when wanting the Grid to only display
records with some reference to the current record. E.g. On the Opportunity page you could put
a Grid showing all other opportunities that are selling the same product
{"label":"Product", "field":"Product_Name__c", "value":"sv1", "valueType":"variable",
"function":"=","type":"text"}
Here sv1 would be defined as {"type":"record", "field":"Product_Name__c", "variable":"sv1"}

Records will be returned if the match is found in the query, even if the column is not on the
page.

Filtering by Field Types

Filters support the below field types:
● text:

○ E.g.
{"order":1,"label":"Name","field":"Name","value":"","function":"contains","type":"te
xt"}

● date
○ E.g. {"order":1, "label":"Created

Date","field":"CreatedDate","value":"","function":"=","type":"datetime","valueType"
:"literal"}

● picklist
○ Simply use type of ‘picklist’ and define the picklist by making the objectDotField

reference the picklist you need, e.g.:
■ {"order":1,"label":"Industry","field":"Industry","value":null,

"function":"contains","type":"picklist","objectDotField": "Account.Industry"}

13

○ When using custom objects the objectDotField should use “__c.” notification (not
“__r.”), e.g. for the custom object Bid:

■ {"order":1,"label":"Offer Stage","field":"Offer_Stage__c","value":null,
"function":"=","type":"picklist","objectDotField": "Bid__c.Offer_Stage__c"},

○ You can also pre set picklist values using comma separated values as below for
values Pipeline,Omitted,Best Case,Commit,Closed, e.g.:

■ {"order":2, "label":"Forecast
Category","field":"ForecastCategoryName","value":"Pipeline,Omitted,Best
Case,Commit,Closed","function":"contains","type":"picklist","objectDotFiel
d": "Opportunity.ForecastCategoryName"}

● boolean
○ Simply mark the type as checkbox:
○ E.g. {"order":2, "label":"IsPartner","field":"IsPartner","value":null,

"function":"=","type":"checkbox"}
● number

○ {"order":1, "label":"Employees (> than)","field":"NumberOfEmployees",
"value":0,"function":">","type":"number"}

● currency
○ {"order":2, "label":"ARR (>=)","field":"Amount","value":null,"function":">=",

"type":"currency"}

Filter then appear for example as below:

14

Pre-Filtering by Relative Date Values

When filtering by date you may wish to filter relative to today’s date, e.g. filter by last month.
You can do this using Salesforce standard relative date filters. The full list is here.
Examples would be LAST_MONTH, LAST_90_DAYS, NEXT_N_MONTHS:n etc…

e.g.:
{"order":1, "label":"Created Date","field":"CreatedDate","value":"THIS_QUARTER",
"function":"=","type":"datetime","valueType":"literal"}

Pre-Filtering by Absolute Date Values

You can also filter by absolute values if needed. An example would be:
{"order":1, "label":"Created Date","field":"CreatedDate","value":"", "function":"=","type":"date",
"startDateValue":"2022-06-15", "endDateValue":"2022-12-31"}

15

https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_dateformats.htm

Summaries
Include which fields should be summarized in the Grid using JSON. For each record this must
include the Label, Field, Type and formatStyle. E.,g.
{"label": "Total Price", "field":"TotalPrice", "type": "SUM", "formatStyle": "currency"},
{"label": "Total Quantity", "field":"Quantity", "type": "SUM", "formatStyle": "decimal"}

You can use the following operators for summaries:
● SUM
● COUNT
● COUNT_DISTINCT
● MAX
● MIN
● AVG

If you have a grid with >50,000 rows and you include a summary you will get a ‘Too many query
rows: 50001” error. If you get this error you can either update filters to reduce the query size,
remove summaries all together or reach out to our team to see if there is another solution
(info@raven-apps.com)

Variables
Variables are populated using JSON when the filter or the query needs to reference the current
record (or related records). E.g. when trying to show all Opportunities that have the same
Industry as the current Opportunity’s Account’s Industry then use the variable definition below.
{"type":"record", "field":"Account.Industry", "variable":"sv1"}
Use the variable names ‘sv1’ or ‘sv2’.

You will find a number of Example Grids in the installed Managed Package and there are also
some examples in the appendix of this document.

Show / Hide Row Number and Checkbox Columns
You can choose to show / hide the numbers and checkboxes on the left of the grid using the
fields:

● Show Row Number Column
● Hide Checkbox Column

16

Please note that if any of the columns are editable then the row numbers can not be hidden,
you must ensure each column has "editable":false for the number column to be able to be
hidden

Visible on Explorer
Checking this box allows users to view the Grid using the RavenApps Explorer tab detailed
below. It is advised to only check this box Explorer Grids as Related Lists Grids need a record
to reference.

Add Parent Fields
If you wish to add parent / grandparent fields into a grid then just use the standard Salesforce
syntax for parent field.

Example
For a Contact Grid pull in the Account’s Industry and Customer Priority fields using the below
query:
SELECT FirstName, LastName, Account.Industry, Account.CustomerPriority__c FROM Contact
WHERE AccountId =: sv1
Then the below columns:
{"label":"Industry","fieldName":"record.Account.Industry","value":"Account.Industry","type":"ra_pi
cklist","typeAttributes": {"rowId": { "fieldName": "record.Id" },"objectDotField":
"Account.Industry"},"editable":true,"sortable":true},

{"label":"Customer
Priority","fieldName":"record.Account.CustomerPriority__c","value":"Account.CustomerPriority_
_c","type":"ra_picklist","typeAttributes": {"rowId": { "fieldName": "record.Id" },"objectDotField":
"Account.CustomerPriority__c"},"editable":true,"sortable":true}

Example 2
Or for a custom parent object, project__c, to get a field called start_date__c use
project__r.start_date__c:
SELECT Id, Name, project__r.start_date__c FROM Opportunity

You can also make parent fields editable, see more details here

17

https://www.sfdckid.com/2019/05/salesforce-soql-relationship-queries.html
https://www.sfdckid.com/2019/05/salesforce-soql-relationship-queries.html

Editable Parent Fields
Grids allow you to edit parent fields on a grid. We have a dedicated Action for this called
‘Editable Parent Fields’.

Standard field types

To enable parent field edit for standard field types simply follow the steps below:
1. On the grid record enable the action ‘Editable Parent Fields’ (if you don’t see this option

see below in red):

2. Add the parent field to the grid that you wish to edit using the standard Salesforce
parent field notation. E.g on an opportunity grid to edit the parent account’s employee
use:

a. {"label":"Account: Employees",
"fieldName":"record.Account.NumberOfEmployees",
"value":"Account.NumberOfEmployees","type":"number","sortable":true,"editable
":true, "initialWidth": 200}

3. Add the parent field to the SOQL query:
a. E.g. from above example add in Account.NumberOfEmployees

If a user tries to edit a parent field without having completed step 1 they will get an error
message “No such column 'Account.AnnualRevenue' on sobject of type Contact - (System
Code)”

Custom field types

To enable parent field edit for standard field types simply follow the steps below:
1. On the grid record enable the action ‘Editable Parent Fields’ (if you don’t see this option

see below in red):

2. Add the parent field to the grid that you wish to edit using the standard Salesforce
parent field notation and adding in a “field”. E.g on an opportunity grid to edit the parent
account’s employee use:

a. {"label":"Account: Industry",
"fieldName":"record.Account.Industry","value":"Account.Industry","type":"ra_pickli
st","sortable":true,"editable":true, "initialWidth": 200, "typeAttributes": {"rowId": {
"fieldName": "record.Id" },"objectDotField": "Account.Industry",
"field":"record.Account.Industry"}}

3. Add the parent field to the SOQL query:

18

https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_relationships_understanding.htm?q=child
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_relationships_understanding.htm?q=child
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_relationships_understanding.htm?q=child
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_relationships_understanding.htm?q=child

a. E.g. from above example add in Account.Industry

Example
On the Campaign Member object you may wish to edit parent Contacts email and phone details
without having the user having to open up parent contact records

Limitations

Parent field edit is not available for the following field types:
● Lookup - e.g. if you are on an Opportunity Product grid you can not update the Account

lookup field on the parent Opportunity (you can of course update the lookup fields on the
Opportunity Product Grid).

● Rich text - e.g. if you are on a Case grid you can not edit a rich text field on the parent
Account

● Long Text - e.g. if you are on a Case grid you can not edit a long text field on the parent
Account

● Name - e.g. if you wanted to update the name field for a parent record just use field type
of text instead of ra_name. E.g. on an Opportunity grid you can update the parent
Account’s name by making the field type ‘text’, e.g.:

○ {"label":"Account:Name", "fieldName":"record.Account.Name",
"value":"Account.Name", "type":"text", "sortable":false, "initialWidth": 200,
"editable":true}

To Note

If you installed the Grids App before version 5.2 then to enable ‘Editable Parent Fields’ you
need to follow these quick steps:

● Upgrade your version to 5.02 or newer - see steps here
● In Setup under the Grids object select the Actions field (RavenApps__Actions__c) and

add a new picklist value called ‘Editable Parent Fields’

19

You can now add this Action to any of your Grids

Creating Flows on Grids
You can create flows to run off Grids by building your flow as normal in Salesforce and then
referencing it in the Grid.

Initial Steps

For any flows referenced you will need to add 2 variables (even if these are not used)
● ‘contextId’ - this is used if you want to run the flow off the current record you are on. This

is only relevant for a Related List Grid as you will not have a current record you are on
with a Explorer Grid.

● ‘ids’ - this is used to pass into the flow any records you have selected from the grid by
checking the checkbox for each row.

For both of these remember to check ‘Available for input’ (‘Available for output’ is optional)

Creating Modal Flows on Grids (Pro version only)

The Custom Row action must be populated as below where ‘Create_Contact’ is the Flow API
name:
{
"label": "New Contact",
"name": "invoke_flow",
"flowApiName":"Create_Contact",
"url": "/flow/Create_Contact?varRecordId={!record.id}"
}

20

Creating new tab Flows on Grids (Free version only)

The Custom Row action must be populated as below where ‘Test_Flow’ is the Flow API name:
{
"label": "Create Case (Flow)",
"name": "invoke_flow",
"url": "/flow/Test_Flow?varRecordId={!record.id}"
}

The button then appears on the record drop downs:

21

Here is an example gif showing a screen flow being started from a grid that create a case on an
Account:

Creating Custom Header/Mass Actions Flows

Creating Mass Actions using Flows (Pro version only)

The Custom Header/Mass Actions allows you to create flows based off the rows selected in the
grid. See example below:

To implement this simply populate the Grid records field ‘Custom Header/Mass Actions’ with a
reference to an existing flow. The grid will show a button which you can customize the label for:

22

JSON for above example:
{
"label":" Commercial & Technical QA",
"flowApiName":"Opp_Product_Mass_Flow"
}
This JSON is entered into the Custom Header/Mass Actions (if this is missing then please
check it is on the page layout and update as needed. If still missing then please update your
version of Grids to the newest version).

