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Abstract 
 
The Air Force is currently paying a cost for the mismanagement of its software 
development activities. Software-intensive systems are consistently plagued with cost, 
schedule, and performance issues, which in the current fiscal environment is 
unsustainable. There has been much research on the benefits of process improvement, 
yet the concept of product health is largely ignored. Technical debt – the consequence of 
making short-term design decisions at the expense of long-term health – has been 
accumulating within code bases as developers and managers struggle to identify, 
quantify, and manage it properly. In this thesis, an extensive literature search is 
performed to define technical debt, explain its implications, and highlight methods to 
quantify and visualize it so organizations can address it explicitly. Through the use of 
architectural health analysis tools, a set of metrics is defined and used in case studies to 
highlight the extent to which the Air Force has lost control of its software and the price 
it has to pay because of it. Ultimately, eleven recommendations are given on how to 
incorporate architectural health analysis tools into software development activities to 
prevent, identify, manage, and reduce the amount of technical debt across product 
lifecycles. 
 
Thesis Supervisor: Alan MacCormack 
Title: Adjunct Professor of Business Administration, Harvard Business School 
 



6 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7 
 
 

About the Author 
 
Major Austin M. Page is currently an Air Force 
Fellow attending the Massachusetts Institute of 
Technology in pursuit of his Master’s degree in 
System Engineering. Prior to this assignment, he 
served as the Deputy Chief of Weapons assigned 
to the F-35 Joint Program Office in Arlington, VA. 
He led a 55-member tri-service team across 5 sites 
and 8 international countries overseeing all 
weapons activity in the F-35 program. He was 
directly responsible for the development, 
integration, test, verification and closeout of $700M 
in F-35 weapons integration requirements.  
 
Major Page graduated from University of 
Maryland in College Park, MD and was 
commissioned in the Air Force in May 2006 as a 
Developmental Engineer assigned to Air Force 
Research Laboratory in Wright Patterson AFB, 
OH.  After two years in a lab setting he moved to the Aeronautical Systems Center where 
he served as an Avionics Engineer in the C-17 Program Office. Here, Maj Page oversaw 
the development, testing, fielding and maintenance of over $400M in avionics equipment. 
In 2010, Maj Page assumed multiple leadership roles in the 513th Electronic Warfare 
Squadron at Eglin AFB, culminating as a Flight Commander. In this role he commanded 
an 11-member flight responsible for the development, testing and fielding of F-35 mission 
data, a critical path component to the fielding of ACC’s #1 acquisition program.  While 
stationed at Eglin AFB, he attended Squadron Officer School in Maxwell AFB, AL where 
he was bestowed Distinguished Graduate honors.  Following his tour at Eglin AFB he 
was selected to participate in the AFIT sponsored Education with Industry program 
where he spent 10 months learning best business practices in private industry before 
returning to government acquisitions. 
 
 
 
 
 
 
 
 
 
 
 
 



8 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



9 
 
 

Acknowledgements 
 
Thanks to Dan Sturtevant, Sean Gilliland, Sunny Ahn, and Carol Ann McDevitt from 
Silverthread Inc., for providing their tools, their data, and their expertise for this thesis. 
 
Thanks to my advisors, Alan MacCormack and Steve Eppinger, for their feedback and 
guidance throughout this research effort. 
 
Thanks to Jim Reilly, Joe Besselman, Maria Hallett, Chris Froude, and Conner Van 
Fossen for providing the wealth of data that went into the case study section of this 
research.  
 
Thanks to my wife, Jamie, for her support and patience along the way. 
 
Finally, thanks to the men and women that serve in our armed forces. This thesis is 
intended to benefit you and what you do for our country. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



11 
 
 

Table of Contents 
1 INTRODUCTION ................................................................................................................................... 15 

1.1 BACKGROUND ................................................................................................................................... 15 
1.2 RESEARCH QUESTIONS ...................................................................................................................... 16 
1.3 THESIS STRUCTURE ............................................................................................................................ 17 

2 LITERATURE REVIEW .......................................................................................................................... 19 
2.1 WHAT IS “TECHNICAL DEBT” AND WHY DO I CARE? .......................................................................... 19 
2.2 IS ALL TECHNICAL DEBT BAD? .......................................................................................................... 21 
2.3 SOURCES OF TECHNICAL DEBT WITHIN THE AIR FORCE .................................................................... 21 

2.3.1 Contractual Sources of Technical Debt .......................................................................................... 22 
2.3.2 Cultural Sources of Technical Debt ................................................................................................ 23 
2.3.3 Programmatic Sources of Technical Debt ...................................................................................... 24 

2.4 THE COSTS OF TECHNICAL DEBT ....................................................................................................... 26 
2.5 IMPLICATIONS OF TECHNICAL DEBT WITHIN THE AIR FORCE ............................................................ 27 
2.6 METHODS OF RESOLVING TECHNICAL DEBT ..................................................................................... 29 

2.6.1 Re-Factoring ................................................................................................................................. 30 
2.6.2 Re-Engineering.............................................................................................................................. 31 
2.6.3 Re-Writing ..................................................................................................................................... 32 
2.6.4 Accepting Technical Debt .............................................................................................................. 32 

3 MEASURING TECHNICAL DEBT....................................................................................................... 33 
3.1 RELATIONSHIP BETWEEN TECHNICAL DEBT AND ARCHITECTURAL HEALTH .................................... 33 

3.1.1 Role of Modularity in Architectural Health .................................................................................... 34 
3.1.2 Role of Hierarchy in Architectural Health ...................................................................................... 34 

3.2 ARCHITECTURAL HEALTH ASSESSMENT TOOLS ON THE MARKET ..................................................... 35 
3.3 HOW TO INTERPRET THE ARCHITECTURAL HEALTH ANALYSIS TOOL RESULTS ................................. 36 

3.3.1 Representing Interdependencies Using a Design Structure Matrix .................................................. 36 
3.3.2 Using Metrics to Convey the Health of a Code Base ....................................................................... 40 
3.3.3 Projecting the Costs of Technical Debt ........................................................................................... 43 

4 RESEARCH METHODS & SAMPLE DESIGN ................................................................................... 47 
4.1 IDENTIFICATION OF SELECT CODE BASES ........................................................................................... 47 
4.2 EXTRACTION OF DATA FROM SELECT CODE BASES .............................................................................. 48 

5 CASE STUDY FINDINGS...................................................................................................................... 51 
5.1 USING ARCHITECTURAL HEALTH ANALYSIS TOOLS TO INFLUENCE PROGRAMMATIC DECISIONS ..... 52 

5.1.1 Case A ........................................................................................................................................... 53 
5.1.2 Case B ........................................................................................................................................... 57 
5.1.3 Case C ........................................................................................................................................... 60 

5.2 USING ARCHITECTURAL HEALTH ANALYSIS TOOLS TO GUIDE A RE-FACTORING PROCESS ............... 62 
5.2.1 Case D .......................................................................................................................................... 62 

5.3 ARCHITECTURAL HEALTH ANALYSIS TOOLS WITHIN CONTINUOUS DEVELOPMENT PIPELINES ........ 71 
5.3.1 Case E ........................................................................................................................................... 71 

6 DISCUSSION AND SYNTHESIS ......................................................................................................... 77 
6.1 SUMMARY OF RESULTS ...................................................................................................................... 77 
6.2 OPPORTUNITIES TO REDUCE TECHNICAL DEBT IN THE AIR FORCE .................................................... 79 
6.3 AIR FORCE SENIOR LEADER PERSPECTIVE.......................................................................................... 80 

6.3.1 Interview with Steve Falcone, Chief Engineer, PEO Digital [62] .................................................... 80 
6.4 BARRIERS TO IMPLEMENTATION .......................................................................................................... 82 

6.4.1 Discovery of Technical Debt Leading to Program Termination....................................................... 82 



12 
 
 

6.4.2 DoD and Defense Industrial Base Inertia Opposing Rapid Acquisition Principles........................... 82 
6.4.3 Qualified Personnel Shortages ....................................................................................................... 83 
6.4.4 Increased Cycle Time and Up-Front Resources .............................................................................. 83 

7 RECOMMENDATIONS AND POLICY GUIDANCE FOR DOD SOFTWARE ACQUISITION . 85 
7.1 IMPROVING BUSINESS PRACTICES TO REDUCE TECHNICAL DEBT....................................................... 85 

7.1.1 Utilizing Appropriate Contract Vehicles ......................................................................................... 86 
7.1.2 Improving Software Development Processes .................................................................................. 86 
7.1.3 Education and Training Reform ..................................................................................................... 87 

7.2 UTILIZING ARCHITECTURAL HEALTH ANALYSIS TOOLS TO REDUCE TECHNICAL DEBT .................... 88 
7.2.1 Source Selection ............................................................................................................................ 89 
7.2.2 Traditional Waterfall Programs ..................................................................................................... 89 
7.2.3 Contractor Handoff ....................................................................................................................... 89 
7.2.4 Intra-Government Handoff ............................................................................................................ 90 
7.2.5 Continuous Development Pipelines ............................................................................................... 90 

7.3 FUTURE RESEARCH ............................................................................................................................ 91 
8 WORKS CITED ........................................................................................................................................ 93 
APPENDIX A: LIST OF SILVERTHREAD SCANS ON AIR FORCE SYSTEMS ........................................ 97 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



13 
 
 

List of Figures 
 
FIGURE 1 - TECHNICAL DEBT LANDSCAPE [13] .................................................................................................... 20 
FIGURE 2 – VISUALIZATION OF TECHNICAL DEBT QUADRANTS [15] .................................................................... 20 
FIGURE 3 - THE COST OF OPERATING IN VARIOUS STATES OF CODE HEALTH [23] ................................................... 26 
FIGURE 4 – COST VS. CAPABILITY MATRIX FOR RESOLVING TECHNICAL DEBT ........................................................ 30 
FIGURE 5 - MAPPING A SYSTEM TO DSM FORM...................................................................................................... 37 
FIGURE 6 - PROPER ARCHITECTURAL HEALTH VS. ERODED ARCHITECTURE HEALTH [45] ........................................ 38 
FIGURE 7 - EXAMPLE OF A MODULAR, HIERARCHICAL ARCHITECTURE [23] [36] ..................................................... 39 
FIGURE 8 - EXAMPLE OF LARGE CORES IN SOFTWARE SYSTEMS [45] ...................................................................... 40 
FIGURE 9 - GRAPHICAL DEPICTION OF MCCABE'S CYCLOMATIC COMPLEXITY [53] ................................................. 41 
FIGURE 10 - HOW DIRECT AND INDIRECT DEPENDENCIES ARE USED TO CALCULATE PROPAGATION COST [17] ......... 43 
FIGURE 11 – SUBSET OF POOR PERFORMING SCANS ON SELECT AIR FORCE CODE BASES ..................................... 51 
FIGURE 12 - CASE A: THE COST OF DOING NOTHING .............................................................................................. 53 
FIGURE 13 - CASE A: DSM (JAVA) ....................................................................................................................... 54 
FIGURE 14 - CASE A: CYCLOMATIC COMPLEXITY (JAVA) ....................................................................................... 54 
FIGURE 15 - CASE A: THE COST OF DOING NOTHING (JAVA)................................................................................... 54 
FIGURE 16 - CASE A: CYCLOMATIC COMPLEXITY (C++) ......................................................................................... 55 
FIGURE 17 - CASE A: DSM (C++) ........................................................................................................................ 55 
FIGURE 18 - CASE A: THE COST OF DOING NOTHING (C++) .................................................................................... 55 
FIGURE 19 - CASE A: DSM (C#) ........................................................................................................................... 56 
FIGURE 20 - CASE A: THE COST OF DOING NOTHING (C#) ...................................................................................... 56 
FIGURE 21 - CASE B: THE COST OF DOING NOTHING .............................................................................................. 57 
FIGURE 22 - CASE B: DSM (COMPONENT 1) ........................................................................................................... 58 
FIGURE 23 - CASE B: TECHNICAL DASHBOARD (COMPONENT 1) ............................................................................. 59 
FIGURE 24 - CASE B: DSM (COMPONENT 2) ........................................................................................................... 59 
FIGURE 25 - CASE B: THE COST OF DOING NOTHING (COMPONENT 2) ..................................................................... 59 
FIGURE 26 - CASE C: THE COST OF DOING NOTHING .............................................................................................. 60 
FIGURE 27 - CASE C: DSM (ADA) .......................................................................................................................... 61 
FIGURE 28 - CASE D: THE COST OF DOING NOTHING AT THE START OF FORMAL RE-FACTORING EFFORT................. 62 
FIGURE 29 - CASE D: THE COST AFTER RE-FACTORING .......................................................................................... 62 
FIGURE 30 - CASE D: DSM (2008) ........................................................................................................................ 64 
FIGURE 31 - CASE D: TECHNICAL HEALTH DASHBOARD (2008) .............................................................................. 65 
FIGURE 32 - CASE D: DSM (2013) ........................................................................................................................ 65 
FIGURE 33 - CASE D: DSM (2015) ........................................................................................................................ 66 
FIGURE 34 - CASE D: DSM (JUNE 2017) ............................................................................................................... 66 
FIGURE 35 - CASE D: DSM (JANUARY 2019) .......................................................................................................... 67 
FIGURE 36 - CASE D: TECHNICAL HEALTH DASHBOARD (JANUARY 2019) ............................................................... 67 
FIGURE 37 - CASE D: TREND OF LARGEST CORE SIZE OVER FULL LIFECYCLE ......................................................... 69 
FIGURE 38 - CASE D: COST TRENDS TO ADD 1000 LOC OVER FULL LIFECYCLE ....................................................... 69 
FIGURE 39 - CASE D: TREND OF LARGEST CORE SIZE OVER RE-FACTORING EFFORT ............................................... 70 
FIGURE 40 - CASE D: COST TRENDS TO ADD 1000 LOC OVER RE-FACTORING EFFORT ............................................ 70 
FIGURE 41 - CASE E: THE COST OF WELL-CONSTRUCTED CODE ............................................................................. 71 
FIGURE 42 - CASE E: DSMS ACROSS 4 VERSION RELEASES ..................................................................................... 72 
FIGURE 43 - SUMMARY OF TECHNICAL HEALTH METRICS....................................................................................... 77 
 
 
 
 
 
 
 



14 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



15 
 
 

1 Introduction 

1.1 Background 
 

“Software has become one of the most important components of our Nation’s weapons 
systems, and it continues to grow in importance. Software defines the way our systems 
see, communicate, and operate in combat. Design and acquisition decisions at the 
beginning of the software development process frequently have far-reaching and long-
term effects that impact the weapon system’s efficacy on the battlefield and its ability to 
adapt to changing requirements.“ – Defense Science Board Report on Design and 
Acquisition of Software for Defense Systems, February 2018 [1] 

 
The current state of software acquisition is a concern within the Department of Defense. 
[1] [2] [3] [4] [5] [6] [7] This has been highlighted through high-profile programs such as 
the F-35 Lightning II, Air Operations Center, and Next-Generation Operational Control 
System programs breaching cost, schedule or performance constraints on one or more 
occasions. [8] As weapon systems have become more reliant on software, program 
managers and developers alike must understand how their decisions today will affect 
both current performance and future capability. This includes the ability to understand 
the source code and its structure, the ability to discover and fix deficiencies, the ability 
to effectively and efficiently integrate new capabilities, and the ability to perform 
maintenance and sustainment of the code as it evolves, including re-factorization efforts 
to manage the size and complexity of core files.  
 
While the ability to understand the source code is of paramount importance, it is 
equally critical that developers and managers use that knowledge to manage both 
short-term and long-term objectives. Too often, long-term objectives are sacrificed to 
achieve short-term gains. Ward Cunningham coined the term “technical debt” as a 
metaphor for the trade-off between writing clean code at higher cost and delayed 
delivery, and writing messy code cheap and fast at the cost of higher maintenance 
efforts once it’s shipped. [9] Joshua Kerievsky extended the metaphor to architecture 
and design. [10] 
 
Unfortunately, the accumulation of technical debt is a common occurrence in the Air 
Force. [6]  Over time, developers have found areas of their code bases that have become 
difficult to modify as technical issues are neglected to keep product timelines on track. 
High levels of interdependency between files and/or modules form within the code 
base and cause unintended ripple effects which developers are not able to quantify 
objectively. As such, developers are reduced to performing trial and error to produce 
the performance results they’re aiming to achieve. This trial and error process takes 
more time, pushing timelines out even further and causing the backlog of technical debt 
to increase, forming a negative reinforcing cycle. To quantify these programmatic 
impacts, literature has been published linking the financial impacts of technical debt 
with the level of architectural erosion of time. [11] 
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To aid the efforts of the program managers and developers tasked with coding and 
sustaining highly complex, software-intensive Air Force systems, this thesis explores 
methods to reduce technical debt across the spectrum of Air Force software 
development activities.  Using data from select Air Force R&D and operational 
programs, this thesis analyzes the architectural health of five code bases to assess the 
level of technical debt that has accumulated over time. The core case study tracks the 
evolution of a software development program over a 10-year period, including an 
organic re-factoring effort that has been underway since September 2017. It shows how 
the results from the static scans have been able to guide engineering and management 
teams to significantly reduce the backlog of technical debt that had previously 
overwhelmed the program. Three case studies will focus on cases where Air Force code 
bases have already become unstable. In these cases, this thesis will examine the metrics, 
actions, and process changes that facilitated management’s “re-factor” vs. “re-write” 
decisions. The last case study provides insight into a program that has avoided taking 
on technical debt, providing lessons learned for other software development efforts. 
 
Ultimately, this thesis offers eleven recommendations on how to reduce technical debt 
across the Air Force software acquisition enterprise through the use of new teaming 
arrangements and quantitative architecture analysis tools. These recommendations 
include contextual factors on when the tools should be used along with specific action 
plans on how to overcome organizational inertia to implement these measures. 

1.2 Research Questions 
 
There are two research questions that will be addressed in this thesis. First, this thesis 
seeks to explore the connection between the Air Force’s current software development 
practices and the commercial implementation of technical debt management by asking: 
 

1) Do the architectural health analysis tools on the market provide relevant, objective, 
actionable data to help quantify, visualize, and resolve technical debt within a sample of 
Air Force code bases?  

 
This connection will be explored with a combination of interviews and technical 
assessments on five different code bases within one Air Force portfolio. The interviews 
will provide a qualitative assessment on management’s awareness and proficiency in 
managing technical debt, while the use of architectural health analysis tools will 
provide a quantitative assessment on the level of technical debt in each code base. By 
obtaining both qualitative and quantitative results through several case studies, a 
correlation can be made between the management of each program and the health of its 
resulting products.    
 
The second question addresses how the Air Force can better manage technical debt 
within the software acquisition cycle by asking: 
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2) What actions can be taken to reduce technical debt across the Air Force, thereby 
increasing development efficiency while reducing cost, schedule and performance issues 
across the full spectrum of Air Force software development activities? 

 
This question will be addressed through the synthesis of case study results in 
combination with key leader interviews that explore the technical, logistical, structural, 
procedural, and contractual changes that could aid in the reduction of technical debt. 

1.3 Thesis Structure 
 
This thesis is broken into seven chapters. The first chapter gives background and 
context to the research that follows. It outlines why the research topic was chosen, what 
specific questions are being addressed, and how the thesis is structured. 
 
The second chapter provides background on the topic of technical debt. This includes 
its definition, it’s prevalence in software development, and its impact on Air Force 
acquisition. The bulk of the chapter presents results from an extensive literature search 
that has been done on the subject. 
 
The third chapter discusses ways to measure technical debt. It examines the 
components of technical debt and how architectural health can be used as a proxy for 
the accumulation of technical debt within a system. An overview of architectural health 
tools will be given along with a section on how to interpret the results of the tools. This 
section outlines key concepts required to understand the case studies that follow. 
 
