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Abstract 

How do system design decisions affect the ability of a system to adapt to uncertain 

future demands?  While a variety of studies explore the link between a system’s design 

and its technical performance (e.g., the number of defects experienced in future) few 

empirical studies provide robust quantitative data on how design decisions create (or 

destroy) value through their impact on a systems ability to adapt to future needs.  Despite 

strong theoretical and descriptive evidence that modular (i.e., loosely-coupled) systems 

are easier to adapt than tightly-coupled systems, the lack of empirical confirmation of the 

size and direction of such differences represents a serious gap in our knowledge with 

respect to how modular designs can create “option” value. 

We address this gap by analyzing the relationship between design decisions and 

developer productivity in a large, successful commercial software system. Our analysis 

relies upon measuring the level of coupling of 14,000 components in the system, and 

using these measures to predict the productivity of developers over 8 successive six-

month periods.  Critically, we adopt a panel-data approach, to control for differences in 

developer skills, which are likely to dwarf other predictors of productivity.  We show that 

a developer contributing to the most modular parts of the system is 75% more productive 

than a developer contributing to the least modular parts.  Our findings are a critical first 

step in highlighting the option value of modularity, in that adapting to future demands 

(i.e., creating new features) takes less time and effort for more modular parts of a system. 
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1. Introduction 

How do system design decisions affect the ability of a system to respond to future 

demands?  A variety of studies have examined the link between system design and 

performance, with a view to developing insights into how design decisions should be 

made during the development of new and complex technological systems (Banker et al, 

1993; Banker and Slaughter, 2000).  This work reveals the critical impact of architectural 

choices in resolving potential trade-offs between, on the one hand, system performance 

(e.g., in terms of speed, capacity, flexibility, etc.) and on the other, equally desirable 

attributes such as reliability and maintainability, which may be associated with designs of 

a rather different nature (e.g., those possessing greater modularity).  Few empirical 

studies however, explore how design decisions create options to improve in future.  

While existing theory predicts that modular systems will be more adaptable than integral 

systems (Baldwin and Clark, 2000) no work empirically confirms this prediction, nor 

indicates the magnitude of differences in the degree of adaptation between designs. 

This topic is especially relevant in the software industry, given the dynamics of how 

software is developed.  In particular, software systems rarely die. Instead, each new 

version forms a platform upon which subsequent versions are built.  With this approach, 

today’s developers bear the consequences of system design decisions made long ago 

(MacCormack et al, 2007a).  Unfortunately, the first designers of a system often have 

different objectives from those that follow, especially if the system is successful and long 

lasting (something that may be quite uncertain at the time of its design).  While early 

designers prioritize speed and functionality, later designers may place greater value on 

reliability and adaptability.  Rarely are all these objectives met by the same design. 
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Complexity across systems, and the complexity of different regions within the same 

system, varies widely.  In the battle to channel the behavior of a large system so that 

complexity is managed, the principal weapon in the designer’s arsenal is architecture.  

Architects striving to make large systems tractable make them hierarchical, compose 

them of independent modules, separate them into conceptual layers, and reuse parts.  

These types of architecture endow systems with inherently beneficial properties, and also 

address basic human limitations in dealing with complexity. Design is not easy or 

straightforward, however.  Weighing the costs and benefits of alternative choices is 

difficult.  Designers must choose between competing ways to decompose a system into 

hierarchical structures and competing criteria for determining which functionality should 

be clustered in each module and how interfaces between them should be structured.  In 

addition, hierarchy and modularity are not free – they impose their own costs, may 

impact performance, and can limit the scope of future decision-making. A designer must 

trade performance requirements against complexity controlling features across the system 

being designed.  As a result, a single system may have regions with widely varying levels 

of modularity, associated costs and consequent abilities to adapt. 

In this study, we evaluate the relationship between system design decisions and 

developer productivity in a large, mature, commercial software system.  We characterize 

the system’s design using a network analysis technique called Design Structure Matrices 

(DSMs) (Steward, 1981; Eppinger et al, 1994).  Our analysis allows us to determine the 

level of coupling between each component, and thereby to evaluate which are “Core” 

(tightly-coupled to others) and which are “Peripheral” (loosely-coupled to others).  Our 

objective is to understand the extent to which these different levels of component 
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modularity drive differences in the productivity of developers when developing new 

features.   This measure provides a proxy for the broader “option value” associated with 

different parts of the system’s design.  If developing a new feature involves less time and 

effort in one part of the design versus another, that part of the design, by definition, has 

higher option value (all else being equal) for responding to future demands.   