For any flows referenced you will need to add a Variable called ContextId (even if it is not used).
Remember to check ‘Available for input’:

Creating Custom Header Flows (Pro version only)

Custom Headers are buttons on a flow that links to a flow independent of the Grid itself. An
example would be you want to direct users to a flow off a grid but don’t want to reference any of
the records in the grid. The syntax is the same as the Mass Action Flow:
{
"label":"TBC",
"flowApiName":"TBC"
}
This JSON is entered into the Custom Header/Mass Actions (if this is missing then please
check it is on the page layout and update as needed. If still missing then please update your
version of Grids to the newest version)

23

FYI: You will have to reference the record id in the referenced flow but do not need to use it.

Grid Views
Grid Views allow the end user to be able to update the filters and sorting of a grid and save
view so they and others can use this view in the future.

4 steps to implement Grid Views
1. Add the Action ‘Grid Views’ to any Grid.
2. Add Grid Views related list to the Page Layout
3. Optional: If you want your end users to be able to create and or Grid View you will need

to ensure they have permission to do this. The RavenGrids Create and Edit Users
permission set can be used or you can configure your own permissions.

4. Optional: If you installed before version 5.9 then follow the steps below in red

Example 1: Creating a Grid View
In the below ‘Grid Views’ has been enabled so the user can update the filters and the sorts and
then save their view for future use by themselves and others

Example 2: Updating a Grid View
Click on a Grid view then update the filters and sorts and then click Update:

24

Please note you can not update a Primary Grid from this drop down, only the Grid View.

Example 3: Renaming a Grid View
Click on a Grid view then click Rename and enter a new name:

Please note you can not rename a Primary Grid from this drop down, only the Grid View.

Example 4: Inactivating a Grid View
Click on a Grid view then click Inactivate:

This will make the Grid record inactive so can no longer be seen in a view or any other screen
until made active again.

Please note you can not inactivate a Primary Grid from this drop down, only the Grid View.

Notes on Grid Views
● A Grid either has Grid Views enabled or it doesn’t. If enabled the drop down will appear

to view existing Grids and create new ones.
● If Grid Views action is enabled all users will see the drop down so can select to view a

grid. Only users that have permissions to create a Grid__c record can create a Grid.
● In the backend the Grid View is a new Grid_c record that has the ‘Primary Grid’ field

(‘RavenApps__Primary_Grid__c’) populated with the original Grid. There can only be 2
levels, so if a Grid View is created off an existing Grid View the Primary Grid will be the
first Grid Views Primary Grid.

● On the original Grid you can see all associated Grid views and these will all be visible on
the Grid:

25

● At present you can save Sorts and Filters, more features coming soon and can be fast
tracked upon request (info@raven-apps.com)

To Note: If you installed the Grids App before version 5.9 then to enable ‘Grid Views’ you need
to follow these quick steps:

● Upgrade your version to 5.9 or newer - see steps here
● In Setup under the Grids object select the Actions field (RavenApps__Actions__c) and

add a new picklist value called ‘Grid Views’
● On the Grid Object click on the ‘Customer’ page layout and add:

○ the ‘Primary Grid’ field to the page
○ ‘Grid Views’ related list to the page

You can now add this Action to any of your Grids

Column Settings
If you wish to grant your users the ability to update grid columns themselves then you can do
this using the ‘Column Settings’ action on the grid. The user then clicks on the settings tab on
the top right of the grid to dynamically add, remove and move columns in the grid:

26

mailto:info@raven-apps.com

This functionality is dynamic for each user and resets on refresh of the page or the grid.

To enable Column Settings on a grid simply:
● On the Grid record click on the action field and add the ‘Column Settings’ action (if you

do not see this option then please see below).

To Note: If you installed the Grids App before version 4.98 then to enable ‘Column Settings’ you
need to follow these quick steps:

● Upgrade your version to 4.98 or newer - see steps here
● In Setup under the Grids object select the Actions field (RavenApps__Actions__c) and

add a new picklist value called ‘Column Settings’
● Optional: If you are using the upload column type ("type": "ra_fileUpload") then ensure

that it contains “value”:”upload”
You can now add this Action to any of your Grids

Clone rows
Allow users to clone Grids Rows by added the Clone button to the Grids:

27

Please note this functionality clones the visible data on the row it does not clone other fields. If
you would like other fields to also be cloned then please reach out to us at
info@raven-apps.com

To enable Clone rows on a grid simply:
● On the Grid record click on the action field and add the ‘Clone’ action (if you do not see

this option then please see below).

To Note: If you installed the Grids App before version 4.104 then to enable ‘Clone’ you need to
follow these quick steps:

● Upgrade your version to 4.104 or newer - see steps here
● In Setup under the Grids object select the Actions field (RavenApps__Actions__c) and

add a new picklist value called ‘Clone’
You can now add this Action to any of your Grids

28

Conditional Formatting
This can be done in 3 easy steps:

1. Create a formula field to logically give the conditional outcomes required and use the
colors and text styles sizes:

a. Background colors
b. Text Styles / Sizes

2. Add the below JSON referring the formula field to any column where we want the
conditional formatting to be:

a. "cellAttributes": {"class": { "fieldName": "record.NEW_FORMULA_FIELD__c" }}
3. Add the new formula field to the SOQL query

For color references see here
● e.g. ‘slds-icon-standard-voice-call’ gives a green background with black text

For text style reference see here, e.g
● slds-text-title_bold gives bold text
● slds-text-color_default gives black text
● slds-text-color_success gives green text
● slds-text-color_weak gives gray text
● slds-text-color_error gives red text
● slds-text-color_destructive gives dark red text
● slds-text-color_inverse gives text inverse to the background color
● slds-text-color_inverse-weak gives text weak inverse to the background color

Example 1: Opportunity Close Date
This grid provides background color on the Close Date column if:

A. the Opportunity is open, AND
B. The close date is in the past (red) or in the next 14 days (yellow)

3 steps to create:
1. Create new formula field (Close_Date_in_Past_Color__c)

29

https://codepen.io/gale-force-wizard/pen/GRrdbLP
https://codepen.io/gale-force-wizard/pen/GRrdbLP
https://codepen.io/gale-force-wizard/pen/GRrdbLP
https://www.lightningdesignsystem.com/utilities/text/

IF(AND(CloseDate <TODAY(),IsClosed =FALSE), "slds-icon-standard-quip
slds-text-color_default slds-text-title_bold",
IF(AND(CloseDate <(TODAY()+14),IsClosed =FALSE), "slds-icon-custom-custom4
slds-text-color_default",
""))

2. Add JSON into relevant column(s): "cellAttributes": {"class": { "fieldName":
"record.Close_Date_in_Past_Color__c" }}

e.g.:
{"label":"Close
Date","fieldName":"record.CloseDate","value":"CloseDate","type":"date-local","sortable":true,"ed
itable":true, "initialWidth": 125, "cellAttributes": {"class": { "fieldName":
"record.Close_Date_in_Past_Color__c" }}},

3. Add ‘Close_Date_in_Past_Color__c’ to the SOQL query

Example 2: Case Priority
This Grid highlights priority in a traffic light system:

3 steps to create:
1. Create new formula field (PriorityBackgroundColor__c)

IF(ISPICKVAL(Priority, "High"), "slds-icon-custom-custom15 slds-text-color_default",
IF(ISPICKVAL(Priority, "Medium"), "slds-icon-custom-custom110 slds-text-color_default",
IF(ISPICKVAL(Priority, "Low"), "slds-icon-standard-voice-call", "")
))

2. Add JSON into relevant column(s): "cellAttributes": {"class": { "fieldName":
"record.PriorityBackgroundColor__c" }}

E.g. full column JSON becomes
{"label":"Priority","fieldName":"record.Priority","value":"Priority","type":"ra_picklist","sortable":true
,"editable":true, "initialWidth": 200,
"typeAttributes": {"rowId": { "fieldName": "record.Id" },"objectDotField": "Case.Priority"},
"cellAttributes": {"class": { "fieldName": "record.PriorityBackgroundColor__c" }}},

30

3. Add ‘Close_Date_in_Past_Color__c’ to the SOQL query

Example 3: Grids with multiple conditional formatting columns
This grid has multiple conditional formatting elements, E.g.

- the Amount text sizes are based on the values of the numbers with large values having
bigger text

- Close date is bold and red background when Opportunity is not closed and close date is
in past

- Lead Source values have colors dependent on the Lead Source and Web is bold
- Stage values have colors dependent on the Stage

Update a date to be in the future removes the red highlight conditional formatting

Completion Bar Columns
Example 1
If you wish to include a completion bar in your Grid you can do this by

1. Create a formula field (Probability_Bar__c)
a. IMAGE("/img/samples/color_green.gif","green",10,100*Probability) &

IMAGE("/img/samples/color_red.gif","red",10, 100-100*Probability) & " " &
TEXT(100*Probability) & "%"

2. Add a Column for the completion bar
a. {"label":"Probability Bar", "fieldName":"record.Probability_Bar__c",

"value":"Probability_Bar__c", "type":"ra_formulaImage", "sortable":false,
"initialWidth": 200, "editable":false,
"typeAttributes": {"rowId": { "fieldName": "record.Id"},
"field":"Probability_Bar__c"}}

adding a formula field to object and then adding a column, this appears as the column on the
right below:

31

In the above:
● ‘10’ in each image indicates the height of the bar, if you wish to have say the red section

thinner then update the value to 5 in the second image
● The colors defines the color of the bar, you can update to any of the below:

○ /img/samples/color_red.gif
○ /img/samples/color_yellow.gif
○ /img/samples/color_green.gif

● The field is multiplied by 100 to extend the bar to full width, you can reduce this number
if you want the bar to be smaller horizontally.

● The TEXT part at the end is optional to include the text value of the amount.

Example 2
1. Create a formula field (Probability_Bar__c)

IF(NumberOfEmployees
<100,IMAGE("/img/samples/color_red.gif","red",10,NumberOfEmployees/100),

IF(NumberOfEmployees <1000,
IMAGE("/img/samples/color_yellow.gif","yellow",10,NumberOfEmployees/100),

IMAGE("/img/samples/color_green.gif","green",10,NumberOfEmployees/100)))
2. Add a Column for the completion bar

a. {"label":"Employees", "fieldName":"record.Employees_Bar__c",
"value":"Employees_Bar__c", "type":"ra_formulaImage", "sortable":false,
"initialWidth": 200, "editable":false,
"typeAttributes": {"rowId": { "fieldName": "record.Id"},
"field":"Employees_Bar__c"}}

32

Sparklines
Sparklines can be created to show the trend of a value on a record over time.

E.g. in the example below the Total Price changes over time are represented to show trends /
negotiation status.

To create a Sparkline column you will need to:
1. Create a text field on the object that stores historic changes

a. E.g. Price_History__c
2. Create a formula field references the above field

a. E.g. Price_History_Sparkline__c
b. IMAGE('https://quickchart.io/chart?c={ type: "sparkline", data: { datasets:

[{backgroundColor: "rgb(33, 160, 223)", data: ['+Price_History__c+']}] }}', 'score
progression', 20, 100)

3. Add a JSON column into the Grid which references the formula field:

33

a. {"label":"Total Price History", "fieldName":"record.Price_History_Sparkline__c",
"value":"Price_History_Sparkline__c", "type":"ra_formulaImage", "sortable":false,
"initialWidth": 200, "editable":false,
"typeAttributes": {"rowId": { "fieldName": "record.Id"},
"field":"Price_History_Sparkline__c"}}

4. Create a before flow (or similar) to update the text field to store the latest value, you can
see an example here

You can also add a flow to mass update the values on selected rows - see the Creating Flows
on Grids section for more details.