The fourth chapter discusses how the case studies were chosen and how they relate to 
the overall objectives of this thesis. It also discusses the process associated with 
performing the architectural health scans. 
 
The fifth chapter presents the five case studies as examples of how various Air Force 
programs have avoided, discovered, managed, and fallen victim to technical debt. In 
cases where architectural health analysis tools were used in the development process, 
the results show positive results. In cases where technical debt or architectural health 
were not tracked, the results show the implications of this oversight. Finally, in Case D 
the case study reflects how architectural health tools can be used to guide a re-factoring 
effort over time, which underscores one of the recommendations of this thesis. 
 
The sixth chapter synthesizes the results of the case study section. It highlights common 
themes amongst the cases and provides insight into how architectural health tools could 
be used in Air Force acquisitions. It concludes with a discussion on opportunities and 
barriers to implementation and senior leader perspectives on their current and desired 
decision-making processes, and how architectural health tools could help them realize 
that vision. 
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The seventh and final chapter provides recommendations to Air Force acquisition 
professionals for how to change the business landscape to facilitate the use of 
architectural health analysis tools, along with specific recommendations on where these 
tools could be integrated in the product lifecycle. The chapter concludes with a brief 
discussion on areas of potential future research. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



19 
 
 

2 Literature Review 
 
Over the past several years, there has been an increasing amount of literature published 
on the subject of technical debt. The sources of this research span from universities, to 
industry consortiums, to institutions like the Software Engineering Institute (SEI). This 
section consolidates ideas from relevant publications to define technical debt, highlight 
root causes of technical debt within software development efforts, discuss the 
implications of technical debt within the Air Force, and give a summary of methods that 
can be used to reduce technical debt. 

2.1 What is “technical debt” and why do I care? 
 
Understanding technical debt and the basis for its accumulation is important as it can 
have significant impacts on the cost, schedule and performance of a software system. 
According to SEI, “all software developers understand intuitively what technical debt 
is, [however] they lack clear guidance and proven techniques on how to identify it, how 
to concretely describe it, and how to account for it within the software-development life 
cycle.” [12] 
  
The following definitions provide insight into the meaning of technical debt.  Each one 
is slightly different, however the theme of sacrificing long-term health for short-term 
gains are common in each definition.  
 
According to the notes from the Dagsthul Seminar on Managing Technical Debt in 
Software Engineering, “technical debt is the collection of design or implementation 
constructs that are expedient in the short term, but set up a technical context that can 
make future changes more costly or impossible. Technical debt presents an actual or 
contingent liability that impacts internal system qualities, primarily maintainability and 
evolvability.” [13] 
 
According to DevIQ, “Technical debt is a metaphor for all of the shortcuts, hacks, and 
poor design choices made for a given software system that compromised its quality, 
usually in an attempt to meet a deadline.” [14] 
 
According to MacCormack et al., “Technical debt is created when design decisions that 
are expedient in the short term increase the costs of maintaining and adapting this 
system in future.” [11] 
  
According to Ozkaya, Deputy Lead of the SEI Architecture Practices Initiative, 
“Technical debt communicates the tradeoff between the short-term benefits of rapid 
delivery and the long-term value of developing a software system that is easy to evolve, 
modify, repair, and sustain.” [12] 
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For the sake of this research, the paper will utilize the definition from MacCormack et 
al. [11] for its clear and concise interpretation.  
 
Technical debt can manifest itself in various ways, but is ultimately a non-ideal 
property of a technical system that leads to non-ideal business outcomes. Figure 1 
shows a characterization from SEI on how technical debt can impact both 
maintainability and evolvability of a code base. On the left-hand side, the figure 
represents how poor architectural health could slow down the delivery time lines of 
new features. On the right-hand side, the figure represents how poor code health could 
influence the lifecycle cost associated with maintaining the code base. In both cases, the 
accumulation of technical debt can levy programmatic impacts on software 
development efforts. 
 

 
Figure 1 - Technical Debt Landscape [13] 

Additionally, research has shown that different categories of technical debt arise during 
a development effort. Figure 2 shows four categories of technical debt that fall along 
two axes pertaining to how deliberate and thoughtful the developers were in their 
effort. 

 
Figure 2 – Visualization of Technical Debt Quadrants [15] 
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Of the four quadrants shown in the figure, there is a hierarchy of severity based on how 
the technical debt is generated and how it is handled after the fact. The bottom left 
quadrant is by far the worst of the four because the developers don’t realize that they’ve 
accumulated technical debt, and thus, have no recourse to fix it. This could be caused by 
lack of knowledge, training, or coding standards. The top left quadrant reflects an 
understanding that technical debt is being accumulated, but a rejection of the premise 
that it needs to be managed. This practice could be satisfactory for throw-away systems, 
but not systems that will require long-term maintenance. The bottom right quadrant 
reflects when developers don’t realize they’ve accumulated technical debt until after the 
system has been released, however there is a desire to correct the issue moving forward. 
This represents “learning” in an organization and can help guide coding standards, 
development processes, and training moving forward. Finally, the top right quadrant 
reflects when developers willingly accept technical debt but also develop a plan to 
reduce it over time. An example of this situation would be releasing a product to meet a 
deadline but following the release with a focused period of “clean-up” afterward. [14] 

2.2 Is all Technical Debt Bad? 
 
Not all technical debt is bad. According to SEI, “Technical debt can be thought of as a 
design strategy. The financial metaphor is apt because, as with finances, getting into 
debt in software development by optimizing short-term goals creates tangible value. It 
represents a tradeoff, a choice of one option over another. But selection of this option 
must be managed through the duration of the project, with a clear understanding of the 
penalties that result. The danger lies in choosing the option and making the tradeoff, 
but then forgetting about, ignoring, or underestimating the consequences.” [12] In an 
interview with the Chief Technology Officer (CTO) for one of the case studies, he stated 
they made a conscious decision to allocate chunks of time for feature development 
interspersed with periods dedicated strictly to tackling technical debt. As such, they are 
able to move quickly and stay engaged with the customer in the feature development 
phase as a direct result of their ability to “catch up” during their tech debt phase. 
 
While there are many ways to address technical debt, it cannot be ignored altogether. 
Whether technical debt is addressed in batches as described above, or addressed as the 
code is being developed, left untouched for too long, it will degrade the software 
system. Ultimately it will be up to the owner of the software system to determine how 
to handle the technical and economic implications of this systemic issue. 

2.3 Sources of Technical Debt Within the Air Force 
 
There are several sources of technical debt within the Air Force acquisition system. The 
sources include contractual, cultural and technical factors. Each of the factors will be 
discussed below, highlighting specific root causes that could be addressed through 
policy, process, or product management changes. 
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2.3.1 Contractual Sources of Technical Debt 
 

“The utility of defense hardware is beholden to its software, and data rights hold the key 
to life-cycle affordability… services need to avoid vendor lock, where proprietary rights 
are restricted to the original system vendor…the military must make the most out of 
finite budgets, and owning all the data rights and associated intellectual property is one 
way to create a cost competition.” - senior military analyst Dave Deptula [16] 

 
From a contractual perspective, lack of data rights and improper incentives are two of 
the largest drivers of technical debt in software systems. At the time of contract award, 
the government must make decisions on how to handle contractor data rights. In the 
past, fiscal constraints have forced the government to make short-sighted decisions that 
precluded them from procuring full rights to the source code. Without data-rights, the 
government has little or no visibility into the contractor-developed source code, forcing 
them to rely largely on functional testing as their sole source of evaluation. While 
functional testing does verify the current performance of a system, it does not provide 
insight into the maintainability, sustainability, or scalability of the code base. As such, 
relying on functional testing could easily mask technical debt or architectural 
deficiencies within a system, increasing overall lifecycle cost. Unfortunately, passing 
functional test is typically the major milestone required for deliverable acceptance in 
both fixed price and cost reimbursable contracts.1 
 
In addition to the lack of transparency, the government’s lack of data rights requires 
them to return to the original contractor for future changes regardless of programmatic 
implications. This concept is commonly referred to as “vendor lock” [16] or “intellectual 
property lock in.” [17] By forcing the government to return to the same vendor, 
contractors are not incentivized to address their technical debt. Instead, the contractor’s 
technical debt is passed through to the government in the form of inflated costs and 
decreased velocity. Since the government is “locked in”, they are forced to pay the bill. 
 
With that said, even if data rights are acquired up front, in some they are not sufficient 
to enable fair and open follow-on competition to avoid future vendor lock.  Technical 
debt is directly tied to the learning curve for a new company to take over a code base, 
and should be factored into any cost proposal. Maintaining a high technical debt creates 
a “burden of entry” for any other company into the code base.  This potentially creates a 
corporate strategy to justify high cost employees while maintaining a vendor lock on 
the code base. 
 
 

                                                
 
1 Cost-Reimbursement types of contracts (FAR Subpart 16.3) provide for payment of allowable incurred costs, to the extent 
prescribed in the contract. These contracts establish an estimate of total cost for the purpose of obligating funds and establishing a 
ceiling that the contractor may not exceed (except at its own risk) without the approval of the contracting officer.  
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2.3.2 Cultural Sources of Technical Debt 
 
From a cultural perspective, there are two aspects to consider: the culture of the 
Department of Defense (DoD) and the culture of the development organizations. At the 
DoD level, the culture surrounding development and sustainment activities is one of 
risk-aversion. As such, the acquisition process has become bloated with rules and 
regulations, largely reactive measures from failures of years past. The documents that 
guide acquisitions efforts, the FAR, DFARS, and DoD 5000 series documents have 
grown to the point where they have become unmanageable, and while the size of the 
documents is largely independent from the concept of technical debt, the behavior it 
drives is not. Instead of focusing on product health, government officials focus on 
check-list compliance. Instead of focusing on capability delivery, government officials 
focus on whether the correct forms were filed. While this depiction is slightly 
exaggerated, it does give a picture of the cultural landscape in which the DoD operates. 
A culture that is less focused on improving the core infrastructure of systems (i.e. 
reducing technical debt), and more concerned with meeting deadlines, completing 
milestone events, and meeting short-term budget numbers. 
 
To address the bureaucracy within the DoD acquisition system, Ellen Lord, the head of 
the DoD’s Acquisition and Logistics office states that, “In 2019…We are going to invert 
[the tailoring] approach and take a clean sheet of paper and write the absolute bare 
minimum to be compliant in 5000.02, and encourage program managers and 
contracting officers to add to that as they need for specific programs.” [3] Lord and 
others recognize the need to change the acquisition process. They understand that 
cultural factors are partly to blame for driving cost and risk into DoD systems through 
the emphasis on checklist compliance and short-term cost savings. While her ambitions 
are admirable, there will continue to be significant pressure to incur technical debt until 
these changes take hold. 
 
At the development organization level, program managers often do not emphasize the 
importance of long-term health in software systems, leading to poorly defined, poorly 
developed, or poorly tested software that is fielded solely to meet timelines. In the 
context of operational programs, combatant commanders are continually asking for 
systems with new functionality. While this mentality is understandable given their 
perspective of the military landscape, acquisition professionals must articulate the fact 
that it is much harder, and more expensive, to add new capability in a future iteration if 
the code base is in disarray. According to Joe Besselman, a technical SME for PEO 
Digital2: 
 

“The warfighter or customer practice of “capability-only investments” and acquisition 
officer compliance is truly insidious.  It leads to a succession of releases over time 

                                                
 
2 Battle Management PEO re-organized into PEO Digital in 2018 
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accompanied by one or more runtime libraries of different generations. The more 
egregious aspects of this situation are that 1) we considerably increase the Cyber threat 
to our capabilities by operating with expired libraries, which to the uninitiated means 
we’re operating software with published exploits and readily available patterns or 
recipes on the Internet to attack those exploits and 2) in many cases we have sustainment 
contracts based on lines of code, so as we add these duplicative libraries to a system the 
size of the code balloons and many program managers fail to understand they are paying 
to sustain multiple generations of the same library along with their custom code.” [18] 

 
A balance must be achieved between delivering “bright, shiny objects” and sustaining 
the underlying foundation of the code, both for maintenance and security reasons. This 
balanced approach must be incorporated in the culture of acquisition organizations or 
else the pressure to perform in the short-term will create overwhelming amounts of 
technical debt. 
 
In the context of R&D programs, program managers are incentivized by tech transition 
and fielding rates. Often, irrational optimism can inflate transition rates to the detriment 
of the products and engineers, which can be compounded by the use of subjective 
measures for “readiness.” Investment strategies focus on new starts and ongoing 
efforts, but have minimal review of completing programs.  There is little review of 
actual experimental results and actual transition success/failure.  All of these factors 
lead to an emphasis on getting new capabilities out the door, often at the expense of the 
operators that will be using it or the maintenance organization that will be sustaining it. 
This short-sighted approach, along with a lack of quantitative data to track the 
programs after they’re fielded, facilitates the accumulation of technical debt in our R&D 
portfolio. 
 
2.3.3 Programmatic Sources of Technical Debt 
 

“DoD and other government acquisition managers must be able to assess what kind(s) of 
technical debt their developers and software contractors are creating when they make 
decisions.” – Ipek Ozkaya, SEI Architecture Practices Initiative [12] 

 
From a programmatic perspective, technical debt is largely left undetected due 
insufficient metrics and a lack of standardized tools to assess quality or maturity in 
software systems. While a software development plan is required for every new 
acquisition program, the process, tools, and metrics to be used within the effort are 
largely subject to program manager discretion. According to the USAF Weapon System 
Software Management Guidebook, [7] software metrics should: 
 

• Be integral to the developer‘s processes. 
• Clearly portray variances between planned and actual performance. 
• Provide early detection or prediction of situations that require management 

attention. 
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• Support the assessment of the impact of proposed changes on the program. 
  
This overarching guidance is vague and subject to interpretation. While in general it is 
favorable to keep high-level guidance devoid of specific tools, processes, and metrics, 
given the current state of Air Force acquisition, it could be helpful to have a list of 
accepted, standardized tools and metrics that are kept up to date with state-of-the-art 
industry practices. [1] 
 
In contractor-led development efforts, metrics should be defined during the source 
selection process and adhered to throughout the development effort. [7] While most 
programs track software metrics, the metrics themselves are largely out-of-sync with 
current industry practices. Typical metrics included in Air Force acquisition programs 
include: [7] 

• Software size 
• Software development effort 
• Software development schedule 
• Software defects 
• Software requirements definition and stability 
• Software development staffing 
• Software progress (design, coding, and testing) 
• Computer resources utilization 

Most of these metrics are based on legacy measures that don’t capture architectural 
health, technical debt, or any aspect of developer productivity. By incentivizing 
contractors to work to these metrics, the government is ignoring a major component of 
cost both in development and sustainment. By selecting metrics focused on system 
complexity, cyclicality, and modularity, contractors would shift their efforts from short-
term metrics to long-term health, saving money over the course of the product’s 
lifecycle. 
 
Similarly, government-led efforts should choose metrics that provide insight into health 
of their product. The main difference between government-led efforts and contractor-
led efforts is the amount of control the government has during the development 
process. Contractor-led efforts are typically performance-based, precluding the 
government’s involvement in pre-delivery assessments. Put another way, the 
government keeps control of “what” the contractor is delivering (i.e. executable) but has 
less control over “how” they’re developing it. The lack of standardized tools, useful 
metrics, and insight into contractor-led product assessments all contribute to the 
accumulation of technical debt. 
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2.4 The Costs of Technical Debt 
 
The costs of technical debt are significant. According to SEI, “For systems on which 
software architectural quality has been allowed to degrade, especially in its 
modifiability and maintainability dimensions, dealing with the stream of continual 
changes becomes increasingly less cost-effective, as more and more effort is required for 
comprehending and sustaining the system, leaving fewer resources for implementing 
new capabilities. This results in cost and schedule slippage or a diminished ability to 
field new capabilities.” [19] 

From a 2016 Information Technology House of Representatives sub-committee report, 
“The federal government spends the majority of its $80 billion technology budget on 
maintaining and operating legacy systems.” [20] While legacy programs are not 
inherently bad, there is significant technical debt that is inherited in those programs that 
must be dealt with just to keep the programs operating. “Money, time and manpower 
that are devoted [to these efforts]… are unavailable for other efforts, and this crippling 
debt can impact agency performance and jeopardize the success of IT modernization. 
The key to successful modernization is paying off technical debt by automating 
outdated workflows and processes…” [21] 

To quantify the direct manpower costs associated with maintaining a software system, 
figure 3 shows a portfolio analysis from a $1B firm with over 1000 developers. Code 
quality is shown on the y-axis, with file hygiene improving as you near the origin. In 
this research, code quality relates to how well the individual parts within the system are 
constructed. [22] This is specifically focused on how complex the internal structure of 
the file is. Design quality is shown on the x-axis, with architecturally simple code being 
towards the origin and architecturally complex code moving away from the origin. In 
this research, design quality is defined as how well individual parts are assembled 
architecturally, or whether attributes such as modularity or hierarchy have been 
degraded. [22] 

 
Figure 3 - The Cost of Operating in Various States of Code Health [23] 
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The empirical data shows that the manpower required to develop, de-bug, and deliver a 
new feature within a system with healthy code and architectural characteristics is 
significantly less resource intensive than doing so in a system with poor code and 
architectural health. [23] While this chart only captures the software systems within one 
firm, it is effective in characterizing the differences in development time between 
healthy systems and those with degraded code and architectural health. For systems 
that have both poor code and design quality, developers may spend upwards of 69% of 
their time de-bugging. This is in stark contrast to the amount of time developers spend 
de-bugging in a healthy architecture, which is estimated at around 20%. These 
differences in productivity can be attributed to the interdependency and complexity 
inherent in the code, forcing developers to chase the errors that have been propagated 
through the system. 

2.5 Implications of Technical Debt within the Air Force 
 

“The Defense Department’s approach to software acquisition trails industry 
standards. Of major Air Force acquisitions exceeding their original cost baselines, the 
majority (five of nine) are software developments… There are specialized technology 
cells… that are brought in to apply modern software development to struggling 
programs. But that is not a sustainable solution. Reforming software acquisition is a 
top priority for me and the Air Force.” - Dr. William Roper, Assistant Secretary of the 
Air Force for Acquisition, Technology and Logistics [24] 

 
There are multiple factors contributing to the Air Force’s software woes, including 
overly burdensome regulations, outdated processes, lack of appropriate tools, and poor 
cultural practices. With all of those factors considered, it is difficult to isolate the cost of 
technical debt from other sources of mismanagement. In an attempt to separate this 
cost, it is useful to examine a program’s sustainment costs relative to its development 
costs. Since technical debt drives long-term maintenance costs higher to reduce short-
term development costs, this metric may be useful in identifying “at-risk” programs.   
 
Using the F-35 program as an example, as of December 2017 the program had spent 
roughly $59.8 billion in development costs versus roughly $620 billion on operations 
and sustainment. 3 [25] These figures capture much more than software, however this 
10:1 ratio could be indicative of systemic problems, specifically the plagued automated 
logistics information system and mission systems software. To make matters worse, the 
lifecycle sustainment cost of operating the fleet of Joint Strike Fighters has been 
estimated at over $1 trillion, largely deemed unaffordable by critics. To meet Congress’ 
10% year-over-year cost reduction goals, a focus on technical debt and architectural 
health would provide significant return on investment. 
 

                                                
 
3 Calculated in 2012 dollars 
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The quotes that follow are direct excerpts from senior leader interviews with the media 
that speak to the dramatic effect of technical debt and other software mismanagement 
practices have had on large weapon systems. From the F-35 Program Executive Officer 
(PEO): 

“…Air Force Lt. Gen. Chris Bogdan discussed a range of issues affecting the Pentagon's 
biggest weapons program at nearly $400 billion, including the hundreds of lingering 
deficiency reports, or DRs, known as "technical debt" in acquisition parlance. There are 
419 things that we have yet to decide with the war fighters how we're going to fix them, 
whether we're going to fix them and when we're going to fix them. The figure was three 
times higher a few years ago and "we think the technical debt that we have -- the 
deficiencies that we have -- are things that we can handle.” [26] 

It should be noted that in this instance, the term technical debt is being used to describe 
as a backlog of deficiencies that were discovered in lab and flight testing rather than 
technical decisions that were made in the development the F-35 source code. From the 
context of this research, this alternate definition highlights the misuse of the term in Air 
Force circles. Technical debt may be a causal factor in the deficiencies being present, 
however, it is likely not the deficiencies themselves. 
 