Software is an ideal context in which to study these issues given the information-

based nature of the product.  Software code can be analyzed automatically to identify the 

level of coupling between components, and hence determine which are highly 

interdependent, versus those that are peripheral (MacCormack et al, 2012).  Furthermore, 

using software version control systems, we can directly trace the work products of 

individual developers, to the parts of the design that they work within. 

 Our findings make an important contribution to the literature exploring the design and 

management of complex technological systems in general, and software in particular.  

We find significant differences in developer productivity across this large, commercial 

software system comprising 14,000 components.  Specifically, developers working in the 

most modular (i.e., most loosely-coupled) parts of the system are 75% more productive in 

developing new features than developers working in the least modular parts of the 

system.  These differences are all the more dramatic given we use a panel data approach 

which controls for individual differences in skill.  In particular, we exploit variations in 

the proportion of work developers do in different parts of the system in 8 different time 

periods, adopting a “differences within developer” approach that allows us to tease out 

the true impact of architecture. 
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 The paper proceeds as follows.  In the next section, we review the prior literature on 

system design, focusing on work that explores the degree to which measures of system 

architecture have been shown to predict performance.  We then describe our research 

methods, which make use of a technique called Design Structure Matrices (DSMs) to 

understand the structure of a system by measuring the level of coupling between 

components.  Next, we introduce the context for our study and describe the large, 

commercial software system that we analyze.  Finally, we report our empirical results, 

and discuss their implications for the academy and for managers. 

 

2. Literature Review 

A large number of studies contribute to our understanding of the design of complex 

systems (Holland, 1992; Kaufman, 1993; Rivkin, 2000; Rivkin and Siggelkow, 2007).  

Many of these studies are situated in the field of technology management, exploring 

factors that influence the design of physical or information-based products (Braha et al, 

2006).  Products are complex systems in that they comprise a large number of 

components with many interactions between them.  The scheme by which a product’s 

functions are allocated to these components is called its “architecture” (Ulrich, 1995; 

Whitney et al, 2004).  Understanding how architectures are chosen, how they perform 

and how they can be changed are critical topics in the study of complex system design. 

Modularity is a concept that helps us to characterize different designs.  It refers to the 

way that a product’s architecture is decomposed into different parts or modules.  While 

there are many definitions of modularity, authors tend to agree on the concepts that lie at 

its heart; the notion of interdependence within modules and independence between 
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modules (Ulrich, 1995).  The latter concept is often referred to as “loose-coupling.”  

Modular designs are loosely-coupled in that changes made to one module have little 

impact on others.  Just as there are degrees of coupling, there are degrees of modularity. 

The costs and benefits of modularity have been discussed in a stream of research that 

has sought to examine its impact on the management of complexity (Simon, 1962), 

product line architecture (Sanderson and Uzumeri, 1995), manufacturing (Ulrich, 1995), 

process design (MacCormack, 2001) process improvement (Spear and Bowen, 1999) and 

industry evolution (Baldwin and Clark, 2000).  Despite the appeal of this work however, 

few studies have used robust empirical data to examine the relationship between 

measures of modularity and the outcomes that it is thought to impact (Schilling, 2000; 

Fleming and Sorenson, 2004).  Most studies are conceptual or descriptive in nature. 

Studies that attempt to measure modularity typically focus on capturing the level of 

coupling that exists between different parts of a system.  In this respect, the most 

promising technique comes from the field of engineering, in the form of the Design 

Structure Matrix (DSM).  A DSM highlights the inherent structure of a design by 

examining the dependencies that exist between its constituent elements in a square matrix 

(Steward, 1981; Eppinger et al, 1994; Sosa et al, 2003).  These elements can represent 

design tasks, design parameters or the actual components.  Metrics that capture the 

degree of coupling between elements have been calculated from a DSM, and used to 

compare different architectures (Sosa et al, 2007).  DSMs have also been used to explore 

the degree of alignment between task dependencies and project team communications 

(Sosa et al, 2004).  Recent work extends this methodology to show how design 
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dependencies can be automatically extracted from software code and used to understand 

architectural differences (MacCormack et al, 2006).  We use this approach in this paper. 