The flow that is used on the above is here and is called ‘Opp_Product_Sale_Price_update’.
This flow button is put on the grid by populating the ‘Custom Header/Mass Action’ field with:
{"label":"Sale Price % update","flowApiName":"Opp_Product_Sale_Price_update",
"params":"ids"}

Related Child Grids
Having grids open within other grids can be done by utilizing the 'Related Grids’. Simple
reference the grids you wish to link to the existing grid, e.g.
{"gridId":"a008d000003fA5PAAU","sectionLabel":"Contacts"},
{"gridId":"a008d000003fA5eAAE","sectionLabel":"Opportunities"}

You will also have to add a column of type “button-icon” with JSON as below:
{"label":"Related", "fieldName":"related",
"type":"button-icon","initialWidth":75,"value":"Related","typeAttributes":{"name":"ra_viewRelated"
,"iconName":"action:preview","variant":"border-filled","alternativeText":"View Related"}}

34

https://docs.google.com/document/d/1FCdV4wclE84bJiD7eglfHyBwZcj4AoBd_1JzW6gzV5g/edit
https://docs.google.com/document/d/1I8MEL9EQNlNz0T2524wQrllDvUvJbzrcy36AzVHM1mY/edit

Ensure that the grids you are referencing have a variable which relates them to the parent
record. E.g. for the above Contact related grid the query is
SELECT Id, FirstName, LastName, Title, AccountId, Account.Name, Email, Phone, Department FROM
Contact WHERE Accountid =: sv1
And the Variables is:
{"type":"record", "field":"id", "variable":"sv1"}

Decimal Places

Columns

To manage decimal places in columns use the JSON format:
“typeAttributes": { "maximumFractionDigits": "4"}
The above example would display 4 decimal places (you will need the Salesforce field to have 4
decimal points set in the field definition).

E.g. define a column as below:
{"label":"Price",
"fieldName":"record.Price__c","value":"Price__c","type":"currency","sortable":true,"editable":true,
"initialWidth": 150, "typeAttributes": { "maximumFractionDigits": "4"}}

35

https://account.name/

Summaries

To manage decimal places in summaries use the JSON format:
"maximumFractionDigits": "0"
The above example would display 0 decimal places

E.g.:
{"label": "Annual Revenue", "field":"AnnualRevenue", "type": "SUM", "formatStyle":
"currency","maximumFractionDigits": "0"}

Smart Links
When you click a hyperlink on a grid by default it will open the record in a new browser tab. If
you wish to open in a different way you can add the below to a column:

JSON Outcome on click:

"target":"_self" Opens a new workspace tab or subtab in console apps, depending on the
user’s context. Opens in the same tab in apps with standard navigation.

"target":"_workspaceTab" Opens a new workspace tab in console apps. Opens a new browser tab in
apps with standard navigation.

"target":"_subtab" Opens a new tab in console apps. Opens in the same tab in apps with
standard navigation.

For more details see Salesforce documentation here.

Smart links work for both ra_name and ra_lookup field type.

Example JSON for a column would be:
{"label":"Quote", "fieldName":"record.Name", "value":"Name", "type":"ra_name", "editable":false,
"sortable":true, "wrapText":true,
"typeAttributes": {"rowId": { "fieldName": "record.Id" }, "target":"_self"},"initialWidth":300}

Dynamic Grids
You may want a grid to show the user values specific to them, i.e. dynamic grids. This can be
done by adding at the end of the query USING SCOPE mine
For example if you wanted a Opportunity grid to only show the user their Opportunities you
could use the below query:
SELECT Name, Owner.Name, Account.Name, Amount, ExpectedRevenue, CloseDate,
Probability, StageName FROM Opportunity USING SCOPE mine

You can also show your teams, your territories, delegated records etc… by replacing ‘mine’
above with one of the options below:

● delegated: Records delegated to other users. For example, a task that we have
delegated to another person.

● everything: All records. It is the same as not including the SCOPE clause.
● mine: Only the records of the user who is executing the query.

36

https://help.salesforce.com/s/articleView?id=sf.knowledge_smart_link_targets.htm&type=5
https://record.name/
https://record.id/

● mine_and_my_groups: This filter only applies to the ProcessInstanceWorkItem object of
the Approval Process. It will return only the records assigned to us or to one of the
members.

● my_territory: It will only be available if we have territory management enabled. It will
show us only the records of the territory of the user that is executing the query.

● my_team_territory: It will only be available if we have territory management enabled. It
will show us only the records of the territory of the user that is executing the query or of
one of the user’s team.

● scopingRule: It will only be available if we have activated some Scoping Rule on the
object that we are consulting. It will only show us the records defined in the Scoping
Rule that applies to the user that is executing the query.

● team: This Grid shows all records owned by you or owned by users below you in the
role hierarchy.

More details on advanced queries can be found here

E.g. The below example has the ‘All Opps on Account’ Grid with all 6 Opps and the second grid
‘My Opportunities’ shows just the current user's Opportunities.

Default values for inline create
If you wish to set a default value in a Grid then you can populate the field ‘New Record Row
Defaults’ with the field and value you want the grid to default with. The format for this is:
{"field":"Type", "type": "value", "value":"New Customer"}

If a field is defaulted within Salesforce standard functionality it will default to this value if it is not
on the grid otherwise you should add a ‘New Record Row Defaults’ as above. If a field is
required and has a default you do not need to add it to the grid to create the record, it will
default on inline create save.

37

https://medium.com/@sfdcjedi/advanced-queries-in-salesforce-part-1-cce4b75daa2

Example
Having the below in the ‘New Record Row Defaults’ fields will make these 4 values default as in
below gif
{"field":"Type", "type": "value", "value":"New Customer"},
{"field":"TotalOpportunityQuantity", "type": "value", "value":1},
{"field":"Amount", "type": "value", "value":10000},
{"field":"StageName", "type": "value", "value":"Qualification"}

For Related List Grids the parent default field can also be automated, this will be done
automatically when using the Grid builder. For reference it will populated the ‘New Record Row
Defaults’ with 2 variables that refer to the parent record, e.g. if the Account is the parent it will
use:
{"field":"AccountId", "type": "variable", "value":"sv1"},
{"field":"Account.Name", "type": "variable", "value":"sv2"}

Example:

Field Header Icons
You can replace column headers with icons using the icon library here. You just need to add the
below into the JSON (here the icon favorite is used)
"iconName": "utility:favorite"

Example 1
You can use field header icons to indicate which columns are editable to end users

38

https://www.lightningdesignsystem.com/icons/

The JSON for the above has the below added in for each column:
Opportunity Name column: "iconName": "standard:opportunity"
Stage column: "iconName": "standard:stage"
Close Date column: "iconName": "standard:key_dates"
Amount column: "iconName": "standard:number_input"
Owner column: "iconName": "standard:user"

Example 2
You can use field header icons to replace field names:

The JSON column for the above is below simply required adding the iconName and leaving the
label blank:
{"label":"","fieldName":"record.Focus__c","value":"Focus__c","type":"boolean","sortable":true,"in
itialWidth":70,"editable":true, "iconName": "utility:favorite"}

If you populate the label and the iconName you will get both the icon and the label as in
Example 1.

Image Cells
There are 4 ways to display images in formula fields, we recommend using the first method
but have included all options for completeness:

1. Reference the Lightning Design System Icons
2. Using Salesforce Sample images
3. Using Salesforce Graphics Pack from AppExchange
4. Loading Custom Images

1. Reference the Lightning Design System Icons

The Lightning Design System Icons give ~1,000 icons that can be used on your Grids:

39

https://www.lightningdesignsystem.com/icons/
https://appexchange.salesforce.com/appxListingDetail?listingId=a0N30000004cfIcEAI&tab=d
https://www.lightningdesignsystem.com/icons/

To create dynamic image cell using the LDS Icons follow the below 3 steps:
1. Create a formula field (text) IMAGE_FORMULA_FIELD using the Lightning Design

System Icons and the format Icon_Area:Icon_Name, e.g.
a. IF (CONDITION STATEMENT, "Icon_Area:Icon_Name",

"Icon_Area:Icon_Name")
2. Add this formula field as a column:

a. {"label":"LABEL", "type":"text", "sortable":true,"cellAttributes":
{"iconName":{"fieldName": "record.IMAGE_FORMULA_FIELD"}}},

3. Include the formula field IMAGE_FORMULA_FIELD in the SOQL query on the Grid
record.

Example
1. Created formula field ‘SLA_Status__c’:

a. IF(Planned_Date__c <NOW(), "action:close", "action:approval")
2. Create JSON Column:

a. {"label":"SLA Status", "type":"text", "sortable":true,"cellAttributes":
{"iconName":{"fieldName": "record.SLA_Status__c"}}}

3. Include the formula field IMAGE_FORMULA_FIELD in the SOQL query on the Grid
record.

This gives the SLA status column as below:

2. Salesforce Sample Images

You can reference Salesforce sample images:
● Lightning Images can be found here (at bottom):

40

https://www.lightningdesignsystem.com/icons/
https://www.lightningdesignsystem.com/icons/
https://www.xbaf.com/salesforce-icons

:
● Classic images are here, e.g.:

To create create a dynamic image cell using Salesforce sample images follow the 3 steps
below:

1. Create a formula field using the referenced images above, e.g.
a. IF(CONDITION STATEMENT,

IMAGE("/img/icon/t4v35/utility/close_120.png","SLA", 16,16),
IMAGE("/img/icon/t4v35/utility/check_120.png","SLA", 16,16))

2. Add this formula field as a column:
a. {"label":"LABEL", "fieldName":"record.IMAGE_FORMULA_FIELD",

"value":"IMAGE_FORMULA_FIELD", "type":"ra_formulaImage", "sortable":false,
"initialWidth": 200, "editable":false, "typeAttributes": {"rowId": { "fieldName":
"record.Id"}, "field":"IMAGE_FORMULA_FIELD"}}

3. Include the formula field IMAGE_FORMULA_FIELD in the SOQL query on the Grid
record.

Example

1. Create formula field ‘SLA_Status__c’ from the images here:
a. IF(Planned_Date__c <NOW(),

IMAGE("/img/icon/t4v35/utility/close_120.png","SLA", 16,16),
IMAGE("/img/icon/t4v35/utility/check_120.png","SLA", 16,16))

2. Created the column in the grid record:
a. {"label":"SLA Status", "fieldName":"record.SLA_Status__c",

"value":"SLA_Status__c", "type":"ra_formulaImage", "sortable":false,

41

https://christiernan.medium.com/where-to-find-those-salesforce-stock-images-8692c6ade268
https://www.xbaf.com/salesforce-icons

"initialWidth": 200, "editable":false, "typeAttributes": {"rowId": { "fieldName":
"record.Id"}, "field":"SLA_Status__c"}},

3. Add the field SLA_Status__c into the SOQL query

This gives the SLA status column as below:

3. Salesforce Graphics Pack

Salesforce Labs has provided a Graphics Pack that you can download for free here.