From Elizabeth McGrath, the Department of Defense Deputy Chief Management 
Officer, on the cancellation of the Expeditionary Combat Support System (ECSS): 
 

“For the United States Air Force, installing a new software system has certainly proved 
to be a wicked problem. Last month, it canceled a six-year-old modernization effort that 
had eaten up more than $1 billion. When the Air Force realized that it would cost another 
$1 billion just to achieve one-quarter of the capabilities originally planned — and that 
even then the system would not be fully ready before 2020 — it decided to decamp…. 
ECSS was restructured many times, including three separate times in the last three 
years. Each time, we chunked it down, breaking it into smaller pieces, focusing on specific 
capabilities. But this was not enough to save the system, because program managers did 
not succeed in imposing the short deadlines of 18 to 24 months that the department now 
requires for similar projects. Tight deadlines will certainly go a long way toward 
avoiding future billion-dollar fiascos. But much more needs to change before the 
department’s older software systems can be replaced.“ [5] 

 
And finally, from a US Air Force spokeswoman speaking about the recent cancellation 
of the AOC 10.2 program: 
 

“The U.S. Air Force has terminated a contract with Northrop Grumman for a network 
upgrade for the Air Operations Center, a key tool used by the service to plan and conduct 
air operations, and instead will partner with the Defense Department's innovation unit 
to find a quicker way to field the update. … Estimated development costs had ballooned 
from $374 million to $745 million and the program had slipped to more than three years 
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late. Going forward, the service intends to start an "AOC Pathfinder" project that will 
use an agile software development technique called DevOps — short for development 
operations — to help the service continuously upgrade the system's capabilities… The 
AOC Pathfinder approach implements industry best practices …  shrinking release 
cycles from years to weeks.” [27]  

 
These three examples highlight the cost, schedule, and performance issues that the Air 
Force has been having with software-intensive systems. In each case, the theme of 
schedule pressure has exacerbated the poor performance of the program, with long-
term health getting deferred until the effort had become untenable. 
 
In addition to schedule pressure, there is Congressional pressure for DoD software costs 
to go down in conjunction with commercial software development costs. According to 
Besselman, “You have a Congress that expects IT costs to decline because the average 
cost of an IT/Software capability is declining commercially as we increasingly use 
libraries and commoditized cloud-based services.  The problem is we never see this 
decline in the DoD, because the warfighter’s demand for new IT/software capabilities is 
increasing at a higher rate and they want only new capabilities.  The acquisition offices 
exacerbate the situation further with their declining rate of IT/software expertise, 
leading ultimately to the most harmful practice of buying only new features and not 
allocating some percentage of an investment to system or weapon system hygiene and 
the reduction of technical debt over time.” [18] 
 
While the high-profile failures within the Air Force garner a majority of media 
attention, there are exponentially more programs which have flown below the radar 
that have just as much technical debt, and are performing just as poorly, only on a 
smaller scale. The case study section provides additional data to substantiate this claim. 
This research shows that the Air Force must do something to address the crippling 
amounts of technical debt within the acquisition system. Whether the root cause is 
technical, contractual, or cultural in nature, it is costing taxpayer’s millions of dollars in 
development and sustainment costs.  

2.6 Methods of Resolving Technical Debt 
 
There are several ways in which technical debt can be dealt with. This thesis does not 
address each method in detail, however this section will provide a brief overview of 
each concept. It should be noted that the first step in achieving any of these techniques 
is to first identify and quantify technical debt within a software system. [28] As such, 
the research presented in this paper is pertinent to achieving any of the methods in this 
section. 
 
At a high level, there are four methods to address technical debt within a development 
environment. Figure 4 shows these methods in terms of the cost of debt versus the need 
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for new features. By characterizing the techniques this way, the matrix describes when 
each course of action would be applicable for certain business objectives. 
 

 
Figure 4 – Cost vs. Capability Matrix for Resolving Technical Debt 

2.6.1 Re-Factoring 
 
Re-factoring is defined as the “process of changing a software system in such a way that 
it does not alter behavior of the code yet improves its internal structure.” [29] Re-
factoring can take place at the code level or higher (architectural) levels depending on 
the need. From Buschmann, [30] there are three direct implications to re-factoring: 
 

• can improve “only” developmental qualities, such as maintainability and 
comprehensibility of code and design;  

• doesn’t allow changing published contracts; and  
• isn’t an activity or substitute for bug fixing.  

 
Any change that doesn’t adhere to this definition is considered out of scope for a re-
factoring effort. Types of changes that are not considered re-factoring include cleaning 
up interfaces, adding new features, fixing bugs, etc. While the scope of re-factoring is 
limited, Buschmann argues it holds tremendous value as, “Improper developmental 
quality has a direct and measurably negative impact on a system’s life cycle costs: it 
takes longer to understand and maintain its code, and architecture drift is harder to 
discover. It’s more laborious to test the system and chances are higher that 
modifications introduce bugs that are costly to fix.” [30] 
 
Re-factoring is a powerful and agile approach to maintain a system’s high 
developmental quality. If regularly practiced, re-factoring has a positive effect on 
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developer habitability and system life cycle costs. [31] Yet, the light weight of re-
factoring is no excuse for a quick-and-dirty development style. If too much of an 
iteration’s duration is spent on structural gardening without adding or improving 
features, refactoring is hard to sell to project management. Pragmatic architects thus try 
to minimize the need for refactoring, which is possible by advocating a development 
culture that values thoughtful design decisions based on requirements and an 
economic, expressive coding style. [32] [33] 

The power and agility of re-factoring is fueled by a strict focus on small, structural 
improvements limited to single system entities, paired with a rigid but lightweight 
quality assurance process. Unleashing the power of refactoring requires a solid 
understanding of its specific focus paired with disciplined practice. Otherwise, [it] can 
do more harm than good to a system’s quality. [30] 

2.6.2 Re-Engineering 

Re-engineering is defined as “a systematic activity to evolve existing software to exhibit 
new behavior, features, and operational quality.” [34] Re-engineering is distinctly 
different from re-factoring based on the ability to add new functionality to the software. 
While re-engineering is usually associated with new feature development, there are still 
several cases where this approach would be appropriate for the reduction of technical 
debt. One such example would be when short-term architectural decisions have created 
hard limitations on throughput, utilization, or scalability of the system. Since re-
factoring is not intended to change system functionality, re-engineering would be more 
appropriate in this case. 

Re-engineering alters the design and realization of software through a series of system-
level disassembly and reassembly activities. [35] This activity seeks to evolve and 
maintain software assets that have provided a visible contribution to a system’s 
business case or have a proven, significant role in an organization’s portfolio. [34] 
Because these undertakings can be fairly significant in both scope and implications, re-
engineering efforts are typically performed as standalone projects with cost, schedule 
and performance controls. This is in contrast to re-factoring efforts which are typically 
executed by the programs existing developers within the context of their normal duties.  
As a heavyweight gardening activity, reengineering requires strong indicators for 
considering its application. There are four main reasons to contemplate reengineering: 
[35] 
 

• Re-factoring is insufficient for achieving the required qualities.  
• Bug fixes in one place repeatedly cause bugs in other places.  
• New operational or functional requirements can’t be realized appropriately 

within the given architecture.  
• The business case for the system changed.  

 



32 
 
 

2.6.3 Re-Writing 

Often considered as the most drastic option in addressing technical debt, re-writing is 
defined as “replacing an existing system or component with an entirely new 
implementation.” [34] There are several reasons why re-writing an entire system may 
be the best course of action, including cases where it is too costly to re-factor or re-
engineer a system, or the case where an old system has reached end-of-life and a new 
system has already been planned to take its place. In a re-writing effort it is important to 
design the system using sound architectural principles (modular, hierarchical, etc.) to 
avoid inappropriate dependencies that burden developers with unnecessary 
complexity. It is equally important to track and manage technical debt during the 
development effort to avoid costly re-engineering efforts in the future. 

A disadvantage of re-writing is that functional capabilities, both documented and 
undocumented, can be lost. 

2.6.4 Accepting Technical Debt 
 
Managing technical debt is ultimately a business decision. As such, there are instances 
where the cost of a re-factoring, re-engineering, or re-writing activity would be cost 
prohibitive. In those cases, leadership may make the decision not to do anything with 
the technical debt within the software system. This could be the case when a system is 
close to reaching end-of-life or when an organization does not have the requisite 
resources to undertake a new development effort. While this technique doesn’t present 
the best engineering solution, it may provide the best financial solution. If this path is 
chosen, it is extremely important to identify and measure the amount of technical debt 
in the system to manage its implications properly. As such, it is just as important to 
understand the tools and techniques presented in this research in order to aid in the 
identification and quantification process. 
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3 Measuring Technical Debt 
 

“In the acquisition of new systems, software drives program risk for approximately 60 
percent of programs... Unexpected complications can arise from unanticipated 
interdependencies within the software itself, often driven by the underlying 
architecture.” - Defense Science Board Report on Design and Acquisition of Software for 
Defense Systems, February 2018 [1] 

 
Technical debt can be present from the beginning of a design or may accumulate over 
time as software functionality changes, coding practices degrade, or market pressure 
forces systems to be fielded without regard to long-term health concerns. In cases where 
system objectives change over time, developers may find themselves using areas of the 
code base in ways that are different from their intended use, or scaling modules in a 
manner that were never considered at the initial design. These types of practices result 
in issues within modules in the form of increased code complexity, and in the 
relationships between modules in the form of degraded architectural health. This 
section focuses on both aspects as they relate to the accumulation of technical debt. 
Specifically, this section explains how architectural health can serve as a proxy for 
technical debt, examines the architectural health assessment tools on the market, and 
explains how to interpret the results of the architectural health analysis tools used for 
this research. 

3.1 Relationship between Technical Debt and Architectural Health 
 

“Without a robust underlying architecture, someone working on a low-level function will 
be unable to understand all the end applications in which a function might be used. 
Therefore, the architect must try to define modules in a way that avoids cross-couplings, 
whereby changes in one module impact and require changes to other modules.” - Defense 
Science Board Report on Design and Acquisition of Software for Defense Systems, 
February 2018 [1] 

 
Technical debt can take many forms within a code base. It can describe a lack of 
documentation, lack of appropriate architectural structure, poor code quality, or lack of 
test coverage. These program characteristics can be caused by a number of factors, 
including poor coding practices, poor requirements definition, poor processes, schedule 
pressure, or lack of management attention. Of these root causes, this research focuses on 
architectural health as a primary component of technical debt and examines the 
relationship between architectural health, technical debt, and business outcomes. 
 
Architectural health is a concept that is derived from an analysis of the relationships 
between entities in a code base. A code base that is said to have good architectural 
health is both modular and hierarchical in nature. If technical debt is the generic term 
for sacrificing long-term health in favor of short-term value, architectural debt can be 
thought of as sacrificing the modularity and hierarchy of the code in order to deliver 
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capability faster. In the sections that follow, modularity and hierarchy will be discussed 
in the context of how they relate to technical debt and architectural health. 
 
3.1.1 Role of Modularity in Architectural Health 
 
Modularity is an assessment of the degree of coupling internal to a code base. 
According to Baldwin, et al., “The concept of modularity is used primarily to reduce 
complexity by breaking a system into varying degrees of interdependence and 
independence across and hide the complexity of each part behind an abstraction and 
interface.” [36] A well-designed API can mask internal complexity such that external 
developers need only be concerned with the inputs and outputs of the module, 
effectively treating it as a black box. 
 
Within a code base, it is desirable to have loosely coupled architectures that are easy to 
modify or replace any individual component or service without making corresponding 
changes to [those] that depend on it. [37] Because the code is composed of different 
modules, there must be an integrative framework that allows for the independence of 
structure while integrating its functions. [36] Modularity presents several advantages, 
including: 
 
• Increasing the range of manageable complexity 
• Allowing different parts of a large design to be worked on concurrently, and 
• Accommodating uncertainty 

[36] 
 

With certain architectural health analysis tools, modularity can be measured through 
fan-in and fan-out counts to determine how files relate to one another. In circumstances 
where files are both depending on and being depended on by other files, we define the 
interdependent relationship as a cyclical “core.” 
 
MacCormack et al. suggests that “cyclical groupings can proliferate over time as 
modularity and hierarchy erode, causing hundreds or thousands of source files to 
become mutually interdependent. In these cores, changes have strong, reinforcing 
ripple effects. A single change to a file can impact thousands of others, in distant parts 
of the system. Critically, this complexity can’t be detected through inspection or code 
reviews. It’s made visible only by tracing relationships between files across the system 
and its associated organizational groups… From a business outcome perspective, it is 
suggested that tightly-coupled core or central components cost significantly more to 
maintain then loosely-coupled peripheral components.” [11] 
 
3.1.2 Role of Hierarchy in Architectural Health 
 
From MacCormack et al., “design hierarchy refers to a specific ordering of components 
in a system, such that dependencies flow in a uniform direction.” [11] The concept of 
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hierarchy is useful in the “building-block” approach to system architecture, as it 
supports software re-use at lower levels. There are multiple approaches in designing 
hierarchical systems, including layering, main-subroutine, master-slave, and virtual 
machine. [38] [39] 
 
If a system is thought about in terms of layers, a module that is used by every other 
module but is dependent on nothing would be considered at the bottom layer of the 
hierarchy. This means that if a change occurs to this module (i.e. a utility), then it could 
potentially affect every module either directly or indirectly connected to it. If a module 
is dependent on other modules, yet nothing is dependent on it, it is considered to be at 
the top of the hierarchy. If something in this module is changed, other modules are not 
affected. 
 
Preserving the hierarchy of a software architecture is important to control unwanted 
coupling and propagation effects, topics that will be discussed in the metrics section of 
this research. 

3.2 Architectural Health Assessment Tools on the Market 
 

As discussed above, technical debt and architectural health are closely linked to 
business outcomes. As such, there are several commercial packages on the market today 
to assess the architectural health of code bases. The four main vendors in this space are 
Silverthread Inc., Lattix, SonarQube, and CAST. While each vendor analyzes 
architectural health in some capacity, they each have a slightly different approach with 
different analysis methods, plug-in tools, visualization techniques, and health 
dashboards. 
 
CAST Application Intelligence Platform analyzes source code by categorizing each 
business function into a measurable unit. This allows for faster identification of reduced 
software quality, system vulnerabilities, and areas where productivity can be improved 
in a complex, multi-tiered infrastructure. [40] Like the other three tools, CAST works to 
find deficiencies at the architectural level, focusing on identifying the relationships 
between elements, layers, and functions. Similarly, SonarQube uses code smells4 and 
other methods to detect vulnerabilities, bugs architectural deficiencies, and violations of 
business rules. [41] While both of these tools are powerful and useful, they do not use 
the visualization methods this research seeks to explore further. As such, these tools 
should be included in future research to assess the validity of their metrics in Air Force 
applications, but are excluded from this research effort.  

Lattix was founded in 2004 by Neeraj Sangal. Its core product, Lattix Architect, is in use 
by development teams, systems architects, designers, and quality personnel in 29 

                                                
 
4 A code smell is a surface indication that usually corresponds to a deeper problem in the system. [70] 
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countries around the world. According to Lattix, their core product, Lattix Architect, is 
a desktop application that enables [customers] to create dependency models of [their] 
systems, including applications, databases, services, and configuration files. It enables 
customers to understand detailed dependencies of low-level elements, decompose and 
understand hierarchical relationships, re-engineer systems and generate work lists, 
create design rules allow precise specification of layering and componentization, 
control how 3rd party libraries are used, utilize metrics to measure complexity, stability, 
cyclicality, coupling and other measures, and features an open API to extend, customize 
and integrate into tool chain. [42] 

Silverthread, Inc was founded in 2015 by researchers from MIT and Harvard Business 
School. Its core product offering is CodeMRI, which is further broken into CodeMRI 
Diagnostics and CodeMRI Analytics. According to Silverthread, CodeMRI Diagnostics 
provides an assessment of the design health and ‘cost of ownership’ of a codebase by 
visualizing design quality, capturing architectural health metrics (e.g., modularity, 
cyclicality, complexity), benchmarking against comparable systems, targeting design 
degradation and improvement opportunities, and quantifying business impact in terms 
of risk, schedule, cost, quality, agility. CodeMRI Analytics provides a customized deep 
dive analysis into a software codebase. It provides the ability to attack root cause of 
software project problems, build strategic ROI-based cases for design & quality 
improvement, plan technology changes & monitor refactoring progress, keep system 
healthy and prevent new design problems, and measure resulting maintainability, 
agility, & cost outcomes. [43] 
 
In all cases, architectural health analysis tools help customers visualize the structure of, 
and relationships within their code base using graphs and metrics. In the Lattix and 
Silverthread tool sets, a specific type of graph called a Design Structure Matrix (DSM), 
highlights the dependencies of each software module, file, class, or entity within a code 
base. The metrics being calculated include assessments of modularity, complexity, and 
hierarchy. While nomenclature, conventions, and presentation may differ between 
software packages, the underlying principles are similar. The following section 
describes the visualization techniques (DSM) and architectural metrics used in the 
Lattix and Silverthread packages in more detail.  

3.3 How to Interpret the Architectural Health Analysis Tool Results 
 
Both Lattix and Silverthread use graphical and metric based outputs to convey the 
architectural health of a software system. This section will be broken into two parts to 
discuss each type of output in detail. 
 
3.3.1 Representing Interdependencies Using a Design Structure Matrix 
 
Design Structure Matrices (DSM) are visual tools that help analyze the degree of 
coupling within a system. This concept was pioneered by Don Steward in 1981 and 
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advanced by Steve Eppinger and Tyson Browning in their 2012 publication, Design 
Structure Matrix Methods and Applications. [44] 
 
A DSM is “a network modeling tool used to represent the elements comprising a system 
and their interactions, thereby highlighting the system’s architecture... The DSM is 
represented as a square NxN matrix, mapping the interactions among the set of N 
system elements.” [44] Each entity is listed 1 through N on a row and in the same 
location on its corresponding column. The diagonal elements represent the entities 
relationship to itself and will always be marked with an X. Off-diagonal cells represent 
the relationships between entities and should be read as “row depends on column.” As 
such, each column represents the output of an element and each row represents the 
input of an element. If a mark is present in the intersecting cell, it represents the fact 
that a dependency exists (Row A depends on Column B, etc.). 
 
In Figure 5, a DSM is created from a simple graph to illustrate how it is constructed. In 
the graph on the left, elements 1 through 6 represent the nodes of the system and the 
lines represent the edges. The directionality of the arrows describes the flow of the 
dependency.  

 
 

Figure 5 - Mapping a System to DSM Form 

The graph should be interpreted as follows: 
 

• Element 6 depends on elements 3, 4, and 5 while element 5 is dependent on it 
• Element 5 depends on elements 2 and 6 while element 6 is dependent on it 
• Elements 3 and 4 depend on element 2 while element 6 is dependent on it 
• Element 2 depends on element 1 while elements 3, 4, and 5 depend on it 

 
The relationship between elements 1 and 2 is serial, meaning that task 1 needs to be 
completed before task 2 starts. This is easy to understand and is a characteristic of a 
hierarchical architecture. The input of element 2 is shown in the DSM as an X in row 2, 
column 1. The outputs of element 2 are shown in the DSM as three X’s in column 2. 
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Elements 3 and 4 are in parallel, meaning that they can both be accomplished at the 
same time assuming the proper input is provided. There is no dependency between the 
two modules. This is easy to understand and is a characteristic of both modular and 
hierarchical architectures. The inputs of element 3 and 4 shown in the DSM on rows 3 
and 4 respectively. The outputs of elements 3 and 4 are shown in columns 3 and 4 
respectively. 
 