 

2.1:  System Design, Maintenance and Adaptation 

The most significant empirical studies exploring the link between system design, 

modularity and the cost of maintenance and adaptation have come from the field of 

software.  This topic is of particular importance given how software is developed.  Rarely 

do software projects start from scratch.  Instead, the prior version is used as a platform 

upon which new functionality is built.  In many projects, “legacy” code exceeds newly 

developed code, so significant efforts must be devoted to maintenance. Understanding 

how software systems should be designed, and how design decisions drive subsequent 

costs to maintain and adapt a system over time, is a crucial area for attention. 

The formal study of software modularity began with Parnas (1972) who proposed the 

concept of “information hiding” as a mechanism for dividing code into modular units.  

This required designers to separate a module’s internal details from its external 

interfaces, reducing the coordination costs involved in system development and 

facilitating changes to modules without affecting other parts of the design.  Subsequent 

authors built on this work, proposing metrics to capture the level of coupling between 

modules and cohesion within modules (e.g., Selby and Basili, 1988; Dhama, 1995).  

Modular designs were asserted to have both low coupling and high cohesion.  This work 

complemented studies that sought to measure the complexity of the design for the 

purposes of predicting the productivity of system development (e.g., McCabe 1976; 
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Halstead, 1976).  Whereas measures of complexity focus on the number and nature of the 

elements in a system, measures of modularity focus on linkages between these elements. 

Studies seeking to link measures of system design with the costs of maintenance 

focus on predicting the cost and frequency of changes across systems.  Banker et al 

(1993) examine 65 maintenance projects across 17 systems and find that project costs 

increase with system complexity, as measured by the average “procedure” size and the 

number of “non-local” branching statements (i.e., component interdependency).  Kemerer 

and Slaughter (1997) examine modification histories for 621 software modules and find 

that enhancement and repair frequency increase with module complexity, as measured by 

the number of module decision paths (McCabe, 1976) normalized by size.  Banker and 

Slaughter (2000) examine three years of modification data from 61 software applications 

and find that total modification costs increase with application complexity, as measured 

by the number of input/output data elements per unit of functionality.  Finally, Barry et al 

(2006) examine the evolution of 23 applications over a 20-year period and find that an 

increase in the use of standard components (a proxy for modularity) is associated with a 

decline in the frequency and magnitude of modifications. 

The studies above make major contributions to our understanding of the 

characteristics that drive productivity and quality in software system development.  

However, they don’t address several critical issues that must be resolved in order to 

assess the option value that stems from greater modularity in a software system.  First, 

most of these studies measure the mean complexity of components in a system, but fail to 

capture data on the linkages between components – the key driver of modularity.  Second, 

most studies use a cross-sectional research design where the primary unit of analysis is 
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the system.  They do not explore the relative differences in performance between the 

components with different levels of modularity located within the same system.  Finally, 

these studies typically use the source file as the level of analysis, and not the individual 

developer.  Hence we do not know how differences in modularity impact an 

organization’s ability to adapt, by developing new features in response to new demands.  

To address the first concern, we characterize a system’s design in terms of the 

coupling between components, as opposed to the complexity of the components 

themselves.  To address the second concern, we adopt a research design that captures data 

at the component level, allowing us to determine if there are systematic differences in 

performance that are explained by levels of coupling.  To address the third concern, we a 

research design that has the individual developer as the unit of analysis, exploring how 

the productivity of each developer is influenced by where in the system design he/she is 

asked to work.  Hence our research hypothesis can be stated as follows: 

 

H1: Developers working in more modular (i.e., more loosely-coupled) parts of the 

system will be more productive than developers working in less modular (i.e., more 

tightly-coupled) parts of the system. 

 

3. Research Methods 

Below, we describe how we apply DSMs to analyze a large, commercial software 

system, allowing us to determine the level of coupling between system components. 
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3.1 Applying DSMs to the Analysis of Software Systems1 

There are two choices to make when applying DSMs to a software product:  The level 

of analysis and the type of dependency to analyze.  With regard to the former, there are 

several levels at which a DSM can be built:  The directory level, which corresponds to a 

group of source files that all relate to the same subsystem; the source file level, which 

corresponds to a collection of linked processes and functions; and the function level, 

which corresponds to a set of instructions that perform a very specific task.  We analyze 

designs at the source file level for a number of reasons.  First, source files are the level 

most directly equivalent to the components of a physical product.  Second, most prior 

work on software design uses the source file as the primary level of analysis (e.g., Eick et 

all, 1999; Rusovan et all, 2005; Cataldo et al, 2006).  Third, tasks and responsibilities are 

typically allocated to programmers at the source file level.  Finally, software development 

tools use the source file as the unit of analysis for updating and evolving the design.  