To create create a dynamic image cell using Salesforce sample images follow the 3 steps
below:

1. Create a formula field using the referenced images above, e.g.
a. IF(CONDITION STATEMENT,

IMAGE("/resource/1699269579000/GraphicsPackNew/silk/16/silk/cross.png","",
20,20),
IMAGE("/resource/1699269579000/GraphicsPackNew/silk/16/silk/tick.png","",
20,20))

2. Add this formula field as a column:
a. {"label":"LABEL", "fieldName":"record.IMAGE_FORMULA_FIELD",

"value":"IMAGE_FORMULA_FIELD", "type":"ra_formulaImage", "sortable":false,
"initialWidth": 200, "editable":false, "typeAttributes": {"rowId": { "fieldName":
"record.Id"}, "field":"IMAGE_FORMULA_FIELD"}}

3. Include the formula field IMAGE_FORMULA_FIELD in the SOQL query on the Grid
record.

You can follow the steps here

Example 1
1. Create formula field ‘SLA_Status__c’ from the images here:

a. IF(Planned_Date__c <NOW(),
IMAGE("/resource/1699269579000/GraphicsPackNew/silk/16/silk/cross.png","",
20,20),

42

https://appexchange.salesforce.com/appxListingDetail?listingId=a0N30000004cfIcEAI&tab=r
https://www.salesforceben.com/use-images-in-salesforce-formula-fields-to-spice-up-your-org/
https://www.xbaf.com/salesforce-icons

IMAGE("/resource/1699269579000/GraphicsPackNew/silk/16/silk/tick.png","",
20,20))

2. Created the column in the grid record:
a. {"label":"SLA Status", "fieldName":"record.SLA_Status__c",

"value":"SLA_Status__c", "type":"ra_formulaImage", "sortable":false,
"initialWidth": 200, "editable":false, "typeAttributes": {"rowId": { "fieldName":
"record.Id"}, "field":"SLA_Status__c"}},

3. Add the field SLA_Status__c into the SOQL query

This gives the SLA status column as below:

4. Loading Custom Images

You can load custom images and use these in formula fields by following the steps here.
Remember that the File url used below in yellow highlight is for the ContentDocumentVersion.

To create create a dynamic image cell using Salesforce sample images follow the 3 steps
below:

1. Upload an image to Salesforce Files and find the ContentVersion record’s id using Dev
Console / Workbench SELECT Id FROM ContentVersion WHERE ContentDocumentId
= 'ID of File just loaded’

2. Create a formula field using the referenced file , e.g.
a. IF(CONDITION STATEMENT,

IMAGE("/resource/1699269579000/GraphicsPackNew/silk/16/silk/cross.png","",
20,20),
IMAGE("/resource/1699269579000/GraphicsPackNew/silk/16/silk/tick.png","",
20,20))

3. Add this formula field as a column:
a. {"label":"LABEL", "fieldName":"record.IMAGE_FORMULA_FIELD",

"value":"IMAGE_FORMULA_FIELD", "type":"ra_formulaImage", "sortable":false,
"initialWidth": 200, "editable":false, "typeAttributes": {"rowId": { "fieldName":
"record.Id"}, "field":"IMAGE_FORMULA_FIELD"}}

4. Include the formula field IMAGE_FORMULA_FIELD in the SOQL query on the Grid
record.

43

https://help.salesforce.com/s/articleView?id=000385501&type=1

Example
1. Create formula field ‘SLA_Status__c’ from the images here:

a. IF(Planned_Date__c <NOW(),
IMAGE("/sfc/servlet.shepherd/version/download/0688e00000CuaWRAAZ","",
16,16),"", 20,20),
IMAGE("/sfc/servlet.shepherd/version/download/0688e00000CuaWRAAZ","",
16,16))

2. Created the column in the grid record:
a. {"label":"SLA Status", "fieldName":"record.SLA_Status__c",

"value":"SLA_Status__c", "type":"ra_formulaImage", "sortable":false,
"initialWidth": 200, "editable":false, "typeAttributes": {"rowId": { "fieldName":
"record.Id"}, "field":"SLA_Status__c"}},

3. Add the field SLA_Status__c into the SOQL query

This gives the SLA status column as below:

Working with Junction Objects
When working with junction objects always select the junction object as the Related List object.
Then select the Parent Object Field as the parent you want to put this grid on, if you want to put
a grid on both parents then this will be 2 separate grids.

For example if you want the Account Contact Relationship grid on the Account as below:

44

https://www.xbaf.com/salesforce-icons

Then create the Grid on Account and see the Grid detail here.

Working with Record Types
If you wish to use record types on a grid then there are a few ways to do this as described below.

Display Record Type
If you simply need to display a record type on a grid then follow the 2 steps below:

1. Add the below column to the grid which is a read only column to show the record type on the
grid

a. {"label":"Record Type", "fieldName":"record.RecordTypeId", "value":"RecordTypeId",
"type":"ra_lookup", "sortable":true, "initialWidth": 250, "typeAttributes": {"rowId": {
"fieldName": "record.Id" }, "object": "RecordType", "icon": "standard:record_lookup",
"label": "RecordType", "valueName":{ "fieldName": "record.RecordType.Name" },
"field":"RecordTypeId", "editable":false}}

2. Add the below to the SOQL query:
a. RecordTypeId, RecordType.Name

Display and edit Record Type
If you wish to have an editable record type on the grid then follow the 2 steps below:

1. Add the below column to the grid which allows the end user to edit the Record Type:
a. {"label":"Record Type", "fieldName":"record.RecordTypeId", "value":"RecordTypeId",

"type":"ra_lookup", "sortable":true, "initialWidth": 250, "typeAttributes": {"rowId": {
"fieldName": "record.Id" }, "object": "RecordType", "icon": "standard:record_lookup",
"label": "RecordType", "valueName":{ "fieldName": "record.RecordType.Name" },
"field":"RecordTypeId", "editable":true, "more":{"whereFilter": "Name IN ('Standard',
'Finance’)"}}}

i. The text in yellow should be updated with the record types you wish to be
allowed to be selected on the grid. If you want all values for that object that
place all values in the yellow text.

2. Add the below to the SOQL query:
a. RecordTypeId, RecordType.Name

This will appear as below:

45

Default Record Types
If you wish to auto populate the record type then follow the steps below:

1. Place a grid column on the grid as per 1 of the example above.
2. Populate the ‘New Record Row Defaults’ field with:

a. {"field":"RecordType.Name", "type": "value", "value":"Standard"},
{"field":"RecordTypeId", "type": "value", "value":"0128d000000c2gzAAA"}

i. The text in yellow represents the Record Type and RecordTypeId to default to

46

Permission Sets
Grids and Usage Insight Objects have Public Read access for the Org.

RavenApps consists of 3 permissions sets:

Permission Set Aimed at

RavenGrids Admin User Full system admin privileges to create, edit and delete grids

RavenGrids Create and Edit Users End users who will be using grids and be able to use all
functionality of grids.

RavenGrids View User End users who will be using grids but not creating or editing any
themselves.
They will have the ability to use all features on the grids (inline
edit, filters, sorts, search etc…) except for Grid Views where
create and / or edit functionality is needed

Grid Object permissions
Each grid is represented by a Grid object record and the object permissions for each
permission set are:

Permission Set Read Edit Create Delete View All Modify All

RavenGrids Admin User ✅ ✅ ✅ ✅ ✅ ✅

RavenGrids Create and Edit Users ✅ ✅ ✅ ❌ ❌ ❌

RavenGrids View User ✅ ❌ ❌ ❌ ❌ ❌

New permission sets can be created if needed.

Usage Insights Object permissions
The Usage Insight Object is where interactions with Grids are recorded automatically,
you can see more details in the Usage Insight section. The object permission for each
permission set are:

Permission Set Read Edit Create Delete View All Modify All

RavenGrids Admin User ✅ ✅ ✅ ✅ ✅ ✅

RavenGrids Create and Edit Users ✅ ❌ ❌ ❌ ❌ ❌

RavenGrids View User ✅ ❌ ❌ ❌ ❌ ❌

47

Custom Permission: RavenApps - Grids Viewer
All the permission sets contain a custom permission called ‘RavenApps - Grids Viewer’
which can be used to set Grid components dynamic visibility so user without Grids
access don’t see components they don’t have access to. This can be set up on the
each Grids component Lightning page as below:

CRED Permissions on Grid records
The permissions for what objects, records and fields a user can read, edit, create and
delete are aligned with Salesforce permissions. Grids also has a number of ways to set
whether a grid can have read, edit, create, delete. Both the Salesforce permissions
AND the Grid setup must be enabled for an end user to have the permission to read,
create, edit or delete.

Grid permissions
Grids permissions that affect the CRED of the records in the grid:

● Column editable
● Actions:

○ Delete Record
○ Mass Delete
○ New Record
○ New Record (Row)
○ Quick Edit

48

○ Clone
○ Editable Parent Fields

Examples: Object Permissions
● If a user does not have object read permissions then a grid for that object will

return blank for that user.
● If a user does not have object create permissions then for a grid of this object the

user will not be able to create new records, even if a New Record action is
enabled for the grid.

● If a user does not have object edit permissions then for a grid of this object the
user will not be able to edit records, even if the columns are editable.

● If a user does not have object delete permissions then for a grid of this object the
user will not be able to delete records, even if a Delete Record action or Mass
Delete action are enabled for the grid.

Examples: FLS
● If a user does not have FLS (field level security) permissions for a field that is on

a Grid the Grid will work as normal but the column for that field will not appear for
that user

○ For another user that has FLS view permissions they will be able to view
the field, but they won’t be able to edit it even of the column is marked as
editable.

○ For another user that has FLS view and edit permissions they will be able
to view and edit the field, as long as the column is marked as editable. If it
is not marked as editable they will not be able to edit the field on the grid

49

Usage Insights
To measure the usage of each grid everytime a grid is interacted with a Usage Insight record is
created detailing the grid, the user, the impression type and the date. To avoid unnecessary
build up of data a maximum of 1 record is created per user per grid per impression per day. E.g.
If a user views a grid 5 times in a day this will show up as 1 Usage Insight record of Impression
Type ‘Grid Impression’.

Types of Impression are mainly aligned to the actions available on the Grids with the addition of
‘Inline Edit’ and ‘Grid Impression’:

● Delete Record
● Mass Delete
● Download
● New Record
● Quick View
● Quick Edit
● Search
● Filters
● Inline Edit
● New Task
● Grid Impression

These records are then viewable in the reports folder ‘RavenApps Reports’ and Dashboard
Folder ‘RavenApps Dashboards’ that come with the Managed Package. E.g.

On each Grids record you can also view the Usage Insights tab to see who is using the Grid for
what purpose and when:

50

RavenApps Sample Grids
The managed package contains a number of sample grids and these are packaged into a
Lightning App Page called Grids CRM. This tab allows you to quickly see the power of grids by
clicking through the main base Salesforce objects (Lead, Account, Opportunity, Case etc…).
Below we breakdown the different areas of these sample grids:

51

The 4 different Grid Types in CRM Grids are:

Grid Type Description

Grid Tabs / Sub Tabs A tabs contains sub tabs and each sub tab contains 1 base grid

Base Grid The main grid that appears under a tab / sub tab

Grid Views Each Base Grid can have many Grid Views that show different fields, filters,
sorts etc…

Child Grids Each Base Grid or Grid View can have many Related Grids that show
information on child, grandchild, etc.. records

The below infographic show the relationships between the different grid components:

52

Standard Fields Types
Grids by RavenApps uses a number of standard Salesforce field types. Please remember these
are case sensitive.