The relationships between elements 5 and 6 are of concern. Because each element passes 
output to the other, this is representative of an interdependency. In the DSM, this 
interdependency is highlighted graphically by the X present above the diagonal line 
(row 5, column 6). In practice, if an interdependency is small enough and easy to 
comprehend, this may be appropriate. In the case of this example, one person may be 
able to manage the complexity associated with this one interdependency, however, if it 
grows over time it may become unwieldy to manage. These interdependencies are 
called “cores” and may be representative of technical debt that has accumulated over 
time.  
 
The graphic in Figure 6 shows how architectural integrity can degrade over time, 
forming cyclicality in a code base. While anecdotal in nature, this graphic largely 
represents what happens in a development organization when shortcuts are taken and 
attention is not paid to long-term code health. 
 

 
Figure 6 - Proper Architectural Health vs. Eroded Architecture Health [45] 

The left-hand side of the graphic shows a modular system with proper hierarchy. 
Notice the dependencies flow in one direction with each module depending only on the 
module below it. In contrast, the right-hand side of the graphic shows the same system, 
but with shortcuts that have been implemented. As architectural decisions were made 
to call functions within other modules, the architecture has become cyclical and the 
modularity and hierarchy has been eroded. 
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While the examples given so far have been largely theoretical, cyclicality and 
complexity are real issues in practice. In a well-structured program, there may be 
interdependencies within sub-groups, but with the proper use of interfaces, API’s, and 
control structure, a modular, hierarchical system can be preserved. Figure 7 shows a 
system that uses proper design principles to establish modular sub-groups, utility 
layers, control elements, high levels of internal cohesion, and low levels of external 
coupling. It should be noted that in complex systems such as this, algorithms can be 
used to re-arrange rows and columns based on their level of coupling and position 
within the system hierarchy, forming clusters of highly interdependent elements. [11] 
[45] While none of the data is changed in the process, the algorithms present a more 
human-readable visualization of a core’s size. 
 

 
Figure 7 - Example of a Modular, Hierarchical Architecture [23] [36] 

In this graphic there is high intra-modular cohesion, yet no cyclical dependencies 
present between components B through E, which is a sign of low coupling. Component 
A serves as the utility layer with common services that are used by the other 
components in the system. This is evident through the large population of dependencies 
in column A. Row F is where control elements reside with strong API layers to preserve 
the abstraction and information hiding principles of modularity. Finally, from the circle 
marked “hierarchy” it is evident that component E uses portions of component B, 
however there is no corresponding dependence back to component E. This proves that 
the system is properly re-using features that are present at lower levels in the code. 
 
In contrast to the graphic shown above, Figure 8 shows three examples of large cores 
found in real-world software systems. In these figures, cores are visible due to their 
characteristic dependencies above the diagonal line, representing cyclical interactions 
between modules.  
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Figure 8 - Example of Large Cores in Software Systems [45] 

The core shown in the center of the figure contains over 10,000 files, while the other two 
cores contain over 800 and 1,000 respectively. The sheer size of these cores makes it 
impossible for developers to comprehend the interaction between elements, much less 
manage them. These interdependencies inject complexity into the system which in turn 
manifests itself through increased cost, decreased velocity, and decreased productivity 
amongst project delivery teams. In essence, large cores are highly correlated with poor 
business outcomes. 
 
DSM’s are useful to show how a system is architected, the level of hierarchy and 
modularity in a system, and where technical debt may be accumulating. While the 
presence of a core doesn’t inherently mean there are issues in a code base, there is a 
high likelihood that a large number of interconnected modules could reduce 
developer’s productivity thereby increasing the cost of system maintenance. Using 
DSM’s to visualize a system’s architecture can be a powerful tool for developers and 
managers alike, especially when advocating for additional resources to undertake re-
factoring, re-engineering, or re-writing efforts.  
 
The architecture of a software program is where its behavior is derived, and governs its 
performance and value. [44] For more experienced practitioners, advanced DSM 
optimization techniques, clustering algorithms, tearing and banding techniques, and 
numerical overlays provide different visual depictions and analysis methods of 
complex systems. [44] [46] 
 
3.3.2 Using Metrics to Convey the Health of a Code Base 
 

“No set of metrics can provide an overall absolute quality assessment of the system; 
however, when analyzed together they can provide invaluable information for decision 
making by acquisition professional.” – Software Engineering Institute Report on 
Recommended Practice for Application of Quantitative Software Architecture Analysis 
in Sustainment [19] 
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Metrics are helpful in assessing the health of a code base, however, they must be chosen 
appropriately to ensure the right characteristics are being measured. If chosen properly, 
they can assess the quality of a software deliverable and project the funding and 
manpower allocation to complete a software development activity. [47] If chosen 
poorly, metrics can encourage inappropriate behavior for developers and managers 
alike. [47] As such, this thesis will utilize three metrics to measure the coupling, 
cohesion, and complexity of a code base. The merits of these three metrics are discussed 
in detail in the work of Selbi and Basili [48], Dhama [49], McCabe [50], and 
MacCormack. [11] [51] For the sake of this research, basic definitions and overviews are 
given below. 
 
‘Complexity’ is a function of the number and nature of elements in a system. [52] It is 
said that the more elements a system has, the more complex it is.  From a software 
perspective, much work has been done to quantify complexity, [50] [53] however each 
method has its critics on how representative these metrics are. 
 
To quantify complexity in this research, we will use the metric of cyclomatic complexity. It 
was developed by McCabe and considers the program as a directed graph in which the 
edges are lines of control flow and the nodes are straight line segments of code. [50] [53] 
The cyclomatic number represents the number of linearly independent execution paths 
through the program. Figure 9 shows a graphical depiction of this concept. 
 

	
Figure 9 - Graphical Depiction of McCabe's Cyclomatic Complexity [53] 

 
The equation for McCabe complexity is defined as: 

 
McCabe score = # edges (E) - # nodes (N) + 2 

 
According to SEI, “the appropriate values for many key metrics will be program 
dependent and context sensitive… The objective is not to set arbitrary limits for not 
accepting code, but to set ‘trip wires’ describing codebases where additional 
investigation and analysis is necessary.” [19] As such, there is no definitive threshold 
for the amount of complexity in a system. As a rule of thumb, Silverthread and SEI have 
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set the McCabe “trip wire” threshold equal to 50, but recommend developers to take a 
closer look at modules that contain more than 10 independent paths. [19] [54] Files with 
a complexity score over this trip wire value of 50 are at risk of having insufficient test 
coverage to test each path in the code, possibly leading to latent defects in the system 
along with their hidden costs. 
 
In the context of software systems, ‘coupling’ is defined as the level of interdependence 
between modules. [55] In systems with low levels of coupling, a system is determined 
to be modular, allowing modules to be removed and replaced easily. High-levels of 
coupling, or coupling with very strong connections is less modular, usually resulting in 
higher levels of complexity. 
 
‘Cohesion’ is defined as the degree to which the elements inside a module belong 
together. [56] In a software system, it is advantageous to have highly cohesive modules 
due to their understandability, reusability, and maintainability. [57] 
 
Architectural Cyclicality is a metric that builds off the concept of coupling. It represents 
the circular or bi-directional dependencies among modules that form tightly 
interconnected areas. [19] In the context of this research, these interconnected areas are 
referred to as “cores.”  In general, the larger the core, the harder it will be to manage. 
This will in turn increase the cost of developing code within the core and increase the 
manpower required to develop new features. In this research, both the number of cores 
and size of each core will be used as metrics for the health of a code base. 
 
Propagation cost is another metric that builds off of the concept of coupling.  It measures 
how many files in a system will be affected with a change to one file, and is therefore a 
proxy for modularity. This metric is calculated using the visibility fan-in and fan-out 
counts 5 from individual elements by dividing the number of direct and indirect 
links in the graph by the total number of possible links. [11] [58] 
 
Figure 10 shows a simple system with both direct and indirect dependencies, both of 
which are used in this calculation. [11] [51] [17] 
 

                                                
 
5 Fan-in is a measure of how many other nodes depend upon it directly. This metric is computed by counting the number of links 
down the column (including the diagonal link) of the first-order dependency DSM. Visibility Fan-In counts the indirect links as 
well. Fan-out is a measure of how many other nodes it directly depends upon. This metric is computed by counting the number of 
links across the row (including the diagonal link) of the first-order dependency DSM. Visibility Fan-out counts the indirect links as 
well [11] [17]. 
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Figure 10 - How Direct and Indirect Dependencies are used to Calculate Propagation Cost [17] 

 
In this graph, the blue dots represent direct dependencies while the red dots represent 
the indirect dependencies. It is evident that a change to node A directly affects node C 
and indirectly affects node D. In this example, every node depends on nodes A and B. 
The graph, called a visibility or transitive closure matrix, is created by summing the 
direct dependency DSMs of all elements into one DSM. [17] As such, the matrix shows 
the level of connectivity throughout the entire system. The intent of the metric is to 
translate the level of connectivity of a code base into economic outcomes associated 
with future development efforts. The range of the propagation cost metric is between 0 
and 1 (0 and 100%), with higher numbers representing a more tightly coupled system. 
 
These are definitions critical to understanding the case studies presented in this 
research. Additionally, cyclomatic complexity, architectural cyclicality, and propagation cost 
will be the primary metrics used to assess the quantitative health of a code base. This in 
turn will help determine the “cost of doing nothing” with respect to the technical and 
architectural debt that has accumulated over time. It should be noted that these metrics 
are being derived from a single set of tools and therefore subject to systemic bias, [59] 
however, for the sake of this research this issue will be neglected. 
 
3.3.3 Projecting the Costs of Technical Debt 
 
One of the objectives of this thesis is to quantify the programmatic and economic 
impacts of technical debt within the Air Force software enterprise. To this point, 
research has been centered on the definition of technical debt, driving factors in how 
technical debt is accumulated, and metrics on how to measure technical debt. This 
section will focus on how the output from architectural health analysis tools is mapped 
to its associated financial outcomes, ultimately quantifying the “cost” of technical debt. 
 
As described in US Patent 0235569, published by Dan Sturtevant, CEO of Silverthread 
Inc., methods can be used to link technical characteristics for either single or multiple 
code bases to business outcomes such as productivity, defect density, staff turnover, growth 
rates, cost performance, and schedule performance. [22] At a high level, the process of 
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mapping technical health metrics to business outcomes is a function of the relationship 
between product, process, and personnel characteristics. It has been asserted that the 
more complex a code base becomes; the worse the corresponding business outcomes 
will be. [22] [45] [58] The basic steps in this process are as follows: 
 
• Perform a scan of the code base to determine the technical debt metrics of the system 
• Capture the development activity metrics from issue tracking and version control 

systems 
• Run statistical analyses to determine the significance of the technical metrics on the 

associated business outcomes of interest. This results in a calibrated model of the 
system 

• Develop predictive analytics projecting the cost of future development efforts using 
the current health of the system as a baseline 

 
To determine the existence of this correlation, millions of files from over 20 commercial 
code bases were analyzed to compute their architectural cyclicality, cyclomatic complexity, 
and propagation cost. In parallel, version control and issue tracking systems were 
analyzed to determine the regions of the code base had the most activity, the time 
associated with each commit, the amount of time developing new features versus the 
time spent fixing bugs, and which commits had the most downstream impacts. At the 
same time, the teams developing these code bases were analyzed to determine the 
amount of time spent per software commit, how many commits were completed per 
period of time (day/week/month), and how many commits were completed by file. 
This ultimately resulted in an assessment of how productive each developer was in 
each region of the code. By performing statistical analyses on these three characteristics, 
it was shown that a high degree of correlation existed between the complexity in the 
code and the associated business outcomes. [58] 
 
For this thesis, the most relevant programmatic metrics relate to cost and schedule 
performance of the system. They include: 
 
• Cost to develop a new feature 6 
• Time required to develop a new feature 7 
• Money wasted per $1M spent 
 
These three metrics were chosen because they represent the most relevant aspects of 
programmatic concern within the Air Force. Cost and schedule breaches above a certain 
threshold are reported to Congress, therefore they are they metrics that are tracked at 

                                                
 
6 Defined as the cost associated with developing roughly 1,000 new lines of code, including the associated cost of 
debugging 
7 Defined as the time required to develop roughly 1,000 new lines of code, including the associated schedule 
associated with debugging 
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senior DoD levels. Metrics such as turnover rates are important for team leads and first 
line supervisors, but of less concern at higher levels. 
 
For this research effort, access was not granted to the relevant Air Force software issue 
tracking, version control, and HR systems required for proper calibration. To overcome 
this limitation, costs were projected using calibrated models from Silverthread’s 
database of commercial studies. As such, the data presented in the case studies is 
directionally correct, but not 100% accurate. Future research should make efforts to tap 
into Air Force issue tracking and HR systems to tune these results to each organization. 
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4 Research Methods & Sample Design 

4.1 Identification of Select Code Bases 
 
For this research, an existing relationship between the Air Force and Silverthread was 
leveraged to gather data on the state of architectural health, and by proxy, technical 
debt across a specific Air Force software portfolio. Through their early pilots with the 
Air Force, Silverthread has successfully scanned, analyzed, and presented results on 
over 96 code bases. As a result, several scans for programs with significant technical 
debt have been presented to key senior leaders influencing decisions about the future of 
their programs. As presented in the case study section, some of these programs have led 
to successful re-factoring efforts while others have led to program cancellation or re-
writes. Since this research is centered on the accumulation of technical debt within the 
Air Force, the collection of Air Force data in Silverthread’s portfolio was influential in 
which cases were selected for further analysis. The five cases ultimately selected 
represent a cross-section of high-value opportunities for the Air Force moving forward. 
 
Of the programs selected, senior leadership attested to the fact that 3 of the 5 were 
consistently over budget and behind schedule. These programmatic challenges 
represented deeper structural and technical issues that had not been explored 
previously. The first case study (Case A) was selected to showcase a program that has 
accumulated significant technical debt, however is advocating an organic re-factoring 
effort to proactively address the architectural erosion issues. By being proactive in their 
approach, Case A demonstrates ways in which management can interject technical tools 
at appropriate times in the development process to influence business outcomes prior to 
system failure. 
 
Cases B and C were selected as cautionary tales of what happens when technical debt is 
ignored over time, ultimately forcing program re-writes and cancellations. These cases 
demonstrate the utility of incorporating architectural health analysis tools into the 
development process early (i.e. source selection/design reviews) prior to architectural 
failure. 
 
Case D was selected as an example of a successful organic re-factoring effort using 
architectural health analysis tools within the program’s development process. In 
situations where technical debt has already been accumulated, these types of tools can 
be used to improve architectural health over time, saving program managers the 
expense of complete re-writes. 
 
Finally, Case E was selected as an example of a code base with proper architectural 
health. This case was representative of how proper controls can be implemented in a 
continuous development pipeline to prevent technical debt from accumulating in the 
first place. Case E and Kessel Run are both examples of agile-type development 
processes, the model the Air Force is currently striving to replicate. 
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While Silverthread scans have been ordered for many different reasons, the results have 
been useful in every case. They have influenced the re-direction of resources between 
management teams, the re-writing of at least four programs due to unmanageable 
technical debt, and through a different contractual vehicle, established a long-term 
partnership to monitor the health of the code during an organic re-factoring effort. 
Overall, the contractual vehicles between Silverthread and the Air Force have resulted 
in over 96 scans with several more in-work at the time this thesis is being written. 
 
In addition to Silverthread’s existing database, the author sought out opportunities to 
scan additional high-profile software programs that have recently been in the news. 
Specifically, efforts were made to establish relationships with the F-35 program and the 
Kessel Run program. The F-35 program has been consistently plagued with 
development issues, hence the interest in assessing the architectural health of their 
mission systems software along with their automated logistics information system 
(ALIS) software. Unfortunately, contractual talks stalled when we discovered that the 
government did not own data rights to the source code for either system. 
 
A relationship with Kessel Run seemed promising as Hanscom AFB leadership has 
generally been more receptive to the use of architectural health analysis tools in the 
evaluation of their programs. Long-term partnerships are currently being explored, 
however no access to data was provided for this thesis effort. 

4.2 Extraction of Data from Select Code Bases 
 
To properly assess the health of the selected code bases, the research team first met with 
the customer to understand the history of the program. In some cases, functional 
overlays were not provided so the code was assessed without context to whether the 
architectural structure was consistent with the desired function. In other cases, in-depth 
interviews were conducted to gather qualitative feedback on the health of the code base, 
program performance, and delivery success rates. Statements such as “our developers 
have trouble working in this file,” or “we’ve been struggling to meet our timelines” 
were potential symptoms for deeper underlying issues, which in conjunction with the 
report produced by the architectural health analysis tools, helped tell the full story of 
the software. 
 
After the subject interviews, a proprietary tool8 was run on each code base to parse the 
source code and the associated extract metadata. This output captured the direct 
dependencies between files, classes, and other objects within the code. These 
relationships, along with Silverthread’s network analysis, form the basis for the 
architectural complexity, cyclomatic complexity, and propagation cost metrics. [58] 
                                                
 
8 Understand is one, albeit a core, component of this proprietary software package. It is a commercially available 
software package that compiles information on how functions, classes, and variables are called, creating call trees 
and relational metrics for further analysis. [69] 
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After the analysis was completed and the report compiled, the research team held a 
follow up meeting with the customer to review the results. In some cases, senior 
management was present for this de-brief. In other cases, only the PM and development 
teams were present. In all cases, the team reviewed the code quality metrics, design 
quality metrics, and the prognostic financial forecasts, articulating to the customer 
where the code base was healthy and where improvement was required. In some cases, 
leadership asked if it made sense to re-factor the code base, in other cases, decisions 
were made fairly quickly to re-write the code base from scratch.  
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5 Case Study Findings 
 

“All large-scale software-intensive systems have technical debt; whether or not technical 
debt is being actively managed can be a key differentiator between the success and failure 
of a project or system.” – Data Driven Management of Technical Debt [12] 

 
Using cyclomatic complexity, architectural cyclicality, and propagation cost metrics, analyses 
were performed across Silverthread’s entire portfolio of software development efforts. 
The full results of these scans can be found in Appendix A. To interpret these results, 
each result is color coded with green indicating good performance, red meaning poor 
performance, and yellow and orange falling in the middle of the spectrum. Figure 11 
shows a subset of these programs, specifically the ones that have had systemic technical 
debt issues. 

 
Figure 11 – Subset of Poor Performing Scans on Select Air Force Code Bases 
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For the cyclomatic complexity metric, a program is of concern if it has 20 or more files 
with a McCabe score of over 50. For the architectural cyclicality metric, a program is of 
concern if it has a core of over 100 interconnected files. For the propagation cost metric 
(labeled here as “connectedness”), a program is of concern if over 10% of its files have 
direct or indirect connections to each other. While the root causes differ between efforts, 
it is evident based on this small sample that the Air Force has a problem with technical 
debt in at least some portions of its portfolio.  
 
The case studies that follow are grouped into three sections: 
 

• Using architectural health analysis tools to influence programmatic decisions 
• Using architectural health analysis tools to guide a re-factoring process 
• Using architectural health analysis tools within continuous development 

pipelines 
 
The first section will highlight three examples of systems that have accumulated 
significant technical debt and now face a decision of their viability moving forward 
(Cases A, B, C). The second section contains an example of a program that had 
accumulated significant technical debt but has since undergone a successful re-factoring 
effort guided by data from architectural health analysis scans (Case D). Finally, the 
third section contains an example of a successful development effort that has 
maintained low levels of technical debt since its inception (Case E). 