There are many types of dependency between source files in a software product.2  We 

focus on several important dependency types used in prior work on system design 

(Banker and Slaughter, 2000; Rusovan et al, 2005) specifically; function calls, class 

method calls, class method definitions, and subclass definitions.   Dependencies are 

captured between source files, in a specific direction.  For example, if FunctionA in 

SourceFile1 calls FunctionB in SourceFile2, then we note that SourceFile1 depends upon 

(or “uses”) SourceFile2.  This dependency is marked in location (1, 2) in the DSM. 

Critically, this does not imply that SourceFile2 depends upon SourceFile1; the 

dependency is not symmetric unless SourceFile2 also calls a function in SourceFile1. 

                                                
1 The methods described here build on prior work in this field (MacCormack et al, 2006; Sosa et al, 2009). 
2 For a discussion of different dependency types, see Shaw and Garlan (1996) and Dellarocas (1996). 
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To capture the dependencies, we use a commercial tool called a “Call Graph 

Extractor” (Murphy et al, 1998), which takes software code as input, and outputs the 

dependencies between each source file.3  We display this data in a DSM using the 

Architectural View. This view groups each source file into a series of nested clusters 

defined by the directory structure, with boxes drawn around each layer in the hierarchy.  

To illustrate, we show the Directory Structure and Architectural View for Linux v0.01 in 

Figure 1.  This system comprises six subsystems, three of which contain only one 

component and three of which contain between 11-18 components.  In the Architectural 

view, each “dot” represents a dependency between two components (i.e., source files). 

 
 
Figure 1:  The Directory Structure and Architectural View of Linux version v0.01. 

  

 

                                                
3 Dependencies can be extracted statically (from the source code) or dynamically (when the code is run).  
We use a static call extractor because it uses source code as input, does not rely on program state (i.e., what 
the system is doing at a point in time) and captures the system structure from the designer’s perspective. 
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3.2 Measuring the Level of Component Coupling 

In order to assess system structure, we develop measures of the degree to which 

components are coupled to each other.  To achieve this, we capture all the direct and 

indirect dependencies a component possesses with other components, a concept known as 

“Visibility” (Sharmine and Yassine 2004; Warfield 1973).  To account for the fact that 

software dependencies are asymmetric we develop separate measures for dependencies 

that flow into a component (“Fan-In”) versus those that flow out from it (“Fan-Out”).   

To illustrate, consider the system depicted in Figure 2 in graphical and DSM form. 

Element A depends upon elements B and C.  In turn, element C depends upon element E, 

hence a change to element E may have a direct impact on element C, and an indirect 

impact on element A, with a “path length” of two.  Similarly, a change to element F may 

have a direct impact on element E, and an indirect impact on elements C and A, with a 

path length of two and three, respectively.  Element A therefore has a Fan-Out Visibility 

of five, given it is connected to all other elements, either directly or indirectly.  

 

Figure 2:  Example System in Graphical and DSM Form 

 

  A B C D E F 
A 0 1 1 0 0 0 
B 0 0 0 1 0 0 
C 0 0 0 0 1 0 
D 0 0 0 0 0 0 
E 0 0 0 0 0 1 
F 0 0 0 0 0 0 

	
  
 

To calculate the visibility of each element, we use matrix multiplication.  By raising 

the DSM to successive powers of n, we obtain the direct and indirect dependencies that 

exist for successive path lengths n.  Summing these matrices yields the visibility matrix, 
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which shows the direct and indirect dependencies between elements for all possible path 

lengths up to the maximum, defined by the size of the DSM.4   Figure 3 illustrates the 

derivation of this matrix for the example above.  

 

Figure 3:  The Derivation of the Visibility Matrix 

 

The measures of component visibility are derived from this matrix.  Fan-In Visibility 

(VFI) is obtained by summing down the columns; Fan-Out Visibility (VFO) is obtained 

by summing along the rows.  For comparisons between systems of different sizes, VFI 

and VFO can be expressed as a percentage of the number of components in a system. 

Once computed, VFI and VFO scores for components across a system can be rank-

ordered and plotted to see their distributions.  Figure 4 shows the distribution of visibility 

scores for one of the releases in the system we analyze.  When these distributions contain 

large steps demarcating the boundary between files that are loosely- and tightly- 

connected, as is the case here, it indicates the network has a “core-periphery” structure 

(MacCormack, 2010).  In particular, this system has a large core of files that are 

interdependent, sharing the same levels of Visibility Fan-In and Visibility Fan-Out.  This 

                                                
4 We choose to include the matrix for n=0, implying that an element will always depend upon itself. 
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is the largest cycle in the system.  We define it as the “Core”. Other types of files are 

defined by their visibility levels relative to the core, as noted in Table 1. 