Text
This field type uses the type of “text”. Example JSON:
{"label":"First
Name","fieldName":"record.FirstName","value":"FirstName","type":"text","sortable":true,"editable
":true, "initialWidth":100}

Boolean
This field type uses the type of “boolean”. Example JSON:
{"label":"Is
Escalated","fieldName":"record.IsEscalated","value":"IsEscalated","type":"boolean","sortable":tr
ue,"editable":true, "initialWidth": 100}

Date
This field type uses the type of “date-local”. Example JSON:
{"label":"Close Date", "fieldName":"record.CloseDate", "value":"CloseDate", "type":"date-local",
"editable":true, "sortable":true, "initialWidth": 200}

Date Time
This field type uses the type of “date” and is also added in the typeAttribute below. Example
JSON:
{"label":"Date/Time Opened", "fieldName":"record.CreatedDate", "value":"CreatedDate",
"type":"date", "editable":true, "sortable":true, "initialWidth": 150,
"typeAttributes": {"year": "numeric","month": "short","day": "2-digit","hour": "2-digit","minute":
"2-digit"}}

53

The type attribute JSON in the above is used so that the view screen displays the date time
values:

Without the attribute section the view screen would have just the date and the edit screen would
have date and time:

Currency
This field type uses the type of “currency”. Example JSON:
{"label":"Amount", "fieldName":"record.Amount", "value":"Amount", "type":"currency", "editable":true,
"sortable":true, "initialWidth": 200}

If you have multiple currencies you can include these by adding the JSON:
"typeAttributes": {"currencyCode": { "fieldName": "record.CurrencyIsoCode"}}
This will give multiple currencies in a column:

E.g. the above column would be:
{"sortable":true,"editable":true,"type":"currency","value":"Amount","fieldName":"record.Amount","label":"AR
R","initialWidth":120,
"typeAttributes": {"currencyCode": { "fieldName": "record.CurrencyIsoCode"}},
"cellAttributes": {"alignment": "left" }}

Number
This field type uses the type of “number”. Example JSON:
{"label":"Quantity", "fieldName":"record.TotalOpportunityQuantity", "value":"TotalOpportunityQuantity",
"type":"number", "editable":true, "sortable":true, "initialWidth": 200}

54

Url
This field type uses the type of “url”. Example JSON:
{"label":"Website","fieldName":"record.Website","value":"Website","type":"url","sortable":true,"ed
itable":true, "initialWidth":250}

Custom Fields Types
Grids by RavenApps contains a number of custom field types to allow you to maximize the
power of Grids. These are used automatically when using the Grid Wizard Create and include:

Picklist
This allows picklist functionality to be used for each Grid cell and uses the field type of
ra_picklist:

Example 1
An example JSON column for this would be for the Type field on Account object :
{"label":"Type","fieldName":"record.Type","value":"Type","type":"ra_picklist","sortable":true,"edita
ble":true,
"typeAttributes": {"rowId": { "fieldName": "record.Id" },"objectDotField": "Account.Type"}}

Example 2
For custom objects ensure to use the “__c” notation for the objectDotField (not “__r”), e.g. for a
custom object of Loan Document this would be "objectDotField":
"Loan_Document__c.Status__c"}

55

Full column would beL
{"label":"Status","fieldName":"record.Status__c","value":"Status__c","type":"ra_picklist","sortable
":true,"editable":true,
"typeAttributes": {"rowId": { "fieldName": "record.Id" },"objectDotField":
"Loan_Document__c.Status__c"}},

Picklist allows multi-select in your sandbox () and for Pro licenses in production. For basic
licenses in production you can only select a single picklist at a time.

Picklist API name vs label
By default grids references the picklist API name, if the label is different to the API name and
you wish to reference the label then you can do this by updating your query to use toLabel()

For example if you want to query the Account’s Type field and return the label then use the
query:
SELECT Name, toLabel(Type) FROM Account

There is no need to update the JSON column and this can be left simply as the field name as
normal.

Lookup
This allows lookup functionality to be used for each Grid cell and uses the field type of
ra_lookup:

Example 1
An example JSON column for this would be for the parent Account lookup field on Account
object:
{"label":"Parent Account","fieldName":"record.ParentId","value":"ParentId","type":"ra_lookup",
"typeAttributes": {"rowId": { "fieldName": "record.Id" },"object": "Account", "icon":
"standard:account","label": "Account","valueName":{ "fieldName": "record.Parent.Name" },
"field":"ParentId"}}

In the above:

56

● ParentId represents the lookup field name
● Account represents the parent object
● Parent.Name represents the parent field name to display in the cell (e.g. if the parent is

a case this should be Case.Subject)
● Parent Account is the column label

Example 2
Lookup field on Contact grid to parent Account:
{"label":"Account","fieldName":"record.AccountId","value":"AccountId","type":"ra_lookup",
"typeAttributes": { "rowId": { "fieldName": "record.Id" }, "object": "Account", "icon":
"standard:account", "label": "Account", "valueName":{ "fieldName": "record.Account.Name" },
"field":"AccountId" } },

Filtered Lookup (Pro feature)
If there is a requirement to filter the lookup values available this can be done in the 3 ways
below::

1. Lookup filter based on hard typed values
e.g. Opportunities can only have Accounts if the Account’s Type is ‘Customer - Direct’ or
'Customer - Channel'

To implement this add the JSON below within the typeAttribute:
“more”:{"whereFilter": "Type IN ('Customer - Direct’, 'Customer - Channel')"}

Example column:
{"label":"Account Name (filter)", "fieldName":"record.AccountId", "value":"AccountId",
"type":"ra_lookup",
"typeAttributes": {"rowId": { "fieldName": "record.Id" }, "object": "Account", "icon":
"standard:record_lookup", "label": "Account Name", "valueName":{ "fieldName":
"record.Account.Name" }, "field":"AccountId", "editable":true, “more”:{"whereFilter": "Type IN
('Customer - Direct', 'Customer - Channel', 'Installation Partner', 'Technology Partner')"}}},

2. Lookup filter based on variable
There are 2 types of variable available; string and integer

A) Based on a string value
e.g. on an Opportunity you can only select the primary contact to be a contact from the account
of the Opportunity.

To implement this add the JSON below within the typeAttributes
“more”:{"whereFilter":"AccountId =: whereStringVal1", "whereStringVal1":{"fieldName":
"record.AccountId"}}

Example column:
{"label":"Contact Name", "fieldName":"ContactId", "value":"ContactId", "type":"ra_lookup",
"sortable":true,

57

"typeAttributes": {"rowId": { "fieldName": "Id" }, "object": "Contact", "icon":
"standard:record_lookup", "label": "Contact Name", "valueName":{ "fieldName": "Contact.Name"
}, "field":"ContactId", "editable":true, “more”:{"whereFilter":"AccountId =: whereStringVal1 ",
"whereStringVal1":{"fieldName": "AccountId"}} }}

B) Based on an integer value
e.g. Only allow Accounts to be selected where the Annual Revenue is bigger than a certain
number

To implement this add the JSON below within the typeAttributes
“more”:{"whereFilter":"Account.AnnualRevenue >= :whereIntegerVal1 ", "whereIntegerVal1":100}

Example Column:
{"label":"Contact Name", "fieldName":"ContactId", "value":"ContactId", "type":"ra_lookup", "sortable":true,
"typeAttributes": {"rowId": { "fieldName": "Id" }, "object": "Contact", "icon": "standard:record_lookup",
"label": "Contact Name", "valueName":{ "fieldName": "Contact.Name" }, "field":"ContactId",
"editable":true, “more”:{"whereFilter":"Account.AnnualRevenue >= :whereIntegerVal1 ",
"whereIntegerVal1":100}}}

Known Limitation: For inline create if the variable is referring to the current record being
created the lookup filter will not have a value to refer to and hence will not find any lookup
values. The work around for this is to either save the record and then update this one field or do
not enforce the lookup filter if inline create is needed.

3. Lookup filter excluding existing record
e.g. to stop the current record appearing as a lookup option

To implement this add the JSON below within the typeAttributes
“more”:{"whereFilter":"Id != :rowId"}

Example column:
{"label":"Parent", "fieldName":"record.ParentId", "value":"ParentId", "type":"ra_lookup",
"sortable":true, "initialWidth": 220,
"typeAttributes": {"rowId": { "fieldName": "record.Id" }, "object": "Account", "icon":
"standard:record_lookup", "label": "Parent Account", "valueName":{ "fieldName":
"record.Parent.Name" }, "field":"ParentId", "editable":true,
“more”:{"whereFilter":"Id != :rowId"} }}

Name
This allows a record name with hyperlink to used for a Grid cell and uses the field type of
ra_name:

58

An example JSON column for this would be for the Account name field on Account object:
{"label":"Name","fieldName":"record.Name","value":"Name","type":"ra_name","sortable":true, "initialWidth":
220,
"typeAttributes": {"rowId": { "fieldName": "record.Id" }}}

Rich Text Area
This allows a rich text cells to be used for each Grid cell and uses the field type of
ra_richTextArea:

An example JSON column for this would be a custom rich text description field:
{"label":"Rich Text
Description","fieldName":"record.Rich_Text__c","value":"Rich_Text__c","type":"ra_richTextArea"
,"sortable":false, "initialWidth": 850, "wrapText":true,"typeAttributes": {"rowId": { "fieldName":
"record.Id"}, "field":"Rich_Text__c"}}

Text Area (long text)
This allows a rich text cells to be used for each Grid cell and uses the field type of ra_textArea:

An example JSON column for this would be the description field on Account object:
{"label":"Description","fieldName":"record.Description","value":"Description","type":"ra_textArea","sortable"
:false, "initialWidth": 340, "wrapText":true,"typeAttributes": {"rowId": { "fieldName": "record.Id"},
"field":"Description", "height":"70px", "width":"300px"}}

Click to dial
You if wish to activate click to dial from your grid then use the field type of ra_clickToDial

An example JSON column for this would be:

59

https://record.name/
https://record.id/
https://record.id/

{"label":"Phone", "fieldName":"record.Phone", "value":"Phone", "type":"ra_clickToDial",
"sortable":true, "initialWidth": 200,
"typeAttributes": {"rowId": { "fieldName": "record.Id" }, "field":"Phone", "editable":true}}

File Upload
This allows a file / files to be drag and dropped onto a cell and these save against the record.
The field type is ra_fileUpload:

An example JSON column for this would be the description field on Account object:
{"label":"Upload", "type": "ra_fileUpload", "fieldName": "record.Id", "initialWidth": 250}
Example File upload gif:

View Related
Grids can be placed within grids allowing users to drill down from 1 level of grid to a lower level.
E.g. a User could be looking at an Accounts Grids and then when they click the eye below they
open up an Opportunity grid showing all Opps for this account. They could then drill down to
Opportunity Lines for that Opportunity etc…
The field type used is ra_viewRelated.