5.1 Using Architectural Health Analysis Tools to Influence Programmatic Decisions 
 
This section highlights three cases where programs have accumulated significant 
technical debt over time and are now faced with decisions on whether the existing 
system should be sustained and re-factored or whether it should be re-written. In all 
three of the cases, results of the architectural health analysis scans were presented to 
senior leaders. In one case, there is an ongoing discussion on how to properly address 
the technical debt present in the system. In another case, the development process was 
modified to place increased emphasis on technical debt reduction (re-factor). In the last 
case, the project was cancelled and responsibility for a new development effort was 
given to a different organization (re-write). 
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5.1.1 Case A 
 

 
Figure 12 - Case A: The Cost of Doing Nothing 

5.1.1.1 Background 
 
Case A analyzes a program funded by two different stakeholders within the Air Force. 
The program started in 1999 under the oversight of a management team at Hanscom 
Air Force Base (AFB) in Lexington, MA. While the oversight function is inherently 
governmental, the development and maintenance aspects of the program executed by 
contractor personnel. The current development team consists of 36 developers, 
allocated to 3 different teams. 
 
In 2017, a third-party contractor performed a Software Quality Assessment (SQA) that 
uncovered the program had significant technical debt. After the assessment, program 
management developed a 4-year plan to improve upon this metric. Since that time, 
management had started the process of improving the existing performance by 
baselining the health of the code base, meeting with both management and funding 
authorities, and deciding on whether to make changes in the development process or 
management team. As such, an architectural health analysis scan was ordered to assess 
the health of the code. The scan revealed issues in multiple areas of the code base, to 
include its C++, C#, and Java components. 
 
5.1.1.2 Discussion on Technical Health 
 
Within the Java portions of the code base a significant core was discovered (architectural 
cyclicality), containing 670 individual files. Figure 13 shows the DSM for the Java 
portion of Case A.  
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Figure 13 - Case A: DSM (Java) 

In addition to the large core, there was also evidence of a severe lack of code quality 
control, as shown in the high cyclomatic complexity scores. 
 

 
Figure 14 - Case A: Cyclomatic Complexity (Java) 

Notice that over 137 files have a McCabe complexity score of over 20, and that even 
though those 137 files represent 4% of the code base, they make up over 19% of the lines 
of code. Based on these technical metrics, the “cost” of the architecture can be seen in 
Figure 15.  
 

 
Figure 15 - Case A: The Cost of Doing Nothing (Java) 

To interpret this dashboard, the predictive analytics for the cost to develop 1000 lines of 
code, days required to develop 1000 lines of code, and money wasted per $1M are 
shown under the ‘Actual’ column. The industry baseline calculation is based on the 
average levels of overhead, productivity, and cost codes base with similar attributes 
(size, language, etc.) For the Java-based portion of Case A, it is evident that actual costs 
are significantly higher than industry average. 
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Within the C++ portion of the code base, the same lack of code quality is exhibited, 
specifically highlighted by one file with a cyclomatic complexity score of 239, which is 
significantly higher than the SEI threshold recommendation of 50. 
 

 
Figure 16 - Case A: Cyclomatic Complexity (C++) 

Despite the lack of code quality in this portion of the code base, the architectural health 
is positive, displaying a hierarchical structure. Figure 14 shows the DSM for the C++ 
portion of this code base. It should be noted that no cores have formed, a characteristic 
that could predict high velocity feature development moving forward.  
 

 
Figure 17 - Case A: DSM (C++) 

Due to the degree of modularity and hierarchy in the code base, the ‘cost’ of the C++ 
portion is better than the industry average. The associated business outcomes are 
shown in Figure 18. 
 

 
Figure 18 - Case A: The Cost of Doing Nothing (C++) 
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In the final area of the code base, the C# portion contained over 15,000 files and 2.8M 
lines of code. Within the C# source code there were five discrete cores of over 150 files, 
which is higher than most systems Silverthread has analyzed. In addition to the five 
discrete cores, there were 11 emerging cores of between 30 and 150 files and 42 files that 
had cyclomatic complexity scores of over 50. Figure 19 shows the DSM for this system. It 
clearly shows the presence of the 5 critical and 11 emerging cores, all of which have the 
potential to degrade developer productivity. 
 

  
Figure 19 - Case A: DSM (C#) 

For the C# portion of the code, the architectural health analysis tools were able to 
uncover the most problematic areas of this code base and make recommendations on 
how to re-factor the code to reduce both the size and number of cores in the code. It 
should be noted that due to the unwieldy nature of the code, the re-factoring tool took 
upwards of 98 hours of continuous running to converge on a solution, an amount of 
time that is unprecedented in Silverthread’s previous work. 
 
Based on the current state of the system, Figure 20 shows the projected penalties 
associated with “doing nothing” to address this technical debt. 
 

 
Figure 20 - Case A: The Cost of Doing Nothing (C#) 

It should be noted that based on the prognostics, the management team is currently 
wasting $583,000 for every million dollars spent. Additionally, the prognostics predict a 
cost of over $17,000 to develop 1000 new lines of code, more than double what a healthy 
system should cost. Finally, prognostics predict a new feature could take upwards 26 
days to code based on the level of connectedness in the system. In this case, the cost of 
doing nothing is substantial. 
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In an interview with the PM, a desire to move forward with an organic re-factoring 
effort was expressed. In order to concurrently satisfy customer requirements while 
performing the requisite infrastructure improvements, a plan to balance the two was 
devised. In this plan, 20-30% of the development team’s time would be dedicated to 
reducing technical debt in the system with the remainder working to deliver new 
capability. The percentage would have been higher, however the idea of pausing new 
capability delivery was not taken well by the operational user. It was recommended 
that the customer be made aware of the increased velocity and reduced cost with which 
he will be able to field new capabilities in the future with investments in the 
infrastructure now. Additionally, with a highly modular code base, the PM would be 
able to migrate his application to the cloud more readily, one of his primary objectives 
for the future of the program.  
 
5.1.1.3 Takeaways 
 
Case A serves as an example of how architectural health analysis tools can be used to 
baseline the architectural health & code quality of an existing code base. In the future, it 
will serve as an example on how to provide developers actionable information on 
where to focus their efforts, provide return on investment (ROI) metrics for new feature 
development, influence programmatic decisions to re-factor versus re-write problematic 
portions, and assess readiness for cloud migration. Case A would be a great candidate 
to follow over time to determine how the architectural health analysis tools have helped 
turn a program riddled with technical debt into a cloud-native, modular, streamlined 
product suitable for its own CI/CD pipeline activity.  
 
5.1.2 Case B 
 

 
Figure 21 - Case B: The Cost of Doing Nothing 

5.1.2.1 Background 
 
Case B highlights two components that have a prominent role in a much larger, higher 
profile system. The larger program was at risk of termination due to its breach of 
Congressionally mandated funding levels. As such, portions of the system had already 
been discarded in favor of new code being developed in an agile environment with 
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flexible requirements, shorter delivery cycles, and highly modularized “apps.” For the 
two components being studied, the contractor had not made an operational delivery of 
software over the course of the programs five-year development effort. As such, people 
were already beginning to speak about it as a ‘legacy’ system even thought it had not 
made it to the field. Management finally realized that something needed to be done to 
address these programmatic issues. In 2017, they brought in Silverthread to perform 
and architectural health analysis for both components. 
 
5.1.2.2 Discussion on Technical Health 
 
The results of the scans are shown below. Figure 22 shows a core of 6346 files, the 
largest discovered within this body of research. A core size this large makes it virtually 
impossible to track bugs as downstream implications propagate through the source 
code. It is evident why developers were having such difficulty getting releases to the 
field. In this architecture, neither modularity or hierarchy is established and developers 
were forced to deal with the technical debt of the system during almost every commit. 
 

 
Figure 22 - Case B: DSM (Component 1) 

This high degree of architectural cyclicality paired with the cyclomatic complexity issues 
shown in the dashboard below (101 files with cyclomatic complexity scores of over 50; 800 
files with cyclomatic complexity scores of over 20) had serious implications on the 
business outcomes for the system. For component 1, the “cost of doing nothing” to 
address the technical debt in the system was a throwaway cost of over $800,000 for each 
$1M spent. In addition, comparing the costs to develop 1000 new LOC we find that this 
system projected a cost of $37,499 versus the industry baseline of around $10,000. 
 



59 
 
 

 
Figure 23 - Case B: Technical Dashboard (Component 1) 

 
Component 2 did not fare much better than its companion. In this portion of the code, 
predictive analytics suggested that $625,000 was being wasted for every million dollars 
spent. Additionally, the predictive analytics forecasted a cost of over $19,000 to develop 
1000 new lines of code, more than double what a healthy system should cost. Finally, a 
new feature could take upwards 30 days to code based on the level of connectedness in 
the system. In this case, the cost of doing nothing was so substantial that leadership 
decided to cancel the current program and re-write it with another team of developers. 
 

 
Figure 24 - Case B: DSM (Component 2) 

 
Figure 25 - Case B: The Cost of Doing Nothing (Component 2) 
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5.1.2.3 Takeaways 
 
Case B highlights the importance of detecting and addressing technical debt early in the lifecycle 
of a development program. Prior to the decision to re-write both components, this software effort 
had been going on for over five years. Had architectural health analyses been performed at 
planning and milestone events, the government would have not had to rely solely on functional 
test results as their primary source of performance feedback. 
 
5.1.3 Case C 
 

 
Figure 26 - Case C: The Cost of Doing Nothing 

5.1.3.1 Background 
 
Case C analyzes a program that developed and fielded a mission critical piece of 
software for the Air Force. While functional overlays will not be presented in this case 
for various reasons, it is thought-provoking to see how a system of this importance 
could be allowed to erode over time.  
 
The system was first developed in the 1970’s in the programming language, Ada. In the 
early 2000’s, leadership began reporting issues with the duration, complexity, and 
frustration levels associated with system maintenance and capability upgrades. These 
challenges were initially blamed on the contractor, then the process, then finally the 
development team. Changes were made over time, yet the software remained 
problematic. When the operational dates of the software got extended, the Air Force 
was forced to decide whether they wanted to live with this product for another 10-15 
years, or whether they needed to do something about it. Through the contractual 
vehicle with Silverthread, management requested that architectural health scans be 
performed on the code base to support their assertions that there were underlying 
issues with the code base. 
 
5.1.3.2 Discussion on Technical Health 
 
Upon inspection of the architectural cyclicality, the scan revealed a core with 261 
interconnected files, well above the threshold recommended by SEI. Figure 27 shows 
the DSM that visualizes the core size. 
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Figure 27 - Case C: DSM (Ada) 

Based on the level of interconnectedness of the source code, the predictive analytics 
projected a cost of $11,762 to develop a new 1000 LOC feature. Additionally, the 
analytics projected that for every $1M spent on this code base, just under $400,000 
would be wasted chasing propagation errors. There were 296 files with a cyclomatic 
complexity score of over 20, and 54 files with a cyclomatic complexity score of over 50. 
Given the legacy language the software was written in, combined with the technical 
debt present in the system, a decision was made to undergo a complete re-write while 
maintaining the existing system until the new system was fielded. 
 
Along with the decision to re-write the software, the development agency decided to 
bring in one of the Air Force’s rapid acquisition cells to aid in the development of more 
agile, architecturally sound prototypes. Starting in January 2018, the team developed a 
strategy to deliver working prototypes in under 2 years. In addition to the re-write of 
the traditional Ada code, the project took on the task of transforming two additional 
hardware systems into software defined systems. With the first major review upcoming 
in March 2019, it would be interesting to see how the architectural health of the new 
product compares to the legacy product.  
 
5.1.3.3 Takeaways 
 
This case study highlights the impact the visualization tools within an architectural 
health scan can have on decision-makers. This system was fielded for over 40 years, 
incurring cost and schedule penalties both during system maintenance and new 
capability development. It wasn’t until 2017 when management saw these results that 
they decided their current course was unsustainable. In that instant, the data from the 
architectural health analysis tools did what 40 years of developer feedback couldn’t do, 
convince management that the erosion of architectural modularity and hierarchy was a 
root cause of poor developer productivity. While speculative, it would be interesting to 
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see if the program would have shifted courses sooner had these types of tools been used 
earlier in the program’s lifecycle.  

5.2 Using Architectural Health Analysis Tools to Guide a Re-Factoring Process 
 

“Unlike hardware, software never dies. Laying the groundwork to allow software 
improvement over the life of a weapons system is a strategic imperative. Utilizing 
development practices that enable continuous upgrade of capability ensures software can 
be adapted to threats and opportunities unanticipated during the specification of the 
system. The DoD must lay the groundwork now for software to meet the demands of the 
future.” - Defense Science Board Report on Design and Acquisition of Software for 
Defense Systems, February 2018 [1] 

 
5.2.1 Case D 
 

 
Figure 28 - Case D: The Cost of Doing Nothing at the Start of Formal Re-Factoring Effort 

 

 
Figure 29 - Case D: The Cost After Re-Factoring 

5.2.1.1 Background 
 
Case D is a rich example of how to identify, quantify, and manage technical debt due to 
the amount of data available from its organic re-factoring effort. Due to the contractual 
relationship between the Air Force and Silverthread, researchers and developers have 
been able to collect over 10 years of architectural health data which have been used to 
navigate the program past the “un-managed” phase and into the “re-factoring” phase of 
execution. A large degree of background information was collected from interviews 
with the program manager, Jim Reilly, to overlay the functional, cultural, and 
contractual factors of the re-factoring effort with the technical metrics that have 
resulted. [60] 
. 
As opposed to the previous case studies which are all snapshots of operational software 
programs, Case D analyzes a program that began as an Air Force Research Laboratory 
(AFRL) Research and development (R&D) effort in 2000.  In about 2008, transition to an 
AF Program of Record (PoR) began.  The software was operationally fielded in 2010 and 
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replaced in 2015.  Beginning in 2015, the same team that originally developed the code 
decided to use it as a demonstration of a representative AF code base that is cyber 
resilient and survivable under cyber conditions.  
  
The program is Java-based with a modular cell structure that contains an underlying 
Oracle database. From 2000 through 2008, the capability was built through rapid 
prototyping with operational users in Korea and South West Asia.  Initially, there were 
no written requirements for the system other than a single four bullet PowerPoint page.  
The software was used in operational exercises every three to six months, and feedback 
was rapidly incorporated for the next operational exercise.  Developers expressed 
frustration at the lack of time to refactor, but the R&D budgets did not include a specific 
refactoring task.  Refactoring and code clean-up had to be "hidden" in adding new 
capabilities. 
 
In 2009 and 2010, the development team was primarily focused on transition and 
integration of the capability through web services into a PoR.  Again, there was no 
budget for refactoring or code clean-up.  As the product was in Test and Evaluation 
(T&E) through this time, refactoring could only take place under the cover of “bug 
fixes.”  Integration was further complicated by the quality of the PoR code base.  It 
appeared that the prime contractor had been maintaining a vendor lock on that code 
base, in part by using high complexity to drive competitor costs higher.   
 
In 2011 the AFRL program manager was replaced with another AFRL program 
manager.  During the period of 2011 through 2014, little capability was added and bug 
fixes were limited to just patching the specific bug.  As it was perceived as increasing 
risk of increasing additional bugs, fixing the underlying problem was not addressed.  
Much of this philosophy was driven by a need to get through the T&E phase as quickly 
as possible.   
 
In 2015 the original AFRL program manager was assigned to develop, demonstrate, and 
transition cyber resiliency and survivability capabilities.  The legacy code base was 
chosen for the demonstration vehicle.  However, the high complexity of the code base 
limited the team’s ability to develop effectively and efficiently.  It also seemed intuitive 
that highly complex code bases could not be cyber resilient and survivable.  As a result, 
the team returned to addressing code clean-up and re-factoring activities. 
 
Initial refactoring efforts were guided by the developers focusing on areas of the code 
that were the most frustrating to work in, but not so frustrating that the developers 
were overwhelmed.  Lattix was used to provide a quantitative assessment.   
 
As part of a defensive cyber technical exchange between parent organizations, an 
acquisition agency within the Air Force offered to fund Silverthread scans of the 
historical code base.  The results of that collaboration are shown in the data sets through 
2017 and provide a quantitative measurement that matches the development team’s 
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qualitative experiences.  If it had been available in 2010, this data would have greatly 
helped convey the fundamental issues impacting the program and all parties could 
have made better decisions.  While the data was useful, it became apparent that 
understanding how to make the code better was more valuable than accurately 
understanding how bad it was.   
 
In 2018, AFRL funded Silverthread to recommend re-factoring improvements over 
multiple builds. The AFRL use of this new methodology led to integration of the 
capability in their DevOps environment. The theory was that this funding would 
reduce the maintenance and sustainment costs of the software.  An integrated 
automated regression testing capability was also funded.  The team used the 
Silverthread recommendations and the automated testing to achieve a rapid 
improvement in the code base.  The results of this work are shown in the data sets from 
2018 and on.   
 
5.2.1.2 Discussion on Technical Debt 
 
Figure 30 below shows the DSM for the first scan that was completed on the 2008 
version of the code base. This scan was completed to baseline the state of the software 
when the R&D team inherited the software. The significant core size of 415 files reflects 
a lack of architectural health in the initial product. 
 

 
Figure 30 - Case D: DSM (2008) 

If the R&D agency had chosen to do nothing at this point, the cost associated with the 
accumulated technical debt would have been as shown in Figure 31 below: 
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Figure 31 - Case D: Technical Health Dashboard (2008) 

The economic prognostics predicted that in 2008, the management team was wasting 
$563,000 for every million dollars spent. Additionally, the prognostics predict a cost of 
over $16,000 to develop 1000 new lines of code, more than double what a healthy 
system should cost. Finally, prognostics predicted a new feature could take upwards 22 
days to code based on the level of connectedness in the system.  
 
As the R&D agency started their re-factoring process, they worked based on qualitative 
data, asking “where do we think we have the most problems?” Without the use of 
architectural health scans or re-factoring tools, the problem got much worse. Figure 32 
shows how the core had grown during the re-factoring efforts without proper controls 
in place. In fact, a second core had developed during the 2013 scans. These cores were 
768 files and 631 files in size respectively, which were significantly larger than the SEI 
thresholds. 
 

 
Figure 32 - Case D: DSM (2013) 

Figure 33 shows the DSM representation of architectural cyclicality from the 2015 scans. It 
is evident that the cyclicality metric got incrementally better as the R&D team started 
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using the feedback from the Lattix scans to guide their refactoring process. The core 
sizes decreased from 768 & 631 files to 717 & 51 files respectively. It should be noted 
that while the “red core” appears bigger in Figure 33, it is actually less dense, making it 
easier to break apart into smaller cores using the algorithms found in Silverthread’s re-
factoring tools. 
 

 
Figure 33 - Case D: DSM (2015) 

This improvement attests to the fact that having quantitative feedback to guide a 
development process is better than not having it. With that said, Lattix did not provide 
the level of fidelity required to make significant improvements. When the R&D team 
contracted with Silverthread in 2017, major breakthroughs in architectural health began 
emerging within the code base. The difference was that Silverthread provided specific 
information in the DSM’s, file lists, and re-factoring tools to show the developers 
exactly which linkages needed to be broken to reduce the size of the core. Figure 34 
shows the state of the code base in 2017 at the start of the re-factoring effort with 
Silverthread. At this point the core sizes are 566 and 219 respectively. 
 

 
Figure 34 - Case D: DSM (June 2017) 
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As AFRL continued their re-factoring effort, the quantity of cores and the size of the main core 
continued to decrease. With the help of the architectural health analysis tools, developers were 
able to break interdependencies and develop new structures within the code to increase 
modularity and restore hierarchy to the architectural construct. In January 2019, the development 
team was able to eliminate all cores from the system. Figure 35 shows the final product of the re-
factoring effort. 