Figure 4: Distribution of Visibility Measures by Value reveals Bipolar Distribution 
 

 
 

Table 1: Mapping Visibility Scores to File Type 
 
VFI VFO File Type Description 

High High Core Core regions form highly integral clusters, 
containing large cycles in which components 
are directly or indirectly co-dependent. They 
regions are hard to decompose into smaller 
parts and may become unmanageable if they 
become too large. 

High Low Utility Utility components are relied upon (directly or 
indirectly) by a large portion of the system but 
do not depend upon many other components 
themselves.  They have the potential to be self-
contained and stable. 

Low High Control Control components invoke the functionality or 
accesses the data of many other nodes.  It may 
coordinate their collective behavior so as to 
bring about the system level function. 

Low Low Peripheral Peripheral components do not influence and are 
not influenced by much of the rest of the 
system. 
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 In this research, we use each file’s classification as core, utility, control, or periphery, 

as our indicator of the level of modularity.  Core files are the least modular because their 

high levels of connectedness indicate that they are in regions of the network that are 

coupled by large cycles.  Peripheral files are the most modular, because they are only 

loosely-connected to other parts of the system. 

 

4. Empirical Data and Analytical Approach 

The software under examination in this study is a portion of a very large code-base 

owned by a commercial firm with many years of market success.  Over time, thousands 

of professionals wrote software consisting of hundreds of thousands of files and millions 

of lines of code in several different languages.  Hereafter, we will refer to the firm by the 

pseudonym “Iron Bridge Software.”  This body of code forms a product platform – some 

products are required for others to run.  Iron Bridge organizes development activity 

around a six-month cadence.  Within this cadence, teams have coordinated periods for 

planning, feature development, and quality control.  Each development cycle concludes 

with the release of a new version of the software customers.  Information was extracted 

from software source code for eight successive shipped versions of the software and 

information about periods of development activity leading up to each release.  

Architecture metrics were extracted from source code for each version of the software.  

Information about development costs the organization incurred were extracted from 

version control systems, change tracking systems, and human resource databases. 

 Iron Bridge‘s products are developed by hundreds of software professionals, all 
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working to improve the same codebase. Product development teams within Iron Bridge 

exercise a lot of independence when working in their regions of the source-code, and 

coordinate when they meet at system interfaces. These teams share centrally managed 

tools and processes however. The code-base is stored in a common version control 

system, compiled using a common build system and tested using a common regression-

testing suite. Teams use a shared change tracking system, source code version control 

system, shared code validation tools, and a common project management processes. 

 Iron Bridge was chosen for investigation because it represents a natural experiment.  

Because teams at Iron Bridge have independent control over software but centralized 

calendars and tools, the company has done some a number of things that enable this 

research.  First, the effect of process, tools, and schedule are controlled.  The impact of 

the architecture on costs incurred by the organization when developing within it can be 

isolated in a reasonable manner.  Secondly, because developers within Iron Bridge use 

common tools, databases, processes and terminology, common measures related to 

productivity and quality can be established across teams.  Thirdly, Iron Bridge’s history 

of data-collection and long periods without changes in its tooling allowed for longitudinal 

analysis.  Fourthly, because Iron Bridge is a commercial firm we have the opportunity to 

study not only the software, but also the developers.  Many research studies in this field 

look at open-source systems so cannot explain productivity differences because they do 

not know the true efforts applied to development.  Here we can measure the productive 

output of a large number of individuals and assume that they have worked a reasonably 

similar amount of time.  In addition, access to human-resource databases allows us to 

control for time with the company and managerial status.  Finally, Iron Bridge maintains 
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an integrated change tracking and version control system. Policy dictates that developers 

include the identification number of specific features or bugs being tracked through the 

development pipeline when submitting software patches into the version control system.  

Tooling is designed to support this workflow and various checks are put in place to 

enforce the policy.  As a result, the link between feature requests, bug reports, and the 

code that is submitted to implement them is intact a substantial portion of the time. 