60

An example JSON column for this would the below on the parent Grid referring to the child grid
using the child grid’s Title::
{"label":"Related","type":"button-icon","initialWidth":75,"value":"Related","typeAttributes":{"name"
:"ra_viewRelated","iconName":"action:preview","Title":"View
Related","variant":"border-filled","alternativeText":"View Related"}}

61

Grids for Experience Cloud
From version 4.127
Grids Experience Cloud license required

Adding Grids to Experience Cloud pages
In the Experience Cloud builder select the Components icon and drag the ‘Grid > by RavenApp’
component onto the page

Click on the ‘Grid > by RavenApp’ component and add the Grid id. You can also optionally add
the Record Id if the Grid is a Related List Grid that is dependent on the record page you are on,
simply enter {!recordId} into the box.

62

Other considerations
You will need to ensure Experience Cloud users have the relevant permissions. this will include:

● A Grids license - see point 2 here
● Access to the Grids records, for example you can do this through:

○ Sharing Setting -> Grids -> set Default External Access from Private to Read
Only

● Access to the relevant Salesforce records as required in all Experience Cloud sites.

63

Grids and CICD
Grids uses a Unique Identifier field (RavenApps__UID__c) that for new grids created in an
environment will:

● Allow this value to be defined (e.g. by CICD scratch org create), otherwise:
● Will default to be the records Salesforce unique id

This allows scratch org creation and deployments between environments to avoid manual steps
once these pipelines have been created.

Grid Field Example where record
created in environment

Example where record
created from CICD

Used for:

RavenApps__UID__c a0W4K000006mGYZUA2 a0W4K000006nBKJSY2 The field referenced in
the Grids Component

Grid_id__c a0W4K000006mGYZUA2 a0W4K000006nBKJSY2 Formula field on Grids
page to show user the id

to use or the Grid
Component.

id a0W4K000006mGYZUA2 a0W4K000006mGYZUA
2

The SF Grid record
unique id

The above UID__c field was introduced from version 4.91 onwards - to upgrade see steps here.

Performance Optimisation
Grids have very good performance but if you are experiencing the page taking time to load then
here are some area to review:

1. If you have an object with a large amount of records (100,000s) of records and you only
need the Grid to ever show you a subset of this data then ensure you put a WHERE
clause in the Query.

a. E.g. if you only want to see Contacts of record type Finance then add to the end
of the QueryWHERE recordtype.name = ‘Finance’

2. If your Grid is returning back long text fields and / or rich text fields that have a lot of
data this can cause the grid to take a little longer to load. In this case ensure that the
columns are needed and limit the query (as per point 1 above) appropriately.

3. Having a large number of formula fields or roll up summary fields may affect
performance as these have to be calculated as you view the grid.

4. Positive filters are more efficient than negative filters (see here for more details)
a. E.g. this is more performant:WHERE Rating IN ('Hot', 'Warm')
b. Than this:WHERE Rating != 'Cold'

Troubleshooting
If you experience any issues with your grids then please follow these troubleshooting steps:

64

https://medium.com/@sfdcjedi/advanced-queries-in-salesforce-part-2-bc74e7d71cc1

1. If there is an error message on the grid then review this and see if it provides insights to
the cause of the issue.

2. Remember the Grid’s:
a. Query must not contain any carriage returns
b. JSON is case sensitive

3. Salesforce does have some objects that in the back end it treats differently to custom
objects and most standard objects, these can often be worked around. Some example
are:

a. ContentDocumentLink: Must include a WHERE clause on one of Id,
ContentDocumentId, or LinkedEntityId. See more details here

b. QuoteLineItem: The Search action is not support on this object, to get round this
use the Filter action

c. Events: The following actions are not supported on this object New Record,
Quick View, Quick Edit and Inline edit. There are a number of workarounds for
this including adding a child object of Events to add new fields that can be
edited.

d. CampaignMember: Search is not supported on thi object.
4. If you are still having issues then please reach out at info@raven-apps.com or book a

call here

65

https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api_objects_contentdocumentlink.htm
mailto:info@raven-apps.com
https://calendly.com/raven-apps/45min

Appendix 1 - Supported field types
Grids supports the below field type for read and inline edit capabilities. Please reach out if you
need an unsupported area to be available (info@raven-apps.com)

Field Type Read supported Inline Edit supported

Lookup Relationship Y Y

Master-Detail Relationship Y Y

Checkbox Y Y

Currency Y Y

Date Y Y

Date/Time Y Y

Time N N

Email Y Y

Geolocation Y Y

Number Y Y

Percent Y Y

Phone Y Y

Picklist Y Y

Picklist (Multi-Select) Y N

Text Y Y

Text Area Y Y

Text Area (Long) Y Y

Text Area (Rich) Y Y

Text (Encrypted) N N

URL Y Y

Record Type Y Y

Formula Y N/A

Autonumber Y N/A

Roll up Summary Y N/A

66

Appendix 2 - JSON

JSON Properties
RavenGrids leverages Salesforce LWC Datatable component, more details on this component
can be found here::
https://developer.salesforce.com/docs/component-library/bundle/lightning-datatable/documentat
ion

Working with Column Properties
Use the following column properties to customize the behavior and visual aspects of your columns.

PROPERTY TYPE DESCRIPTION

actions object Appends a dropdown menu of actions to a column. You must pass
in a list of label-name pairs.

cellAttributes object Provides additional customization, such as appending an icon to the
output. For more information, see Appending an Icon to Column
Data.

editable boolean Specifies whether a column supports inline editing. The default is
false.

fieldName string Required. The name that binds the columns attributes to the
associated data. Each columns attribute must correspond to an item
in the data array.

fixedWidth integer Specifies the width of a column in pixels and makes the column
non-resizable.If both fixedWidth and initialWidth values are
provided, initialWidth is ignored.

hideDefaultActio
ns

boolean Specifies whether to hide the default header actions on a column.
The default is false. For more information, see Creating Header
Actions.

iconName string The Lightning Design System name of the icon. Names are written
in the format standard:opportunity. The icon is appended to the left
of the header label.

initialWidth integer The width of the column when it's initialized, which must be within
the min-column-width and max-column-width values, or within
50px and 1000px if they are not provided.

label string Required. The text label displayed in the column header.

sortable boolean Specifies whether the column can be sorted. The default is false.

type string Required. The data type to be used for data formatting. For more
information, see Formatting with Data Types.

67

https://developer.salesforce.com/docs/component-library/bundle/lightning-datatable/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning-datatable/documentation

typeAttributes object Provides custom formatting with component attributes for the data
type. For example, currency-code for the currency type. For more
information, see Formatting with Data Types.

wrapText boolean Specifies whether text in a column is wrapped when the table
renders. Wrapped text vertically expands a row to reveal its full
content. Use with wrap-text-max-lines to display a number of
lines before hiding the rest. For more information, see Text
Wrapping and Clipping.

68

Appendix 3 - SOQL Query
The SOQL query brings in the data that you can run your grids off
Advanced Queries in Salesforce (Part 1)
Advanced Queries in Salesforce (Part 2)

69

https://medium.com/@sfdcjedi/advanced-queries-in-salesforce-part-1-cce4b75daa2
https://medium.com/@sfdcjedi/advanced-queries-in-salesforce-part-2-bc74e7d71cc1

Appendix 4 - Usage Examples
This section shows you some example grids and provides the data records to recreate these grids in your orgs.

Example 1: Opportunities on Accounts
This grid is placed on the Account record and provides visual tips to help uses see key information including that needs to be updated, e.g. Close
Date in the past is highlighted red and close date in next 2 weeks is highlighted yellow. It also contains 2 related grids which allow users to see
the Products being sold and tasks on the Opportunity:

The data for the above grids can be found here

This grid contains the following custom fields on the Opportunity object:
● Lead_Source_Color__c

70

https://docs.google.com/spreadsheets/d/1Ht7TV9G8Xo1-a2WcqYGcMAIjy4F8wfhUw0nyGJtiydQ/edit#gid=0
https://docs.google.com/spreadsheets/d/1Ht7TV9G8Xo1-a2WcqYGcMAIjy4F8wfhUw0nyGJtiydQ/edit#gid=0

○ Formula (Text)
○ IF(ISPICKVAL(LeadSource, "Web"), "slds-icon-standard-empty",

IF(ISPICKVAL(LeadSource, "Phone Inquiry"), "slds-icon-custom-custom110" ,
IF(ISPICKVAL(LeadSource, "Purchased List"), "slds-icon-standard-related-list slds-text-color_default",
IF(ISPICKVAL(LeadSource, "Other"), "slds-icon-standard-group-loading slds-text-color_inverse",
IF(ISPICKVAL(LeadSource, "Partner Referral"), "slds-icon-custom-custom46 slds-text-color_default", "")
)
)))

● Stage_Color__c
○ Formula (Text)
○ IF(OR(ISPICKVAL(StageName, "Prospecting"),ISPICKVAL(StageName, "Qualification"),ISPICKVAL(StageName, "Needs

Analysis")), "slds-icon-standard-empty",
IF(OR(ISPICKVAL(StageName, "Value Proposition"),ISPICKVAL(StageName, "Id. Decision Makers"),ISPICKVAL(StageName,
"Perception Analysis")), "slds-icon-custom-custom110",
IF(OR(ISPICKVAL(StageName, "Proposal/Price Quote"),ISPICKVAL(StageName, "Negotiation/Review")),
"slds-icon-standard-goals",
IF(ISPICKVAL(StageName, "Closed Won"), "slds-icon-standard-voice-call",
IF(ISPICKVAL(StageName, "Closed Lost"), "slds-icon-standard-quip", "")
))))

● Amount_Text_Formula__c
○ Formula (Text)
○ If(Amount <100000,"slds-text-body_small",

IF(Amount<1000000,"slds-text-heading_small",
"slds-text-heading_medium"
))

● Close_Date_in_Past_Color__c
○ Formula (Text)
○ IF(AND(CloseDate <TODAY(),IsClosed =FALSE), "slds-icon-standard-quip slds-text-color_default slds-text-title_bold",

IF(AND(CloseDate <(TODAY()+14),IsClosed =FALSE), "slds-icon-custom-custom4",
""))

● Probability_Bar__c
○ Formula (Text)
○ IMAGE("/img/samples/color_green.gif","green",10,80*Probability) &

IMAGE("/img/samples/color_red.gif","red",10, 80-80*Probability) &

71

" " & TEXT(100*Probability) & "%"

This grid contains the following custom fields on the Activity object for the related Grid ‘Open Opportunity Tasks’:
● Due_Date_Color__c

○ Formula (Text)
○ IF(AND(ActivityDate < Today(),IsClosed = false),

"slds-icon-standard-quip", "")
● Priority_Background_Colour__c

○ Formula (Text)
○ IF(ISPICKVAL(Priority, "High"), "slds-icon-custom-custom112 slds-text-title_bold",

IF(ISPICKVAL(Priority, "Normal"), "slds-icon-standard-group-loading",
IF(ISPICKVAL(Priority, "Low"), "", "")
)
)

Please note when working with Opportunity Products if you update the Quantity then Salesforce keeps the Total Price (TotalPrice) constant and
flexes the Sale Price (UnitPrice). This is their expected behavior as described here, if you want to have the Sale Price remain fixed and the Total
price flex when the Quantity is edited then you can do this by including in a before save flow an update to Sale Price to keep it constant:
PRIORVALUE([OpportunityLineItem].UnitPrice)

72

https://help.salesforce.com/s/articleView?id=000381172&type=1

Example 2: My Open Opportunities on Accounts
This grid is placed on the Account record and shows the user only their own Opportunities

The data for the above grids can be found here

This grid contains the following custom fields as mentioned in example 1 on the Opportunity object:
● Stage_Color__c
● Close_Date_in_Past_Color__c

This grid contains the following custom fields as mentioned in example 1 on the Activity object:
● Due_Date_Color__c
● Priority_Background_Colour__c

Example 3: Child Accounts
This grid is placed on the Account page and shows any child accounts it has.