 
Figure 35 - Case D: DSM (January 2019) 

As you can see from the DSMs, from June 2017 to January 2019, the software has 
reduced the number of critical cores from two to zero. The only grouping of cyclic 
dependencies now only contains 29 files, a drastic departure from the 400+ files in 2008, 
and 700+ files in 2013. This dramatic improvement is a direct reflection on what 
developers can do when provided with actionable information on the architectural 
health of their code base. Figure 36 shows the cost of sustaining the code base in its 
current, re-factored form. 
 

 
Figure 36 - Case D: Technical Health Dashboard (January 2019) 



68 
 
 

It should be noted that the cost to develop a new feature has dropped under $10,000 
and the amount of money “wasted” per $1 million spent is down to $282,367, some of 
which is overhead that must be maintained. 
 
5.2.1.3 Takeaways 
 
This case study reveals several important points. First, it reveals that in one example, 
high level AF program management decisions made the problem worse.  The ability to 
use cost-based metrics (e.g., cost to develop a new feature) would have helped all 
parties develop an accurate understanding of the problems and solutions.   
 
Second, it reveals the fact that performing a re-factoring effort without quantifiable, 
actionable information is very difficult. Prior to using Lattix, the software program 
showed minimal change in its architectural health. In the time that the development 
team was using Lattix software, improvement was made, but only in the sense that the 
developers got information on where interdependencies existed. It was not until the 
Silverthread tools were used in 2018 that the developers were able to show dramatic 
progress in architectural health.  
 
Third, this case study reveals that not all poorly architected code bases need to be re-
written. Too often management teams have the urge to walk away from problematic 
code bases and start over. While this course of action may be prudent in some cases, in 
others it may be a better use of organizational resources to undergo an organic re-
factoring effort guided by developers who are eager to use the proper feedback tools.  
For example, note the spike in core size that occurred on 1 Nov 2018.  This low-density 
core was promptly detected and corrected with two changes in the code.   
 
Fourth, the AFRL and Silverthread teams have recognized this is a “knots in your 
fishing line” problem.  The development team made a conscious decision to only solve 
the easy problems.  Difficult refactoring steps were skipped.  Easy steps were applied 
throughout the code base.  Like untangling your fishing line, you can’t start with the 
worst part of the knot.  Only do the easy part and the worst part gets easier with each 
step.   
 
Fifth, the AFRL team has integrated the Silverthread capability into their DevOps 
environment.  The team is allocating about 10% of the manpower in every sprint to 
architectural health improvements based on the recommended Silverthread steps.  This 
ongoing investment has an immediate return in overall productivity.   
 
Figures 37 and 38 show the macro-level trends in the technical health metrics across the 
entire 10-year re-factoring effort. It is evident that marked improvement was shown 
towards the end of the effort as developers where able to target specific dependencies 
and re-factor them in a more modular, hierarchical fashion. Additionally, it is evident 
that the cost of ownership has decreased as the architectural health metrics improved. 
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Figure 37 - Case D: Trend of Largest Core Size Over Full Lifecycle 

 

 
Figure 38 - Case D: Cost Trends to add 1000 LOC over Full Lifecycle 

Figure 39 focuses on the significant improvement in core size and cost metrics over the 
last year. While the macro-level view shows how the re-factoring effort improved using 
one-year samples, this zoomed in view shows how the core size fluctuated monthly, or 
even daily, with each new attempt to break the core apart. In some cases, the re-
factoring effort worked. In other cases, the re-factoring effort formed new 
interdependencies that needed to be broken. Ultimately, the developers were able to 
reduce the core size to under 30 files using a piece-meal approach and the actionable 
information provided by the Silverthread tools.  
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Figure 39 - Case D: Trend of Largest Core Size Over Re-Factoring Effort 

 

 
Figure 40 - Case D: Cost Trends to add 1000 LOC over Re-Factoring Effort 

In addition to the metrics shown above, this effort also produced tangible evidence of a 
reduction in technical debt. Over the 10-year re-factoring effort, the PM was forced to 
keep large amounts of documentation to provide developers insight into the intricacies 
of the software program. While documentation is a foundational part of programming, 
a separate book should not be required to capture the unique propagation effects of 
modifying code in certain areas. As a result of this effort, the code became less coupled 
and more modular, reducing the total page count of this design handbook by roughly 
75%.  The labor mix of the team has also changed.  When the code was highly complex, 
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it was very difficult to bring on a new, less experienced member of the team.  With the 
improvements, new team members can quickly and effectively operate in all areas of 
the code base.   
 
Based on the improvement in architectural metrics, cost of ownership data, and 
reduction in documentation, it is evident that the R&D organization invested wisely to 
reduce the amount of technical debt in its system. 

5.3 Architectural Health Analysis Tools Within Continuous Development Pipelines 
 

“The United States must have the ability to quickly respond to adversary advancements 
and update our systems accordingly. Rapid and continuous software development will be 
essential to achieving this outcome.” - Defense Science Board Report on Design and 
Acquisition of Software for Defense Systems, February 2018 [1] 

 
5.3.1 Case E 
 

 
Figure 41 - Case E: The Cost of Well-Constructed Code 

5.3.1.1 Background 
 
Case E analyzes a program used by the intelligence community. The program started 
over 10 years ago under the oversight of a management team at Hanscom Air Force 
Base. While the oversight function was inherently governmental, the development and 
maintenance aspects of the program have been executed by three separate contractors 
since the inception of the project. Contractor A released 3 major versions of the code 
base in addition to many minor version updates. Contractor B took over the 
development effort around 2010 and eventually transitioned the code base to 
Contractor C, a startup comprised of members from Contractor B. Contractor C has 
since released one major version with several minor revisions. The transition from 
Contractor A to Contractor B (and then Contractor C) was made to eliminate the 
technical lock-in resulting from the proprietary nature of the code base. As one of the 
requirements of their contract, Contractor C was required to develop this code base 
using open source, non-proprietary sources and methods. This case study will analyze 
the architectural and code health of all 4 major revisions (v1.3, v2.0, v3.0, v4.5) in an 
effort to understand how the code base evolved over time, especially during the 
transition between contractors. 
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5.3.1.2 Discussion on Technical Health 
 
The series of DSM’s in Figure 42 show how the architecture has evolved over the course 
of the four major versions. Of the case studies in this thesis, this is the only example of a 
program that has demonstrated positive architectural health from start to finish. While 
personnel, processes, and functionality have evolved over time, this is a good example 
of how architectural controls can be used within a continuous development pipeline to 
deliver more functionality to the customer, at a faster pace, with lower cost to the 
government. 

 
Figure 42 - Case E: DSMs across 4 Version Releases 
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It should be noted that there are no major changes in architectural health between v1.3, 
v2.0, and v3.0 with the exception of a small core shrinking from 51 files to 34 files in the 
auxiliary code base. After discussion with the development team it was discovered that 
this second code base was a modified COTS installer product that was included with 
the early releases. In versions 4.0 and beyond, this installer was not used. It should also 
be noted that there are no major changes in architectural cyclicality between v3.0 and 
v4.5, despite a considerable increase in size of the code base. This indicates that 
developers placed a high emphasis on modularity in their development process. 
 
The remainder of the discussion on Case E will be focused on the transition between 
v3.0 and v4.5, as this was where the contract changed along with the associated 
development team and management components. As stated above, the government’s 
rationale for the change of contract was not due to technical incompetency. Rather, the 
objective was to move from a proprietary code base to one based in open-source code. 
By moving away from a proprietary code base, the effects of “technical lock-in” would 
be removed, hence saving the government money. 
 
During this transition, personnel, processes and product health were assessed in an 
effort to categorize what should be changed and what should be kept. From a personnel 
standpoint, several of the existing developers remained on the project, while new 
management and oversight were brought in. Due to the developer’s familiarity with the 
code base, assessments on which portions to keep and which portions to re-write were 
fairly straightforward.  While the architectural foundation was sound, with the 
exception of one parser and the Core API’s, the proprietary nature of the code base 
forced a re-write from the ground up. 
 
In the new build effort, it is evident from the architectural scans of v4.5 that the new, 
open-source code base was designed to be modular. The need for modularity was 
underscored in discussions with developers when they stated their goal is to produce 
an enterprise product with a core functionality and customizable plug-ins based on user 
affiliation, functionality, and standard operating procedure. The highly modular 
structure enabled the developers to customize the desired the plug-ins to meet each 
site’s individual needs. In this sense, the structure of the code directly mirrors its need 
for tailoring. It is no surprise that the developers have placed so much emphasis on 
architectural health. 
 
During the development process, the team was also able to build security into the 
architecture and focus on a flexible design that allowed for the scaling they knew they 
would need. This solid foundation allowed them to develop new capability at an 
impressive pace, resulting in a much larger and much more capable code base. It is this 
growth in functionality that has allowed the 300% increase in size from v3.0 to v4.5 
while still enabling the code base to maintain positive architectural health metrics. 
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Given the current health of the system, the financial implications of developing new 
content are positive. The figure below shows the financial prognostics: 
 

 
 
It is evident that having an architecturally sound code base has positive financial 
implications, as these prognostics predict no wasted money in the development effort, 
along with shorter than expected timelines and costs to deliver 1000 lines of code. 
 
From a process standpoint, Contractor A had already shifted from a more traditional 
waterfall model9  to more of an agile approach prior to the transition. This agile 
approach continued under the new management team with several new controls being 
implemented to reduce technical debt, code defects, and security vulnerabilities to the 
maximum extent possible. These new controls included the implementation of OSGI, 
which enforces the better parts of Object-Oriented Design, including an emphasis on 
modularity and compartmentalization. Additionally, the new contractor team 
implemented some of the more standard controls in today’s development environment, 
including running builds on changes prior to integrating them into the baseline, 2-
personal manual code reviews, automated unit and integration testing, and 
vulnerability, security and code-quality scans. From a test coverage perspective, they 
were looking for >75% coverage. This metric is achievable due to their low complexity 
scores from the architectural health analysis tool scans. If files scored poorly on the 
cyclomatic complexity scale, it would be highly unlikely that they would be able to get the 
threshold amount of test coverage on their unit or integration testing. 
 
 
 

                                                
 
9 In legacy programs, waterfall methodology is an abstraction for defining all of the requirements in the beginning of the program, 
undergoing a lengthy decomposition process, developing the parts of the system, integrating the system, testing the system, and 
fielding the system. This process takes years to transition from requirement to a final deliverable, which in our current software 
environment is unacceptable. 
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5.3.1.3 Takeaways 
 
Case E serves as an example of how architectural health analysis tools can be used 
within a continuous development pipeline to baseline the architectural health of a code 
base, monitor it over time, and set proper bounds on programming practices that allow 
for the integrity of the architectural health as functionality expands over time. While 
tools were not injected into the development pipeline for this specific software 
application, they did serve to provide the development teams with quantitative 
feedback on the health of their product after the version had already been released. 
Instead of limiting the role of architectural health analysis tools to post-mortem 
analysis, the goal would be to insert these tools into the build and test cycle to get 
immediate feedback back to the development teams. The sooner the teams get feedback, 
the sooner they can make the appropriate changes to preserve the integrity of the code 
base, reducing downstream implications. 
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6 Discussion and Synthesis 

6.1 Summary of Results 
 
Figure 43 consolidates the architectural health metrics from each case study into one 
chart. Cases A, B, and C were one-time scans while Cases D and E were scanned 
multiple times throughout a re-factoring effort. For the latter cases, the most recent set 
of technical metrics is shown. 
 

 
Figure 43 - Summary of Technical Health Metrics 

The figure shows the varying magnitudes in which technical debt has affected each 
software development effort. Both cyclomatic complexity and architectural cyclicality 
values ranged from ‘negligible’ to ‘severe’. As such, the methods used to address 
technical debt varied from ‘acceptance’ to ‘re-write’. Despite the contextual differences 
between programs, there are several common trends, factors, and characteristics that 
should be highlighted. First, out of the five programs examined, none incorporated 
architectural health analysis tools within their build environments to assess the code 
base’s health during development. In some cases, a focus on process health 
overshadowed the need for product health. By focusing solely on process metrics (build 
times, milestone events, etc.), functional code was developed at the expense of 
maintainability and sustainability considerations. In other cases, lack of market 
awareness prevented managers and developers from integrating the most effective tools 
for the job. Yet in other cases, contractual limitations precluded knowledgeable 
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government officials from accessing or examining the source code directly. In all cases, 
having an objective source of data to show the erosion of architectural health within a 
code base could have prevented the government from discarding a system and starting 
over. 
 
Second, in each case there was a desire for developers and managers to produce a 
quality product that met customer requirements. In cases A, B, C, and D, the developers 
knew there was technical debt in the system, and in all cases, they attempted to address 
it. However, without a way to measure or locate the technical debt within the system 
they were relegated to qualitative metrics and trial and error to find linkages, errors, 
and degraded architectural health characteristics within the code. Using the graphical 
output from architectural health analysis tools would help developers visualize the 
relationships between elements and quickly locate dependencies that need to be broken. 
 
Third, in each case study resources were a driving factor in how the program 
accumulated technical debt, and also in how they addressed it. Ultimately, dealing with 
technical debt is a business decision that factors in the severity of the debt, the software 
design life, the importance of the software system, the amount of resources available, 
and the amount of resources being wasted. In case A, the program manager had the 
manpower and funding to recommend undergoing a re-factoring effort. In cases B and 
C, the amount of technical debt had risen to a level where a re-factoring effort was not 
worth the time or money required to restore proper operation. As such, re-writes were 
required in both cases. In case D, the organization had the time, money, and expertise to 
perform an organic re-factoring effort. Finally, in case E there was very little technical 
debt to be addressed, therefore the PM is decided to maintain the status quo of 
accepting the technical debt in each new release under the condition that clean-up 
actions were performed immediately after. 
 
Finally, in each case study, the managers were able to make decisions quickly based on 
the results from the software scan. Too often, developers are not able to convince 
leadership to allocate resources to infrastructure improvement efforts within a code 
base. In an environment where customers demand new functionality and managers 
quickly oblige, developers rarely get to spend time performing the very functions that 
would ultimately increase velocity and reduce lifecycle cost. Using the output of the 
architectural health analysis tools, developers and managers are able to visualize the 
health of the code, speak the same language, and allocate resources accordingly.  
 
It is clear that the Air Force must make changes in its acquisition processes to reduce the 
amount of technical debt across its software portfolio. At a minimum, technical debt 
reduces developer productivity and leads to degraded business outcomes. At worst, 
systems can degrade to the point where complete re-writes are required. All of these 
decisions cost money, hence the title of this research. With billions of dollars being 
spent on software acquisition within the Air Force, even a small percentage of technical 
debt will cost taxpayers millions of dollars. The longer technical debt flies under the 
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radar, the more money it will cost in the long run. By addressing the debt up front, it 
can be prevented and managed early in the development lifecycle, reducing overall 
cost. 
 
In the section that follows, opportunities for change will be discussed. This includes a 
discussion on the overall climate of software acquisition and the perspective of senior 
leaders within the field. In the final chapter, recommendations will be given on how to 
implement technical debt reduction measures across the Air Force software enterprise. 

6.2 Opportunities to Reduce Technical Debt in the Air Force 
 
There are significant opportunities for integrating architectural health analysis tools into 
the Air Force acquisition process. First, the timing is right for pursuing new, innovative 
ideas within the DoD. Dr. Roper, the Assistant Secretary of the Air Force for 
Acquisitions, Technology and Logistics, is focused on innovation, rapid fielding, and 
agile development. [2] Like Ash Carter and Frank Kendall before him, he has laid out 
several policies that strive to improve the performance of the systems we buy and 
reduce the number of cost overruns we’ve experienced in recent years. Organizations 
like AFWerx and Defense Innovation Unit (DIU) have been formed to leverage high 
performing Air Force talent, the venture capital community, and non-traditional 
industry partners to develop creative solutions to complex problems. The DoD is 
starting to recognize where it is falling short, and attempting to integrate new ideas, 
processes, and tools into legacy programs. [2] [4] Congressional Authorizations have 
pushed aggressive reforms, and some appear to be gaining traction. [24] According 
to Dr. Roper, “program managers are taking advantage of new authorities to 
experiment with commercial technologies and use expedited contracting 
arrangements. [24] All of these factors together have started to create new capability 
delivery models which are being lauded by the end-users.  
 
Additionally, the Air Force’s newest software factory, Kessel Run, is getting significant 
attention in the media. [27] [61] This underscores the Air Force’s interest in moving 
towards agile software development practices and also highlights the specific use case 
of where tools could be integrated into the most notorious DevOps program the Air 
Force currently has. According to the Air Force Chief Technology Officer, “The Air 
Force has been pushing for broad organizational change when it comes to adopting new 
technology, as evidenced by the newly launched digital program executive office to 
handle agile software development…you want to have [authority to operate] within 
three or four weeks, not six years.” [61] These types of statements show that there is 
momentum behind the idea of creating new types of teams, governed by new types of 
contracts, with more agile software development processes. These three areas, in 
conjunction with getting the right tools into those agile pipelines, have the opportunity 
to significantly reduce the amounts of technical debt in software development activities. 
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6.3 Air Force Senior Leader Perspective 
 
To develop the full picture of how technical debt has manifested itself in the Air Force, 
it is important to understand the leadership, managerial and cultural trends within the 
environment in which software is being developed and acquired. As stated in the 
introductory section, technical debt has contractual components, cultural components 
and technical components. In the previous section, architectural health analysis tools 
were used to provide insight into how developers could use a technical tool to uncover 
sources of technical debt, and in Case D, to guide their re-factoring efforts. In this 
section, an interview with the PEO Digital Chief Engineer is included to shed light on 
the cultural and managerial trends that have influenced the accumulation of technical 
debt to date, and what he intends to do to reverse those trends. 
 
6.3.1 Interview with Steve Falcone, Chief Engineer, PEO Digital [62] 
 
Steve Falcone has been the Chief Engineer for the PEO Digital portfolio since 2015, prior 
to which he was a division chief in the same organization. He likes to think of technical 
debt not as “the cost of doing nothing,” but more as “the cost of delay.” This distinction 
may seem trivial, however, it emphasizes the idea that it is the system itself that injects 
technical debt into the product through the creation of unnecessary handoff points, 
lengthy approval cycles, and black box deliverables from defense contractors. This idea 
refutes the assertion that we’re doing nothing about technical debt and instead suggests 
that we are aware that we have technical debt but are too slow in fixing the acquisition 
process to remove it. 
 
Mr. Falcone acknowledges that technical debt has been an issue in his portfolio for 
many years, highlighting several key factors that have led them down this path. 
Specifically, he highlighted the software re-use policy that was Congressionally 
mandated several years ago, requiring programs to re-use existing source code to the 
maximum extent possible. By forcing this mandate on Air Force acquisition programs 
and using “code re-use” as a metric during source selection, government and contractor 
personnel alike were encouraged to re-purpose code that may or may not be suitable for 
the new application it was being acquired for. This re-use policy meant that very few 
systems were built from the ground up, and therefore, inherited the technical debt that 
was present in the re-used code. 
 
On the opposite side of the spectrum, Mr. Falcone mentioned a colleague that took a 
more aggressive approach to fighting technical debt, adopting a policy that any 
software system over 10 years old must be discarded and a new system must be 
developed to take its place. While this policy addressed the accumulation of technical 
debt directly, it is likely that many good systems (or good portions of bad systems) 
were discarded in the process. 
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Instead of instituting blanket policies on program age, percentage of re-use, or any 
other congressionally mandated metric, Mr. Falcone suggested that we analyze the 
teaming arrangements, both contractual and governmental, for how the Air Force 
develops software systems. During the recent transformation from Battle Management 
to PEO Digital, Mr. Falcone has fostered an environment that put government 
management, developers, and end users on the same teams to incentivize continuous 
development, rapid feedback, and decreased overhead. Kessel Run is the most recent 
and high-profile example of this DevOps style. In this environment, technical debt is 
reduced as users are incorporated into the process to provide immediate feedback and 
reduce false starts, while also putting less emphasis on meeting obsolete contractual 
requirements. This teaming arrangement also allows for a greater risk tolerance for 
program managers as they understand they can recover quickly from false starts. Teams 
are encouraged to develop multiple prototypes knowing full well that one or more may 
fail. 
 
