

ISTH2025.0RG #ISTH2025

WASHINGTON, D.C.

Favorable nonclinical safety profile of HMB-002 for prophylactic treatment of Von Willebrand disease

<u>Caroline Rasmussen</u>¹, Henrik Østergaard¹, Lars Holten-Andersen¹, Tine Holst Kjeldsen¹, Pruthvi Nagilla¹, Jacob Fredsted¹, Emil Poulsen¹, Catherine Rea¹, Jennifer Sims², Mattias Häger¹

¹Hemab Therapeutics, Copenhagen, Denmark, ²iBiologix, Basel, Switzerland

Contact details

Caroline Rasmussen caroline@hemab.com

Von Willebrand Disease – A Bleeding Disorder with Unmet Needs

Healthy – sufficient VWF

VWD - insufficient VWF

Von Willebrand Factor (VWF)

- · Multifunctional protein supporting
- Primary hemostasis by mediating platelet adhesion and aggregation at sites of vascular injury by binding exposed collagen and platelet receptors
- Secondary hemostasis by protecting FVIII in circulation

Von Willebrand Disease (VWD)

- Most common inherited bleeding disorder
- Results from quantitative deficiency (0-50%) or defect in VWF
- Broad spectrum of frequent bleeding events including heavy menstrual bleeding, often leading to iron deficiency

HMB-002 Aims to Directly Impact the Underlying Patho-etiology of VWD by Increasing Levels of VWF and FVIII

Functions of HMB-002

Binds & Accumulates VWF

- Accumulates VWF
 HMB-002 engages the FcRn
 pathway to protect VWF from
 degradation
- Increases FVIII levels
 Elevated VWF levels drive additional accumulation of FVIII

Restores Hemostasis in VWD

- Primary Hemostasis
 Elevated VWF levels enhance platelet recruitment to site of injury
- Secondary Hemostasis
 Accumulated FVIII further supports clot formation by contributing to secondary hemostasis

HMB-002 aims to offer subcutaneous, infrequent prophylactic treatment of people with VWD

HMB-002 – A Monovalent Human IgG4 with Fc effector Silencing Designed to Bind the C-terminal CK Domain of VWF

^{*} de Jong A, et al. Thromb Res. 2017;159:65.

Comprehensive Nonclinical Safety Evaluation of HMB-002 Demonstrates No Adverse Findings, No Immunotoxicity, and No Off-target Binding

Nonclinical Safety Evaluation

Key Findings

In Vivo

• **Repeat-Dose Toxicity** studies in monkeys

- _o Up to 13 weeks of duration
- Safety and PK/PD assessment

No adverse findings at any dose levels

(exposure ratio 9.7-fold the simulated clinical exposure after administration of 300 mg)

HMB-002

- Off-target binding (6,505 human proteins)
- Fc-y and FcRn receptor binding (human receptors)
- Tissue cross reactivity (panel of human tissues)
- Complement & platelet activation (human whole blood)
- Cytokine release (human whole blood)

No off-target binding
No immunotoxicity

VWF Accumulation without Functional Compromise in Cynomolgus Monkey

Targeting C-terminal CK domain

Monovalent human antibody format

Human IgG4 + Fc effector silencing

- In vitro studies demonstrate no interference with key physiological activities of VWF*
- Sustained stable accumulation of endogenous VWF and FVIII to about 2-fold of predose level for the duration of the 13-week toxicity study
- Parallel increase in VWF antigen and activity and FVIII
- Majority of cynomolgus monkeys developed ADA without impact on PK or PD

Maintained VWF activity consistent with targeting the CK-domain with a monovalent antibody

No Off-Target Effect, No Tissue Cross Reactivity and No Impact on VWF Multimer Distribution Across In Vivo, In Vitro and Ex Vivo Toxicity Studies

Targeting C-terminal CK domain

Monovalent human antibody format

Human IgG4 + Fc effector silencing

- Distribution of VWF multimers remain similar to predose distribution after administration of HMB-002 in cynomolgus monkeys
- No off-target effects in monkeys or in in vitro evaluation of 6,505 human proteins
- No tissue cross-reactivity in human tissues

High selectivity and preserved VWF multimer distribution consistent with targeting the CK-domain with a monovalent antibody

No Changes in Coagulation, Hematology and Histopathology in Toxicity Studies in Cynomolgus Monkeys

Targeting C-terminal CK domain

Monovalent human antibody format

Human IgG4 + Fc effector silencing

- No changes in APTT, PT, fibrinogen and D-Dimer related to HMB-002
- No change in hematology incl. platelets related to HMB-002
- No histopathological evidence of thrombi and immune complex deposition

No apparent Fc-y receptor-related findings consistent with a monovalent human IgG4 Fc effector silenced antibody

No Immunotoxicity in In Vitro, Ex Vivo and In vivo Toxicity Studies

Targeting C-terminal CK domain

Monovalent human antibody format

Human IgG4 + Fc effector silencing

- No effect on complement activation, platelet activation, or cytokine release in cynomolgus monkeys and in human whole blood
- No or highly-reduced binding to panel of human Fc-y receptors in comparison to control IgG4 antibody
- Retained pH-dependent binding to FcRn

No apparent Fc-y receptor-related findings consistent with a human IgG4 Fc effector silenced antibody

K _D (M)	HMB-002	Approved standard lgG4 antibody
hFcyRIIIA176F	NB	1.10 E-05
hFcγRIIIA ₁₇₆ v	*	5.18 E-06
hFcγRIIIB	NB	*
hFcyRIIA167R	NB	9.35 E-06
hFcγRIIA ₁₆₇ H	*	1.11 E-05
hFcγRIIB	*	1.04 E-05
hFcyRl	NB	4.60 E-09
FcRn	pH 6: 1.10 E-06 pH 7.4: NB	рН 6: 1.38 E-06 рН 7.4: NB

^{*} a low level of binding was observed but too weak to determine a K_D . K_D = dissociation constant; NB = no binding.

Conclusion & Acknowledgement

HMB-002

Monovalent (one-arm) human antibody designed to bind and accumulate endogenous circulating VWF, while preservation functionality and regulation

Favorable *nonclinical safety profile* – study results consistent with intended design of HMB-002

- High selectivity towards the CK domain
- Maintained VWF activity
- Preserved VWF multimer distribution
- No apparent Fc-y receptor-related effects
- No adverse findings at any dose levels (exposure ratio 9.7-fold the simulated clinical exposure after administration of 300 mg)

Thank you to Hemab Therapeutics (Henrik Østergaard, Lars Holten-Andersen, Tine Holst Kjeldsen, Pruthvi Nagilla, Jacob Fredsted, Emil Poulsen, Catherine Rea, Mattias Häger) and **iBiologix** (Jennifer Sims)

Sponsor: Hemab Therapeutics

Additional Evidence @ ISTH

NOW ENROLLING: US, UK, AUS

VELORA Discover

Observational prospective screening study of bleeding and treatment in VWD Type 1 (NCT06610201)

VELORA Pioneer

Phase 1/2 study of HMB-002 to prevent & reduce the frequency of bleeding in VWD Type 1 (*NCT06754852*)

Learn more at Hemab.com