Query:
SELECT Id,Name,ParentId FROM Account WHERE Parentid = :sv1

Columns:
{"label":"Name","fieldName":"record.Name","value":"Name","type":"text","sortable":true,"editable":true}

73

https://docs.google.com/spreadsheets/d/1Ht7TV9G8Xo1-a2WcqYGcMAIjy4F8wfhUw0nyGJtiydQ/edit#gid=0

Variables:
{"type":"record", "field":"id", "variable":"sv1"}

74

Example 4: Contacts On Same Ultimate Parent Account
This Grid is placed on the Account page and displays all contacts for the account hierarchy of the account you are viewing. It works by using
variables sv1 and sv2. 'sv1' is the id of the account you are on. 'sv2' is the id of the parent account. The SOQL works as below:
1. Accountid = 'sv1', i.e. all Contacts for the account you are currently viewing.
2. Accountid = 'sv2', i.e. all Contacts from the parent account to the account you are currently viewing.
3. account.parentId = 'sv1', i.e. all Contacts for the child of the account you are currently viewing.
4. account.Parent.ParentId =: sv1 i.e. all Contacts for the grandchild of the account you are currently viewing.
5. account.Parent.ParentId =: sv2. i.e. all Contacts for the grandchild of the account you are currently viewing.
6. account.ParentId =: sv2 i.e. all Contacts for the child of my grandfather's account, this the Contacts of sibling accounts

Query:
SELECT Id, Name, FirstName, LastName, Title, Account.Name, Email, Phone, accountid, account.ParentId, account.parent.name,
LeadSource FROM Contact WHERE (Accountid =: sv1 OR Accountid =: sv2 OR account.ParentId =: sv1 OR
account.Parent.ParentId =: sv1 OR (account.ParentId =: sv2 AND account.ParentId != null))

Columns:
{"label":"First Name","fieldName":"record.FirstName","value":"FirstName","type":"text","sortable":true,"editable":true,
"initialWidth":130},

{"label":"Last Name","fieldName":"record.LastName","value":"LastName","type":"text","sortable":true,"editable":true,
"initialWidth":130},

{"label":"Account","fieldName":"record.AccountId","value":"Account","type":"ra_lookup","sortable":true,"editable":true,
"typeAttributes": { "rowId": { "fieldName": "record.Id" }, "object": "Account", "icon": "standard:account", "label": "Account",
"valueName":{ "fieldName": "record.Account.Name" }, "field":"AccountId" }, "initialWidth":250},

{"label":"Parent Account", "fieldName":"record.Account.ParentId", "value":"Account.ParentId", "type":"ra_lookup", "sortable":true,
"initialWidth":250,
"typeAttributes": {"rowId": { "fieldName": "record.Id" }, "object": "Account", "icon": "standard:record_lookup", "label": "Account Name",
"subTitleField":"Industry",
"valueName":{ "fieldName": "record.Account.Parent.Name" }, "field":"ParentId", "editable":false}},

75

{"label":"Email","fieldName":"record.Email","value":"Email","type":"text","editable":true,"sortable":true, "initialWidth":250},

{"label":"Phone","fieldName":"record.Phone","value":"Phone","type":"text","editable":true,"sortable":true, "initialWidth":150},

{"label":"Title","fieldName":"record.Title","value":"Title","type":"text","editable":true,"sortable":true, "initialWidth":150},

{"label":"Lead Source","fieldName":"record.LeadSource","value":"LeadSource","type":"ra_picklist","typeAttributes": {"rowId": {
"fieldName": "record.Id" },"objectDotField": "Contact.LeadSource"},"editable":true,"sortable":true, "initialWidth":150}

Sorts:
{"order":1, "label":"Parent Account: DESC", "field":"Account.Parent.Name", "direction": "desc"},
{"order":2, "label":"Account: ASC", "field":"Account.Name", "direction": "asc"},
{"order":3, "label":"Last Name: ASC", "field":"LastName", "direction": "asc"}

Filters:
{"order":1,"label":"Name","field":"Name","value":"","function":"contains","type":"text"},
{"order":2,"label":"Account","field":"Account.Name","value":"","function":"contains","type":"text"},
{"order":3,"label":"Parent Account","field":"account.parent.name","value":"","function":"contains","type":"text"},
{"order":4,"label":"Email","field":"Email","value":"","function":"contains","type":"text"},
{"order":5, "label":"Lead Source","field":"LeadSource","value":"","function":"contains","type":"picklist","objectDotField":

"Contact.LeadSource"}

Summaries:
{"label": "Unique emails", "field":"Email", "type": "COUNT_DISTINCT", "formatStyle": "number"}

Variables:
{"type":"record", "field":"id", "variable":"sv1"},
{"type":"record", "field":"parentid", "variable":"sv2"},
{"type":"record", "field":"Name", "variable":"sv3"}

76

New Record Row Defaults:
{"field":"AccountId", "type": "variable", "value":"sv1"},
{"field":"Account.Name", "type": "variable", "value":"sv3"}

77

Example 5: High Priority Cases
This grid shows all high priority cases, as it has no variables it should be used in a stand alone page of the Explore page.
Some areas to note:

● Many of the fields here are picklists and use the type 'ra_picklist' and ‘typeAttributes’ section to produce the dynamic picklist functionality.
● A filter has been included which searches based on the values not being equal to the search term.

Query:
SELECT Owner.name,Id,CreatedDate,IsClosed,IsEscalated,MilestoneStatus,Origin,Priority,Reason,Status,Subject,Type FROM Case

Columns:
{"label":"Subject","fieldName":"record.Subject","value":"Subject","type":"text","sortable":true,"editable":true},
{"label":"Priority","fieldName":"record.Priority","value":"Priority","type":"ra_picklist","sortable":true,"editable":true,"typeAttributes": {"rowId": {
"fieldName": "record.Id" },"objectDotField": "Case.Priority"}},
{"label":"Origin","fieldName":"record.Origin","value":"Origin","type":"ra_picklist","sortable":true,"editable":true,"typeAttributes": {"rowId": {
"fieldName": "record.Id" },"objectDotField": "Case.Origin"}},
{"label":"Status","fieldName":"record.Status","value":"Status","type":"ra_picklist","sortable":true,"editable":true,"typeAttributes": {"rowId": {
"fieldName": "record.Id" },"objectDotField": "Case.Status"}},
{"label":"IsEscalated","fieldName":"record.IsEscalated","value":"IsEscalated","type":"boolean","sortable":true,"editable":true},
{"label":"Owner","fieldName":"record.Owner.name","value":"Owner.name","type":"text","sortable":true,"editable":true}

Filters:
{"order":1, "label":"Priority", "field":"Priority", "value":"High", "Function":"contains", "type":"text"},
{"order":2, "label":"Origin not equal to", "field":"Origin", "value":"", "Function":"!=", "type":"text"}

78

https://owner.name/
https://record.id/
https://record.id/
https://record.id/
https://record.owner.name/
https://owner.name/

Example 6: Opportunities on same Ultimate Parent Account
This Grid is placed on the Account page and allows you to see all Opportunities for the account you are viewing and for its children and its parent,
this can be modified to show more levels as needed.

It works by using variables sv1 and sv2.:
'sv1' is the id of the account you are on. 'sv2' is the id of the parent account to the account record you are on.
The SOQL query finds all Opportunities where:
1. Accountid = 'sv1', i.e. all Opportunities for the account you are currently viewing.
2. Accountid = 'sv2', i.e. all Opportunities from the parent account to the account you are currently viewing
3. account.parentId = 'sv1', i.e. all Opportunities for the child of the account you are currently viewing

Query:
SELECT Id, Name, StageName, Closedate, Account.Name, accountid, account.Parentid FROM Opportunity WHERE Accountid =: sv1 OR
Accountid =: sv2 OR account.ParentId =: sv1

Columns:
{"label":"Name","fieldName":"record.Name","value":"Name","type":"text","sortable":true,"editable":true},
{"label":"Stage","fieldName":"record.StageName","value":"StageName","type":"text","sortable":true,"editable":true},
{"label":"Account","fieldName":"record.Account.Name","value":"Account","type":"text","sortable":true}

Filters:
{ "order":1, "label":"Stage", "field":"StageName", "value":"", "Function":"contains", "type":"text"},
{ "order":2, "label":"Name", "field":"Name", "value":"", "Function":"contains", "type":"text"},
{ "order":3, "label":"Account", "field":"Account.Name", "value":"", "Function":"contains", "type":"Text"},
{ "order":4, "label":"CloseDate", "field":"CloseDate", "value":"", "Function":"contains", "type":"date"}

Summaries:
{"label": "Amount", "field": "Amount", "type":"SUM", "formatstyle": "currency"}

Variables:
{"type":"record", "field":"id", "variable":"sv1"},
{"type":"record", "field":"parentid", "variable":"sv2"}

79

Example 7: Potential Conflict Opportunities
This related list should be placed on an Opportunity page and will show all related Opportunities to the Opportunity you are viewing. In this case
the parent Account’s Industry is used as the link to other Opportunities but any other commonality could be used such as:

● Opportunities in the last 12 months to this Account
● Opportunities within 1km of this Opportunity (using geospatial fields)
● Opportunities selling similar products (using roll up on the Opportunity of types of product sold)

This can be used to inform users of useful sales information or to highlight potential conflicts for this opportunity.

Query:
SELECT Id, Name, Amount, Account.Industry, StageName, CloseDate FROM Opportunity Where IsPrivate = FALSE

Columns:
{"label":"Name","fieldName":"record.Name","value":"Name","type":"text","sortable":true,"editable":true},
{"label":"Amount","fieldName":"record.Amount","value":"Amount","type":"currency","sortable":true,"editable":true},
{"label":"Account Industry","fieldName":"record.Account.Industry","value":"Account.Industry","type":"text","sortable":true,"editable":true},
{"label":"CloseDate","fieldName":"record.CloseDate","value":"CloseDate","type":"date","sortable":true,"editable":true}

Sorts:
{"order":1, "label":"Amount: DESC", "field":"Amount", "direction": "desc"}

Filters:
{"order":1, "label":"Name", "field":"Name", "value":"", "function":"contains","type":"text"},
{"order":2, "label":"Account Industry", "field":"Account.Industry", "value":"sv1", "valueType":"variable", "function":"=","type":"text"}

Summaries:
{"label": "Total Amount", "field":"Amount", "type": "SUM"},
{"label": "Average Amount", "field":"Amount", "type": "AVG"}

Variables:
{"type":"record", "field":"Account.Industry", "variable":"sv1"}

80

Example 8: Finance Grid
This Grid allows users to view and edit multiple quote lines in a grid format, as it has no variables it should be used in a stand alone page of the
Explore page. Filters can be added to allow the grid to be filtered for any data set needed - e.g. all quote lines closing this month for a team or
sales person.