One of the main components that enables these teaming arrangements is a change in 
contractual arrangement between the government and defense contractors. By 
restructuring the contractual relationship between the parties, more collaboration and 
transparency around the product has emerged. Instead of legacy cost-based or fixed-
price contracts that contain performance incentives based on high level, and often 
ineffective metrics, PEO Digital utilizes time and material (T&M) contracts that pay 
developers for their direct labor costs instead of their functional output. While this may 
sound like a poor incentive structure, it works based on the fact that there are 
embedded government controls in each team to maximize the developer’s productivity 
and provide guidance to their daily, weekly and monthly tasks. Additionally, the shift 
from event-based milestones to schedule-based milestones have kept the DevOps teams 
on track to maximize their capability delivery in each sprint. 
 
It is evident through discussion with Mr. Falcone that traditional contract arrangements 
foster the accumulation of technical debt due to their lengthy requirement development 
cycles, long decomposition timelines, burdensome development milestones, and testing 
phases. By the time a product is delivered it is often obsolete, triggering an immediate 
upgrade at the cost of millions of dollars to the American taxpayers. In a teaming 
framework as described above, software timelines are reduced dramatically, in some 
cases moving from a requirement, to development, to test, to fielding within weeks. 
While moving fast may cause more deficiencies to be discovered in the field, the 
timeline to get those problems fixed is reduced significantly. 
 
It should be noted that this project delivery methodology has its critics. In one exchange 
with a senior leader in the test community, the individual was lamenting that a product 
shouldn’t be fielded because his teams’ report identified too many deficiencies. In 
response, Mr. Falcone’s colleague commented that the software had already been 
through six iterations since the report was written, and that he could “write software 
faster than [the T&E team] could write [their] test and evaluation report.” 
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While new contractual arrangements, DevOps teaming, and reduced fielding timelines 
cannot solve the problem of technical debt on their own, Mr. Falcone believes these 
process changes are a step in the right direction. In fact, he does not see any barriers to 
implementation from senior leaders in the Air Force. While every change will have its 
doubters, Mr. Falcone will push on with this vision and continue to advocate for 
software development that operates on a schedule-driven cadence, have automated 
testing capabilities, and have user centered design in conjunction with feedback from 
the operational community. This cultural and contractual shift, in conjunction with the 
architectural health analysis tools mentioned above, will increase transparency in the 
product and reduce technical debt in the majority of the products the Air Force acquires 
moving forward. 

6.4 Barriers to Implementation 
 
In contrast to the opportunities listed above, there are also barriers to the integration of 
architectural health tools into existing processes and organizations. 
 
6.4.1 Discovery of Technical Debt Leading to Program Termination 
 
One concern about the incorporation of architectural health tools into the software 
development lifecycle is that program managers may not want their code base to be 
scanned for fear it may uncover latent defects or infrastructure issues that have gone 
undetected over the course of the program, leading to termination. There is validity to 
this concern, as several of the case studies resulted in program cancellation or 
restructuring. With that said, using architectural health tools to provide accurate 
assessments of the technical debt that has accumulated over time will help senior 
leaders make more informed decisions using objective data, ultimately resulting in 
better products in the field and more efficient use of taxpayer dollars. 
 
6.4.2 DoD and Defense Industrial Base Inertia Opposing Rapid Acquisition Principles 
 
While the Congress is trying to encourage more rapid innovation and experimentation 
with new approaches to acquisition in the form of Other Transaction Agreements 
(OTAs), the inertia of the DoD and defense industrial base poses barriers to high 
velocity exploitation of these tools.  Some question the allowable types of appropriated 
funds that can be used for rapid prototyping, effectively blocking an entire sector of 
development activities from using lean contracting methods. The root cause for this 
resistance is speculative, however several anecdotes suggest that the entrenched base 
wants to ensure their business remains with the large defense contractors and not the 
Silicon-Valley startups that have been disrupting the commercial sector. 
 
While this discussion is not directly related to the accumulation of technical debt, it 
does relate closely to the contractual changes that need to take place in order to foster 
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an environment for innovation. This innovative culture is what will drive new 
processes, products, and business rules that drive technical debt out of both 
developmental and fielded systems. As such, cultural resistance is indirectly related to 
technical debt. 
 
6.4.3 Qualified Personnel Shortages 
 
Personnel shortages are being addressed at the DoD level, as leaders are recognizing 
that, “the human element puts a kink in long-term success of agile software 
development.” The DoD is considering bringing back software development as a career 
field, however this only addresses part of the problem. [61] 
 
6.4.4 Increased Cycle Time and Up-Front Resources 
 
From the perspective of programmatic investment, it does cost money, take time, and 
add a step in the process to run an architectural health scan, however, research is 
starting to support the assertion that the return-on-investment of these scans greatly 
exceed the up-front costs of incorporating them in any development effort. 
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7 Recommendations and Policy Guidance for DoD Software 
Acquisition 

 
To address technical debt within the Air Force, the majority of the literature has been 
focused on changing software development processes. While a focus on process health 
addresses one of the root causes for the poor performance, it is equally important to 
address product health. This can be achieved by integrating architectural health 
analysis tools into product development cycles. By using tools like those outlined in this 
research, program managers, developers and senior leaders will begin to trust their 
product as they make fielding decisions to put the software in the hands of the 
operational community. Architectural assessments provide significant insight into the 
health of a product, providing high return-on-investment metrics on stakeholder’s up-
front investments. The intent is to catch technical debt prior to or during its creation, 
rather than after it has been incurred. 
 
In the recommendations that follow, solutions will be offered to identify and manage 
technical debt throughout a project’s lifecycle. The first set of recommendations focus 
on establishing the right business climate for architectural health analysis tools to be 
integrated within the software acquisition process. These recommendations include 
contractual, process, and teaming factors. The other set of recommendations address 
specific use cases where software acquisition programs should leverage the 
architectural health analysis tools presented in this research. 

7.1 Improving Business Practices to Reduce Technical Debt 
 
Business conditions and processes can be influential in the way software is 
developed, purchased and maintained. Throughout the course of this research, 
architectural health analysis tools are highlighted as a way to prevent, quantify, and 
address technical debt within the lifecycle of a software development effort. In some 
cases, these types of tools can be quickly integrated into a development effort. In 
other cases, contractual limitations, workforce restrictions, and process factors 
impede the inclusion of these types of tools. In this section, recommendations are 
given on how to establish the appropriate business climate to facilitate the five use 
cases that follow.  
 
 
 
 
 
 
 
 
 

Recommendations to Reduce Technical Debt Through Improved Business Practices 
 

• Train a cadre of personnel to specialize in data rights and licensing to ensure 
government has access to source code when appropriate 

• Utilize OTA, T&M, and other innovative contract vehicles to properly incentivize 
developers 

• Move towards agile product delivery methods in conjunction with proper education, 
training, and cultural changes 

• Balance architectural health hygiene with new capability delivery  
• Educate customers on basics of software development so they understand what they are 

buying 
• Demand that the acquisition organizations dramatically improve the Software/IT 

expertise of its workforce 
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7.1.1 Utilizing Appropriate Contract Vehicles 
 

“The DoD develops software and associated contracting based on upfront detailed 
systems requirements and specification for the entire completed system, an approach that 
is inadequate to meet today’s challenges. The Department must change the structure of 
its contracts to incentivize best practices in its contractor base in order to take advantage 
of these modern software development practices.” - Defense Science Board Report on 
Design and Acquisition of Software for Defense Systems, February 2018 [1] 

From a contractual standpoint, the DoD must change the way it incentivizes 
contractors, how it oversees and evaluates software deliverables, how it staffs software 
development teams, and how it handles the procurement of source code and data 
rights. 

From a data rights perspective, a balance must be struck between mandating full-
government ownership and allowing contractors retain comprehensive data rights. 
While full-government ownership may be conducive from a cost perspective, this 
model would dampen industry’s desire to innovate, thereby eroding the industrial base. 
As such, the Air Force should train a cadre of personnel to specialize in data requirements and 
licensing. These personnel would facilitate dialogue with industry to develop 
overarching IP valuation methodology, as well as data requirements and licensing 
processes for use in creating requests for proposals (RFPs) and crafting specially 
negotiated licenses. [16] 
 
From a contract vehicle perspective, Kessel Run has set an example for how to properly 
use time and materiel contracts to develop, manage and deliver capability to their users. 
By removing contractual barriers, developers, managers, and users are integrated into 
highly cohesive yet loosely coupled teams (i.e. flat organizations with strong team 
presence). In this construct, source code is accessible by the entire team which increases 
transparency and allows developers to quickly identify and remediate technical debt 
before long-term cost is incurred. For software applications, this model should be copied to 
the maximum extent possible.  
 
7.1.2 Improving Software Development Processes 
 
From a process standpoint, the DoD must continue to move towards more agile product 
delivery methods in conjunction with proper education, training, and cultural changes. “The 
main benefit of iterative development — the ability to catch errors quickly and 
continuously, integrate new code with ease, and obtain user feedback throughout the 
development of the application — will help the DoD to operate in today’s dynamic 
security environment, where threats are changing faster than Waterfall development 
can handle.” [1] By pursuing iterative development practices, there is potential for 
technical debt to be reduced, as non-value added code is identified and removed at each 
iteration. 



87 
 
 

 
Some critics note that while agile processes have the potential to reduce technical debt, 
they also have potential to incur technical debt faster, as new features are released 
without regard for clean-up cycles. [63] This pitfall can be avoided through proper 
education and training along with the establishment of design rules to ignore technical 
debt on throwaway systems while addressing technical debt on systems that provide 
customer value. As such, Dr. Roper, Steve Falcone, the Defense Innovation Board, and 
the Defense Digital Service all support a shift towards agile processes, as does the 115th 
Congress. The 2018 National Defense Authorization Act mandates between 4 and 8 
programs be selected as pilots to test agile processes. [64] The Air Force needs to 
capitalize on this movement by utilizing agile practices whenever appropriate, in 
conjunction with proper tools, training, management support, and cultural changes. 
 
Regardless of whether a program successfully transitions to an agile development cycle, 
acquisition professionals need to demand that for every capability they seek that enhances an 
existing weapon system some percentage of that funding must go towards the hygiene of the 
existing weapon system.  
 
7.1.3 Education and Training Reform 
 
It should be noted that changing contract delivery mechanisms and using agile 
processes will not decrease technical debt without the appropriate cultural, education, 
and training reforms. According to Besselman, “…agile will not rescue DoD acquisition, 
because like so many previous innovations, it is being done in isolation, without 
restructure and reshaping of acquisition organizations, new processes, and genuine 
Software/IT education.” [18] As such, there are two aspects that need to be addressed 
from an education and training perspective, warfighter training and acquisition officer 
training. 
 
From an operational warfighting perspective, leaders need to recognize that their future 
capabilities rest on increasing volumes of software/IT, so they need to learn the basics so 
they can be informed, sophisticated customers. [18] From an acquisition perspective, the DoD 
needs to demand that the acquisition organizations dramatically improve the software/IT 
expertise of its workforce.  We don’t let nonpilots fly fighter jets or command fighter 
wings, but the DoD remains content to let the incurious attempt to acquire and sustain 
technically sophisticated weapon systems.  No commercial company operates this way. 
[18] 
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7.2 Utilizing Architectural Health Analysis Tools to Reduce Technical Debt 
 
Long-term agility is possible only if you’re employing an agile product architecture. If 
humans can’t easily understand or modify their code, teams might be using the best 
agile practices, but their ability to respond to market demands will be far from agile. 
[45] In the section above, business process recommendations were given on how to 
clear the way for the technical recommendations that follow. True reform cannot be 
achieved without both business and technical reforms. 
 
From a technical perspective, this thesis has identified five potential use cases that need 
to be considered by Air Force leadership for inclusion in the acquisition process. Each 
use case is presented with details on when the Air Force could use it, how it could be 
employed, and what value the Air Force could garner from its inclusion. Since nearly 70 
percent of all program costs are life-cycle sustainment and maintenance costs, [3] any 
investment that could reduce that cost would be well worth their up-front costs. 
 
As a pre-requisite to the recommendations, an effort must be undertaken to track the 
architectural health metrics for each development program over time with the results 
being stored in a centralized database. Without appropriate history, it is difficult to 
identify trends across the Air Force’s software portfolio. Instead, leaders are forced to 
rely on snapshots in time, often becoming reactive to unforeseen issues. According to 
the Defense Innovation Board, “the DoD keeps very little data about its own software 
projects. And since that’s exactly the kind of information one would need to pinpoint 
where the problems lie, the board has made collecting it its first order of business.” [4] It 
is evident that leadership has identified a deficiency in the way the Air Force operates 
its software acquisition system. With that said, the time is right to establish data 
repositories to track both government and contractor-led software development efforts 
over time. This pre-requisite sets the stage for all of the recommendations that follow.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Recommendations to Integrate Architectural Health Tools into Software Acquisition 
Process 

 
• Include architectural health data in the evaluation criteria for source selection 
• No software baseline should be accepted from industry without a sell-off of the 

capability’s features based on quantitative architectural, code quality, component 
composition, and cyber security evidence 

• Mandate architectural health assessments as a condition for contractual ownership 
changes 

• No software baseline should be passed from development agency to sustainment 
agency within the government without a sell-off of the capability’s features based on 
quantitative architectural, code quality, component composition, and cyber security 
evidence 

• Architectural health analysis tools should be incorporated into the build cycle of 
CI/CD pipelines 
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7.2.1 Source Selection 
 
The most effective way to address technical debt is to prevent it up front. As such, 
architectural health data should be included in the evaluation criteria for source selection. This 
includes architectural health data from previous efforts that is maintained in the central 
repository referenced above, as well as plans for how technical debt will be managed in 
the development effort being contracted. A contractor that performs quantitative 
assessments on their code base has the ability to develop modular, streamlined 
infrastructure that reduces long-term development and sustainment costs significantly.  
 
In new source selections, government boards could reference this data to understand 
which contractors have the ability to develop well-structured code minimal cost built 
into the systems from the accumulation of technical debt. The DoD needs to focus 
contract awards solely on companies possessing genuine core competencies. For too 
long too much of the DoD’s acquisition dollars goes to unqualified companies, where 
we not only pay them for a capability, but the first real phase of the respective 
acquisition is to pay industry to first learn how to use the technologies we seek to 
exploit. [18] Since nearly 70 percent of all program costs are life-cycle sustainment and 
maintenance costs, [3] any investment that could reduce that cost would be well worth 
their up-front costs. 
 
7.2.2 Traditional Waterfall Programs 
 
Despite the momentum towards Agile and DevOps style project delivery styles within 
the Air Force, it is likely that a large number of traditional waterfall-style programs will 
remain unchanged near-term. As such, traditional program managers and software 
developers should, through their contract vehicles, be granted authority to use the 
requisite tools to assess architectural health and technical debt within their portfolios. 
No software baseline should be accepted from industry without a sell-off of the capability’s 
features based on quantitative architectural, code quality, component composition, and cyber 
security evidence.  By allowing and encouraging the use of architectural health analysis 
tools in the entry criteria for successful design review completing, the government will 
be able to gain more insight into the deliverable that the contractor is required to 
deliver. It should be noted that the Procuring Contracting Officer (PCO) should be 
consulted prior to mandating this change as it may have contractual implications. 
 
7.2.3 Contractor Handoff 
 
As the government starts focusing on data rights issues, specifically shifting towards 
acquiring and owning product rights up front, there are likely to be more ownership 
changes over the course of a software program’s lifecycle. In an effort to ensure 
incoming contractors understand the health of the code base their inheriting, 
architectural health assessments should be mandated as a condition in contractual ownership 
changes. This includes handoffs between contractors, handoffs from contractor to the 



90 
 
 

government, and handoffs within contractor teams. To take this one step further, results 
of the architectural scans could be included in the Request for Proposal (RFP) for 
contract re-competes to reduce technical uncertainty associated with the incoming 
contractor. The more they know about the status of the code their inheriting, the lower 
the risk to the contractor, therefore the lower the overall cost of the effort. 
 
7.2.4 Intra-Government Handoff 
 
In addition to the Air Force organizations tasked with the development of software 
systems, there are also organizations dedicated to sustaining software systems. In some 
situations, the same program office will manage both aspects of a product’s lifecycle, 
while in other cases the code may change ownership from a program office to a 
software sustainment center. Similar to the recommendation above, new government 
owners must be aware of the health of the code their inheriting. As such, no software 
baseline should be passed from program office to government sustainment agency without a sell-
off of the capability’s features based on quantitative architectural, code quality, component 
composition, and cyber security evidence. 
 
These intra-governmental handoffs most often occur between a system program office 
(SPO) and an Air Logistics Center, however could also occur between a SPO and 
various R&D organizations as shown in Case D. Having data that baselines the 
architectural health of the code helps scope the resources the government needs to 
allocate to the re-factoring and/or long-term sustainment of the code. These resources 
include both manpower and budget, which have to be included in Program Objective 
Memorandum or unit manning document requests, which are updated annually. It 
would make sense to get resourcing requirements correct on the first try, as opposed to 
undergoing a multi-year effort to rectify a situation that could have been avoided with 
appropriate information on the health of the product. 
 
7.2.5 Continuous Development Pipelines 
 
Continuous integration and continuous deployment (CI/CD) pipelines such as Kessel 
Run are prime candidates for incorporation of architectural health tools. With their 
frequent build and test cycles, these tools could provide developers immediate feedback 
on the structure of their code base. As such, architectural health analysis tools should be 
incorporated into the build cycle to be employed prior to the release of every new release 
or patch to ensure the underlying architecture of the software is appropriate for both 
the current execution of the system and future growth objectives.  
 
Additionally, re-factoring tools could be useful in scoping sprints alongside new 
capability development. In an effort to deliver capability to the warfighter quickly, 
architectural health tools will ensure that software is both effective and efficient, and 
that the code base can be maintained over time to continuously allow for new capability 
development. 
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7.3 Future Research 
 
The concept of technical debt has been receiving more attention as the world moves 
towards more software intensive systems. Journal articles in IEEE have increased 
dramatically since 2012. The SEI has several threads on the subject along with an annual 
conference dedicated to furthering exploration in this area. While this thesis explores 
technical debt within specific areas of Air Force software acquisition and development 
pipeline, future research could improve on the breadth of the case studies, including 
examples from the commercial market to compare and contrast the levels of technical 
debt between government and industry. 
 
Second, future research should be dedicated to fine-tuning the business outcomes for 
how technical debt impacts future cost and schedule metrics. While the tools used in 
this thesis provide predictive analytics, they were not calibrated for the use cases that 
were explored. Any improvement in this area would be extremely useful for program 
managers in requesting the resources needed for program execution. 
 
Third, to support the identification of problematic programs within the Air Force, cost-
threshold metrics that indicate an increase in lifecycle cost expenditures for the sake of 
short-term savings should be investigated. This thesis highlighted a potential 
correlation between a program’s sustainment cost in relation to its development cost as 
a marker for technical debt. This relationship should be examined further to see if there 
are threshold values that could alert senior leaders to looming programmatic issues.   
 
Finally, research on the uncertainty surrounding measurements of technical debt 
should be further explored.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



92 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



93 
 
 

8 Works Cited 
 
[1]  "Design and Acquisition of Software for Defense Systems," February 2018. [Online]. Available: 

https://www.acq.osd.mil/dsb/reports/2010s/DSB_SWA_Report_FINALdelivered2-21-2018.pdf. 
[2]  S. Maucione, "Software Is Air Force Acquisition's Biggest Problen, Roper Says," 30 April 2018. 