Query:
SELECT Quote.Opportunity.Name, LineNumber, Product2.Name, ListPrice, UnitPrice, Quantity, Subtotal, Discount, TotalPrice, ServiceDate
FROM QuoteLineItem where quote.issyncing = true

Columns:
{"label":"Opportunity","fieldName":"record.Quote.Opportunity.Name","value":"Quote.Opportunity.Name","type":"text","sortable":true,"editable
":false, "initialWidth":250},
{"label":"Product","fieldName":"record.Product2.Name","value":"Product2.Name","type":"text","sortable":true,"editable":false,
"initialWidth":250},
{"label":"Date*","fieldName":"record.ServiceDate","value":"ServiceDate","type":"date-local","sortable":true,"editable":true},
{"label":"List Price","fieldName":"record.ListPrice","value":"ListPrice","type":"currency","sortable":true,"editable":false},
{"label":"Unit Price*","fieldName":"record.UnitPrice","value":"UnitPrice","type":"currency","sortable":true,"editable":true},
{"label":"Quantity*","fieldName":"record.Quantity","value":"Quantity","type":"number","sortable":true,"editable":true,"initialWidth":120,"cellAttr
ibutes": { "alignment": "center" }},
{"label":"Subtotal","fieldName":"record.Subtotal","value":"Subtotal","type":"currency","sortable":true,"editable":false},
{"label":"Discount %*","fieldName":"record.Discount","value":"Discount","type":"number","sortable":true,"editable":true},
{"label":"Total Price","fieldName":"record.TotalPrice","value":"TotalPrice","type":"currency","sortable":true,"editable":false}

Sorts:
{"order":1, "label":"Date*: DESC", "field":"ServiceDate", "direction": "desc"}

Filters:
{ "order":1, "label":"Product", "field":"Product2.Name", "value":"", "Function":"contains", "type":"text" }

Summaries:
{"label": "Total Price", "field":"TotalPrice", "type": "SUM", "formatStyle": "currency"},
{"label": "Total Quantity", "field":"Quantity", "type": "SUM", "formatStyle": "decimal"}

81

https://quote.opportunity.name/
https://product2.name/

Example 9: Example of each field type
This is a purely illustrative example of how each field type can be used. In this example custom fields have been created with the name of the field
using its own field type all in a custom object called Field Type Test Object
Query:

SELECT RecordTypeid, RecordType.name, Currency__c,Checkbox__c,Date__c, Date_Time__c, Email__c, Geolocation_field__c,
Geolocation_field__Latitude__s,Geolocation_field__Longitude__s, Multi__c, Number__c, Percent__c, Phone__c, Picklist__c, Text__c,
Text_Encrypted__c, Text_Area__c, Text_Area_Long__c, Text_Area_Rich__c, Time__c, Url__c, Account_look_up__c, Contact_M_D__c
FROM Field_Type_Test_Object__c

Columns:
{"label":"Checkbox__c","fieldName":"record.Checkbox__c","value":"Checkbox__c","type":"boolean","sortable":true,"editable":true},
{"label":"Formula__c","fieldName":"record.Formula__c","value":"Formula__c","type":"text","sortable":true,"editable":true},
{"label":"Name","fieldName":"record.Name","value":"Name","type":"text","sortable":true,"editable":true},
{"label":"Roll_Up_Summary__c","fieldName":"record.Roll_Up_Summary__c","value":"Roll_Up_Summary__c","type":"text","sortable":true,"e
ditable":true},
{"label":"Currency__c","fieldName":"record.Currency__c","value":"Currency__c","type":"currency","sortable":true,"editable":true,"cellAttribut
es": { "alignment": "left" }},
{"label":"Date__c","fieldName":"record.Date__c","value":"Date__c","type":"date","sortable":true,"editable":true},
{"label":"Date__c","fieldName":"record.Date__c","value":"Date__c","type":"datelocal","sortable":true,"editable":true},
{"label":"Time__c","fieldName":"record.Time__c","value":"Time__c","type":"date","sortable":true,"editable":true},
{"label":"Time__c","fieldName":"record.Time__c","value":"Time__c","type":"time","sortable":true,"editable":true},
{"label":"Date_Time__c","fieldName":"record.Date_Time__c","value":"Date_Time__c","type":"date","sortable":true,"editable":true},
{"label":"Multi__c","fieldName":"record.Multi__c","value":"Multi__c","type":"text","sortable":true,"editable":true},
{"label":"Picklist__c", "fieldName":"record.Picklist__c","value":"Picklist__c","type":"ra_picklist","sortable":true,"editable":true,
"typeAttributes": {"rowId": { "fieldName": "record.Id" },"objectDotField": "Account.Type"}},
{"label":"Text__c","fieldName":"record.Text__c","value":"Text__c","type":"text","sortable":true,"editable":true},
{"label":"Text_Area__c","fieldName":"record.Text_Area__c","value":"Text_Area__c","type":"textarea","sortable":true,"editable":true},
{"label":"Text_Area_Long__c","fieldName":"record.Text_Area_Long__c","value":"Text_Area_Long__c","type":"textarea","sortable":true,"edit
able":true},
{"label":"Text_Area_Rich__c","fieldName":"record.Text_Area_Rich__c","value":"Text_Area_Rich__c","type":"textarearich","sortable":true,"ed
itable":true},
{"label":"Account_look_up__c","fieldName":"record.Account_look_up__c","value":"Account_look_up__c","type":"lookup","sortable":true,"edi
table":true},

82

https://recordtype.name/
https://record.name/
https://record.id/

{"label":"Contact_M_D__c","fieldName":"record.Contact_M_D__c","value":"Contact_M_D__c","type":"text","sortable":true,"editable":true},
{"label":"Text_Encrypted__c","fieldName":"record.Text_Encrypted__c","value":"Text_Encrypted__c","type":"text","sortable":true,"editable":tr
ue},
{"label":"Geolocation_field__Latitude__s","fieldName":"record.Geolocation_field__Latitude__s","value":"Geolocation_field__Latitude__s","t
ype":"text","sortable":true,"editable":true},
{"label":"Geolocation_field__Longitude__s","fieldName":"record.Geolocation_field__Longitude__s","value":"Geolocation_field__Longitude_
_s","type":"geolocation","sortable":true,"editable":true},
{"label":"Record Type
Name","fieldName":"record.RecordType.name","value":"recordtype.name","type":"text","sortable":true,"editable":false},
{"label":"Record Type ID","fieldName":"record.RecordTypeid","value":"recordtypeid","type":"text","sortable":true,"editable":false}

Sorts:
{"order":1, "label":"Date: DESC", "field":"Date__c", "direction": "desc"}

Filters:
{"order":1, "label":"Picklist__c", "field":"Picklist__c", "value":"", "Function":"contains", "type":"text"}

Summaries:
{"label": "Currency", "field":"Currency__c", "type": "SUM", "formatStyle": "currency"}

Example 10: Example of Junction Object (Account Contact Relationship Grid on Account)
Query:

SELECT Contact.Name, IsDirect, StartDate, EndDate, Roles, Account.Name FROM AccountContactRelation WHERE AccountId =: sv1

Columns:
{"label":"Account","fieldName":"record.AccountId","value":"AccountId","type":"ra_lookup","typeAttributes": {"rowId": { "fieldName":
"record.Id" },"object": "Account","icon": "standard:account","label": "Account","valueName":{ "fieldName": "record.Account.Name"
},"field":"AccountId"},"editable":true,"sortable":true},
{"label":"Contact","fieldName":"record.ContactId","value":"ContactId","type":"ra_lookup","typeAttributes": {"rowId": { "fieldName": "record.Id"
},"object": "Contact","icon": "standard:contact","label": "Contact","valueName":{ "fieldName": "record.Contact.Name"
},"field":"ContactId"},"editable":true,"sortable":true},

83

https://record.recordtype.name/
https://recordtype.name/

{"label":"Direct","fieldName":"record.IsDirect","value":"IsDirect","type":"boolean","editable":true,"sortable":true},
{"label":"Start Date","fieldName":"record.StartDate","value":"StartDate","type":"date-local","editable":true,"sortable":true},
{"label":"End Date","fieldName":"record.EndDate","value":"EndDate","type":"date-local","editable":true,"sortable":true}

Sorts:
{"type":"record", "field":"Id", "variable":"sv1"},
{"type":"record", "field":"Name", "variable":"sv2"}

Filters:
{"field":"AccountId", "type": "variable", "value":"sv1"},
{"field":"Account.Name", "type": "variable", "value":"sv2"}

Appendix 5 - Object Relationships Queries
Grids can handle many types of relationships below we highlight the considerations for different scenarios.

In the below diagram the green object is the basis for the grid (for the ‘Object API Name’ field and the SOQL query) and the connector indicates a
1 to many relationship using the connector below:

Parent relationship
All fields from parent objects can be pulled into the grid using the standard SOQL child-to-parent relationship queries (see here). This supports up
to 5 levels of parent child relationship as per the Salesforce limitation here.

For example if you have a grid on Opportunity Product you can pull in fields from the parent Opportunity, Account, Product and User (owner of
these records) into the Grid.

84

https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_relationships_understanding.htm
https://help.salesforce.com/s/articleView?id=release-notes.rn_api_soql_5level.htm&release=244&type=5

Child relationship
You can go down the object chain by using Related Grids, see details here of how to use these grids.

For example if you have a grid on Account you can can related child grids for Opportunities, Opportunity Product and Contacts.

85

Parent and Parent Child relationships
If you are placing a grid on a record page you can pull in related records of the parent record.

For example you can put a grid on a Opportunity page that shows all Contacts from the parent Account (and add a filter so only show key decision
maker from the parent Account).

86

Junction objects
Much like the parent relationship above you can build a grid on a junction object and pull in information from both parents.

For example a grid on Content Document Link surfaces the files that have been stored against records and you can pull in any information from
the record (in this case Opportunity) and the file itself (Content Document)

Unrelated Records
Unrelated records can be connected by using variables to connect the records.

87

For example you can place a grid on the Opportunity page that shows all other Opportunities where the parent account’s industry is the same.

88

Appendix 6 - Upgrading version
If you have already installed Grids and wish to upgrade your Grids version then simply follow the steps below - these are the same as if you were
installing for the first time but will instead upgrade the version. You can see the release notes for new features here.

1. Sign into Salesforce
2. Go to the Grids AppExchange listing here
3. Click Get it Now

4. Click Log In

89

https://raven-apps.com/release-notes
https://appexchange.salesforce.com/appxListingDetail?listingId=a0N4V00000FZb3XUAT

5. Click continue with Salesforce

90

6. Login with you Salesforce account for which you want to install into
7. Select either ‘Install in Production’ or ‘Install in Sandbox’ which you wish to do.
8. Agree to the T&Cs and click ‘Confirm and Install’
9. Login into Salesforce again if asked
10. Usually click ‘Install for Admins Only’ as you can allocate licenses and permission sets later.

91

11. Success!

.

92