[Online]. Available: https://federalnewsnetwork.com/air-force/2018/04/software-is-air-force-
acquisitions-biggest-problem-roper-says/. 

[3]  A. Mehta, "Six Things on the Pentagon's 2019 Acquisition Reform Checklist," Defense News, 27 
December 2018. [Online]. Available: nearly 70 percent of all program costs are life-cycle sustainment 
and maintenance costs. [Accessed 27 December 2018]. 

[4]  J. Serbu, "Innovation Board has a Dozen Ideas to Help Fix DoD's Software Acquistion Woes," 
Federal News Network, 12 July 2018. [Online]. Available: 
https://federalnewsnetwork.com/acquisition/2018/07/innovation-board-has-a-dozen-ideas-to-
help-fix-dods-software-acquisition-woes/. [Accessed 22 December 2018]. 

[5]  R. Stross, "Billion-Dollar Flop: Air Force Stumbles on Software Plan," 8 December 2012. [Online]. 
Available: https://www.nytimes.com/2012/12/09/technology/air-force-stumbles-over-software-
modernization-project.html. 

[6]  S. Verch, "How Technical debt makes government software crap, and what we can do about it," 
FCW, 29 May 2018. [Online]. Available: https://fcw.com/articles/2018/05/29/technical-debt-usds-
verch.aspx. [Accessed 31 December 2018]. 

[7]  S. o. t. A. F. f. Acquisition, "Weapon Systems Software Management Guidebook," Department of 
Defense, Washington DC, 2008. 

[8]  S. Maucione, "Air Force Digital Service will Fundamentally Change Acquisition," Federal News 
Network, 17 March 2017. [Online]. Available: https://federalnewsnetwork.com/air-
force/2017/03/air-force-digital-service-will-fundamentally-change-acquisition/. [Accessed 28 
December 2018]. 

[9]  W. Cunningham, "The WyCash Portfolio Management System," Addemdum to Proc. Object-Oriented 
Programming Systems, Languages, and Applications (OOPSLA), pp. 29-30, 1992.  

[10]  J. Kerievsky, Refactoring to Patterns, Addison-Wesley, 2004.  
[11]  A. MacCormack and D. Sturtevant, "Technical Debt and System Architecture: The Impact of 

Coupling on Defect-Related Activity," Journal of Systems and Software, 2016.  
[12]  I. Ozkaya, "Data-Driven Management of Technical Debt," 29 October 2018. [Online]. Available: 

https://insights.sei.cmu.edu/sei_blog/2018/10/data-driven-management-of-technical-debt.html. 
[13]  R. Nord, "The Future of Managing Techincal Debt," 29 August 2016. [Online]. Available: 

https://insights.sei.cmu.edu/sei_blog/2016/08/the-future-of-managing-technical-debt.html. 
[14]  "Technical Debt: All Things in Moderation," [Online]. Available: https://deviq.com/technical-

debt/. 
[15]  M. Fowler, "TechnicalDebtQuadrant," MartinFowler.com, 14 October 2009. [Online]. Available: 

http://martinfowler.com/bliki/TechnicalDebtQuadrant.html. [Accessed 28 December 2018]. 
[16]  D. Deptula, "The Growing Importance of Data Rights in Defense Acquisition," Forbes, 16 October 

2018. [Online]. Available: https://www.forbes.com/sites/davedeptula/2018/10/16/the-growing-
importance-of-data-rights-in-defense-acquisition/#42f6d2b02a04. [Accessed 29 December 2018]. 

[17]  C. Berardi, Intellectual Property and Architecture: How Architecture Influences Intellectual Property Lock-
In, Massachusetts Institute of Technology, 2017.  

[18]  J. Besselman, Interviewee, Technical SME; PEO Digital. [Interview]. 9 January 2019. 



94 
 
 

[19]  F. Schull and I. Ozkaya, Recommended Practice for Application of Quantitative Software 
Architecture Analysis in Sustainment, Carnegie Mellon University: Software Engineering Institute, 
2018.  

[20]  House of Representatives Information Technology Subcommittee , Federal Agencies' Reliance on 
Outdated and Unsupported Information Technology: A Ticking Time-Bomb, Washington DC: Committee 
on Oversight and Government Reform, 2016.  

[21]  Red Hat, "Paying Off Technical Debt for Successful IT Modernization," Federal News Network, 18 
December 2018. [Online]. Available: https://federalnewsnetwork.com/open-first/2018/12/paying-
off-technical-debt-for-successful-it-modernization/. [Accessed 28 December 2018]. 

[22]  D. Sturtevant, "Computer-Implemented Methods and Systems for Measuring, Estimating, and 
Managing Economic Outcomes and Technical Debt in Software Systems and Projects". United States 
Patent US 2017/0235569A1, 17 August 2017. 

[23]  Silverthread Inc., Gaining Control of Your Software, Cambridge: Silverthread Inc., 2018.  
[24]  S. Erwin, "Air Force changing how it buys weapons and satellites, but software still a headache," 

Space News, 7 March 2018. [Online]. Available: https://spacenews.com/air-force-changing-how-it-
buys-weapons-and-satellites-but-software-still-a-headache/. [Accessed 1 January 2019]. 

[25]  "Selected Acquisition Report (SAR): F-35," Office of the Secretary of Defense, Washington DC, 2018. 
[26]  B. McGarry, "F-35 Deficiencies Decreasing, but Hundreds Remain: Program Manager," 2018. 

[Online]. Available: https://www.military.com/daily-news/2016/02/17/f35-deficiencies-
decreasing-hundreds-remain-program-manager.html. 

[27]  V. Insinna, "Air Force Cancels Air Operations Center 10.2 Contract, Starts New Pathfinder Effort," 
13 July 2017. [Online]. Available: https://www.defensenews.com/air/2017/07/13/air-force-
cancels-air-operations-center-10-2-contract-starts-new-pathfinder-effort/. 

[28]  P. Kruchten, R. Nord and I. Ozkaya, "Technical Debt: From Metaphor to Theory and Practice," IEEE 
Software, vol. 29, no. 6, pp. 18-21, 2012.  

[29]  M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999.  
[30]  F. Buschmann, "Gardening Your Architecture, Part 1: Refactoring," IEEE Software, vol. 28, no. 4, pp. 

92-94, 2011.  
[31]  F. Buschmann, "Unusable Software Is Useless, Part 2," IEEE Software, vol. 28, no. 2, pp. 92-94, 2011.  
[32]  F. Buschmann and K. Henny, "Five Considerations for Software Architecture, Part 2," IEEE Software, 

vol. 27, no. 4, pp. 12-14, 2010.  
[33]  B. F., "Learning From Failure, Part 3: On Hammers and Nails, and Falling in Love with Technology 

and Design," IEEE Software, vol. 27, no. 2, pp. 49-51, 2010.  
[34]  F. Bushmann, "Gardening Your Architecture, Part 2: Reengineering and Rewriting," IEEE Software, 

pp. 21-23, 2011.  
[35]  S. Demeyer, S. Ducasse and O. Nierstrasz, Object-Oriented Reengineering Patterns, Morgan-

Kaufmann, 2002.  
[36]  C. Baldwin and K. Clark, Design Rules: Volume 1. The Power of Modularity, Cambridge, MA: The 

MIT Press, 2000.  
[37]  N. Fosgren, "2017 State of DevOps Report," Puppet, 2017. 
[38]  "Hierarchical Architecture," Tutorials Point, [Online]. Available: 

https://www.tutorialspoint.com/software_architecture_design/hierarchical_architecture.htm. 
[Accessed 21 December 2018]. 

[39]  D. Batory and S. O'Malley, "The Design and Implementation of Hierarchical Software Systems with 
Reusable Components," ACM Transactions on Software Engineering and Methodology, vol. 1, no. 4, pp. 
355-398, 1992.  



95 
 
 

[40]  "Code Analysis Tools," Cast Software, [Online]. Available: 
https://www.castsoftware.com/products/code-analysis-tools. [Accessed 12 January 2019]. 

[41]  "Detect Tricky Issues," SonarQube, [Online]. Available: 
https://www.sonarqube.org/features/issues-tracking/. [Accessed 12 January 2019]. 

[42]  "Lattix Architect," 2018. [Online]. Available: https://lattix.com/lattix-architect. [Accessed 22 
December 2018]. 

[43]  "Silverthread," 2018. [Online]. Available: http://www.silverthreadinc.com/what-we-do/our-
products/. [Accessed 22 December 2018]. 

[44]  S. Eppinger and T. Browning, Design Structure Matrix Methods and Applications, Cambridge, MA: 
The MIT Press, 2012.  

[45]  D. Sturtevant, "Modular Architectures Make You Agile in the Long Run," IEEE Software, pp. 104-108, 
2018.  

[46]  "DSM Tutorials: Overview," DSMWeb.org, [Online]. Available: 
http://www.dsmweb.org/en/understand-dsm/tutorials-overview.html. [Accessed 28 December 
2018]. 

[47]  J. Kearney, R. Sedlmeyer, W. Thompson, M. Gray and M. Adler, "Software Complexity 
Measurement," Communications of the ACM, vol. 29, no. 11, pp. 1044-1050, 1986.  

[48]  R. Selby and V. Basili, "Error Localization During Software Maintenance: Generating Hierarchical 
System Descriptions from the Source Code Alone," in Software Maintenance, 1988.  

[49]  H. Dhama, "Quantitative Models of Cohesion and Coupling in Software," J. Systems Software, vol. 29, 
pp. 65-74, 1995.  

[50]  T. McCabe, "A Complexity Measure," IEEE Transactions on Software Engineering, Vols. SE-2, no. 4, pp. 
309-320, 1976.  

[51]  C. Baldwin, A. MacCormack and J. Rusnak, "Hidden Structure: Using Network Methods to Map 
System Architecture," Research Policy, vol. 43, no. 8, pp. 1381-1397, 2014.  

[52]  A. MacCormack, C. Baldwin and J. Rusnak, "Exploring the Duality between Product and 
Organizational Architecture: A Test of the "Mirroring" Hypothesis," Research Policy, vol. 41, no. 8, 
pp. 1309-1324, 2012.  

[53]  "Software Design Complexity," Tutorials Point, [Online]. Available: 
https://www.tutorialspoint.com/software_engineering/software_design_complexity.htm. 
[Accessed 28 December 2018]. 

[54]  P. Jorgensen, in Software Testing: A Craftsman's Approach, Second Edition, CRC Press, 2002, pp. 150-
153. 

[55]  ISO/IEC/IEEE 24765:2010 Systems and software engineering.  
[56]  E. Yourdon and L. Constantine, Structured Design: Fundamentals of a Discipline of Computer 

Program and Systems Design, Yourdon Press, 1979.  
[57]  I. Chowdhury and M. Zulkernine, "Using complexity, coupling, and cohesion metrics as early 

indicators of vulnerabilities," Journal of Systems Architecture, vol. 57, no. 3, pp. 294-313, 2011.  
[58]  D. Sturtevant, System Design and the Cost of Architectural Complexity, Cambridge: MIT, 2013.  
[59]  C. Izurieta, I. Griffith, D. Reimanis and R. Luhr, "On the Uncertainty of Technical Debt 

Measurement," IEEE, 2013.  
[60]  J. Reilly, Interviewee, Program Manager; AFRL. [Interview]. Multiple Multiple 2018-2019. 
[61]  L. Williams, "Air Force wants to make 'Kessel Run' standard in tech acquisition," FCW, 3 October 

2018. [Online]. Available: https://fcw.com/articles/2018/10/03/usaf-kessel-run-standard.aspx. 
[Accessed 15 December 2018]. 

[62]  S. Falcone, Interviewee, Chief Engineer, PEO Digital. [Interview]. 5 November 2018. 



96 
 
 

[63]  F. Arcelli, W. Trumler, C. Izurieta and R. Nord, "Ninth International Workshop on Managing 
Technical Debt," in Report on the MTD 2017 Workshop, Cologne, 2017.  

[64]  H.R. 2810: National Defense Authorization Act for Fiscal Year 2018, Washington DC: 115th Congress, 
2017.  

[65]  O. de Weck, "Design Structure Matrix," 2012. [Online]. Available: 
https://ocw.mit.edu/courses/engineering-systems-division/esd-36-system-project-management-
fall-2012/lecture-notes/MITESD_36F12_Lec04.pdf. 

[66]  P. Clements, R. Kazman and M. Klein, Evaluating Software Architectures, Addison-Wesley, 2002.  
[67]  J. Reilly, Interviewee, Program Manager. [Interview]. 16 August 2018. 
[68]  "Cost-Reimbursement Contracts," AcqNotes, [Online]. Available: 

http://acqnotes.com/acqnote/careerfields/cost-reimbursement-contracts. [Accessed 31 December 
2018]. 

[69]  SciTools, SciTools, [Online]. Available: https://scitools.com/features/. [Accessed 12 January 2019]. 
[70]  M. Fowler, "Code Smell," MartinFowler.com, 9 February 2006. [Online]. Available: 

https://martinfowler.com/bliki/CodeSmell.html. [Accessed 12 January 2019]. 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



97 
 
 

Appendix A: List of Silverthread Scans on Air Force Systems 
 
This table is included for two reasons. First, it shows the magnitude of technical debt that has 
been found in some of the Air Force programs that Silverthread has scanned to date.  The worst 
offender has been Case K with a core of over 26,000 files, a propagation cost with over 96% of 
the files having direct or indirect dependencies to each other, and a cyclomatic complexity metric 
of 535 files having a McCabe score of over 50. 
 
Second, this table shows the pervasiveness of technical debt across the entire software enterprise. 
Of the 49 different cases shown in this table, 24 of them have at least one metric in the “red” 
category (49%). 
 

    Technical Health   Details 
    Cyclomatic 

Complexity: # 
of files with 
McCabe >50 

Architectural 
Cyclicality: Size 
of largest file-file 
cycle 

Propagation 
Cost: % of code 
that is linked 
together  

  
Lines of 
Code 

Number 
of Files 

     
   

                
Case A               
  Case A (Java) 13 670 0.18   1097347 3689 
  Case A (C#) 42 528 0.04   2888104 15639 
  Case A (C++) 15 11 0.00   975776 1992 
                
Case B               
  Case B (Java) 64 1409 0.03   3857487 18840 
  Case B (C#) 4 4 0.03   61259 465 
  Case B (Web) 28 527 0.04   1767930 7573 
                
Case C               
  Case C: 16 Nov 17 (Ada) 24 261 0.08   1150299 3328 
                
Case D               
  Case D: 20 Mar 08 (Java) 7 415 0.26   307282 1618 
  Case D: 20 Mar 09 (Java) 6 526 0.30   332138 1790 
  Case D: 19 Mar 10 (Java) 8 642 0.34   373762 1937 
  Case D: 18 Mar 11 (Java) 27 689 0.22   1202122 4914 
  Case D: 20 Mar 12 (Java) 26 662 0.21   1205413 4865 
  Case D: 20 Mar 13 (Java) 24 768 0.28   1095985 4321 
  Case D: 17 Mar 14 (Java) 24 765 0.27   1112800 4369 
  Case D: 20 Mar 15 (Java) 3 717 0.33   395105 2129 
  Case D: 16 Mar 16 (Java) 1 481 0.30   374173 2067 
  Case D: 27 Jun 17 (Java) 1 566 0.30   402021 2328 
  Case D: 7 Aug 18 (Java) 1 364 0.23   314967 1959 
  Case D: 28 Sep 18 (Java) 0 368 0.22   323422 2048 
  Case D: 29 Sep 18 (Java) 0 184 0.15   323480 2049 
  Case D: 2 Oct 18 (Java) 0 133 0.14   323648 2048 
  Case D: 3 Oct 18 (Java) 0 110 0.11   323707 2048 
                
Case E               
  Case E: Version 1.3 (Web) 4 51 0.05   353100 1306 
  Case E: Version 2.0 (Web) 4 34 0.03   390,148 1,586 
  Case E: Version 3.0 (Web) 4 34 0.03   375,854 1,542 
  Case E: Version 4.5 (Web) 2 14 0.01   763047 4005 
                
Add'l Cases               
  Case F (Java) 101 6134 0.29   5268326 22199 
  Case G (Java) 4 11 0.02   270889 2034 
  Case H (C#) 0 5 0.09   102269 493 
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  Case H (Web) 0 41 0.26   121218 161 
  Case I (Web) 12 5 0.09   65936 142 
  Case J (Java) 1 11 0.12   85567 331 
  Case K (Java) 535 26526 0.92   5030193 28270 
  Case L (Java) 2 14 0.01   763047 4005 
  Case M (Web) 5 258 0.15   472313 1730 
  Case N (Java) 24 211 0.02   1204270 7465 
  Case O (Java) 1 588 0.42   260723 1461 
  Case P (C++) 0 16 0.06   64787 155 
  Case Q (C#) 0 9 0.03   181983 1091 
  Case R (C#) 5 12 0.02   216478 459 
  Case S (C#) 1 13 0.01   274015 1456 
  Case T (C#) 4 19 0.07   185065 225 
  Case T (C++) 5 127 0.13   405577 953 
  Case U (C++) 29 243 0.54   383826 447 
  Case V (C++) 0 0 0.27   2791 9 
  Case W (C#) 0 2 0.04   67646 334 
  Case X (C#) 1 73 0.17   93624 677 
  Case X (Web) 1 11 0.25   49643 52 
  Case Y (C++) 30 230 0.56   366443 410 
  Case Z (Ada) 26 10898 0.87   3189043 12502 
  Case Z (C++) 47 174 0.04   2238362 1719 
  Case Z (Java) 7 38 0.01   1043497 5949 
  Case AA (C#) 12 25 0.02   1029648 1842 
  Case AA (C++) 0 10 0.02   217781 432 
  Case AA (Web) 4 10 0.36   16719 32 
  Case AB (C#) 7 10 0.04   717555 2475 
  Case AB (C++) 1 2 0.11   6621 15 
  Case AC (C#) 0 81 0.13   167207 428 
  Case AD (C#) 0 4 0.31   4792 24 
  Case AD (C++) 25 260 0.17   469434 1880 
  Case AD (Web) 0 42 0.40   131844 109 
  Case AD (Java) 0 6 0.12   18019 84 
  Case AE (C#) 6 29 0.01   1565537 3429 
  Case AE (C++) 146 662 0.09   4300133 9139 
  Case AF (C#) 6 38 0.01   1943526 5220 
  Case AF (C++) 146 671 0.09   4328610 9201 
  Case AG (C#) 7 41 0.01   2079661 5439 
  Case AG (C++) 145 695 0.09   4332000 9184 
  Case AH (C#) 11 203 0.01   3175193 7115 
  Case AH (C++) 295 2868 0.15   7935260 18145 
  Case AI (Java) 21 166 0.03   1025136 6338 
  Case AJ (Java) 20 166 0.03   1034954 6376 
  Case AK (Web) 2 143 0.33   84137 479 
  Case AK (Java) 0 8 0.02   148251 1135 
  Case AL (C#) 0 12 0.04   269121 401 
  Case AL (Web) 0 3 0.04   53222 84 
  Case AM (C#) 0 5 0.03   41388 376 
  Case AN (C#) 5 690 0.19   610348 3725 
  Case AN (C++) 0 34 0.05   314250 430 
  Case AO (C++) 42 427 0.04   1457073 6090 
  Case AO (Python) 0 0 0.18   4266 31 
  Case AO (Java) 1 2 0.00   64001 651 
  Case AP (C++) 19 145 0.17   513915 719 
  Case AQ (C++) 23 161 0.27   509484 570 
  Case AR (C++) 24 162 0.27   516391 582 
  Case AS (C#) 13 32 0.03   470968 2798 
  Case AT (C#) 8 86 0.08   660345 1382 
  Case AT (C++) 0 0 0.19   1862 15 
  Case AU (Web) 5 7 0.02   191827 587 
  Case AV (Java) 0 2 0.04   17193 73 
  Case AW (C++) 2 12 0.05   96969 380 
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