 Iron Bridge’s codebase consists of code written in C++, Java, and a scripting 

language similar to Perl.  The C++ portion of this codebase was chosen for this study to 

make our analysis tractable.  This set of files originally began as C language code, and 

evolved to contain a mix of procedural C and object-oriented C++ language constructs 

over time. The C++ portion of the codebase was chosen for several reasons.  First, the 

C++ codebase was large enough that the number of source files, amount of development 

activity, and number of developers led us to believe that statistically significant results 

could be obtained for this study.  Second, the C++ portion of the codebase contains some 

of the oldest code, and therefore contains a substantial portion of the historical 

development activity.  Third, because C++ is a compiled language (rather than an 

interpreted language in which symbols are resolved at runtime) static analysis tools used 

to extract the dependency structure of the codebase could do a reasonably good job of 

accurately representing the architecture of the system.  Fourth, C++ code is the heart of 

the overall system.  It implements many of the most important functionality and 

algorithms.  This portion of the code forms a platform on top of which the Java and 

scripting code rest.5 

                                                
5 The primary purpose of the Java portion of the codebase is to implement graphical user interfaces (GUIs) 
on top of functionality provided by C++ code and the scripting language’s interpreter is implemented in 
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 Files were removed from the sample for a variety of reasons.  Steps were taken to 

clean the sample of C++ studied. In order to be included in the sample: 

• Files had to be part of a product sold to customers.  Steps were taken to remove files 

that implemented unit tests, system tests, or non-shipping infrastructure or tools code. 

• Files had to be manually written by human developers.  Steps were taken to remove 

code that appeared to be automatically generated rather than written. 

• Header files were removed because their contents consist of interface descriptions 

rather than implementation details, and because they are much smaller than other files. 

 Figure 5 shows DSMs and the distribution of visibility scores for release 7.  It 

illustrates the means by which each C++ file in the sample was classified as core, utility, 

control, or peripheral.  The upper-left DSM is sorted according to the directory structure.  

Bands of utility files are clearly visible, as are modules along the diagonal.  The upper-

right DSM is lower-diagonalized.  The process of lower diagonalization congregates the 

four distinct DSM file types into distinct regions in the picture.  The small box in the 

upper left contains utility files, followed by core, peripheral, and control files.  The 

bottom two panels plot the visibility scores for files in a sorted order.  When this is done, 

the bimodal nature of the visibility scores is apparent.  Iron Bridge’s C++ codebase has a 

core-periphery rather than a hierarchical structure.  These charts also indicate how files 

were assigned file type classifications.  The prominent step in the middle of each graph is 

the demarcation line between “low” and “high” scores for purposes of defining 

categories.  Once files are assigned to “low” or “high” regions on both visibility 

dimensions, classification is straightforward.   Table 2 shows the number of files for each 

                                                
C++, meaning that each line of scripted code is ultimately interpreted and executed by C++ code in the 
codebase under examination.  
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release, and how these split across the different categories of file type.  Note the growth 

of the codebase and of the size of the core through time. 

Figure 5:  Release 7 DSMs and Visibility Plots 
 

 

Table 2: File Count Broken Down by Type of File 
Release 1 2 3 4 5 6 7 8 
Total number of files 9937 10447 10671 11576 12186 12311 13295 13941 
Architectural classification 

        
Peripheral 2691 2305 2158 2193 1835 2981 1975 1901 
Utility 543 602 636 915 679 780 685 718 
Control 3262 3503 3371 3564 3923 2704 4127 4461 
Core 3441 4037 4506 4904 5749 5846 6508 6861 
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5.  Empirical Results 

We explore the relationship between the fraction of lines of code an individual 

contributes to “core” files during a release and their total number of lines of code 

produced during that release.  In these models we control for a variety of other factors 

that could each be considered an alternative explanation for why a developer’s 

productivity may vary.  Controls tested include a developer’s tenure with the firm, 

managerial status, fraction of activity working in new (rather than legacy) code, fraction 

of activity spent fixing bugs, and fraction of activity working in files with high McCabe 

Cylomatic complexity.  The latter is a common measure of complexity in software, which 

focuses on the internal complexity of components, rather than the position of components 

in the network of dependencies.  The goal of our analysis was to explore whether our 

measures of modularity predict developer productivity after controlling for other factors. 

 The sample of developers used to explore this question included 178 people who 

wrote code in the C++ portion of Iron Bridge’s codebase.  Because 8 releases were 

measured, developers had the opportunity to appear in the dataset up to 8 times.  Due to 

repeats, this sample consisted of 478 distinct developer-release observations for use in 

panel-data analysis.  The sample included 388 observations of individual contributors and 

90 observations of managers.  The median amount of time a developer-release had been 

with the company was slightly over 4 years.  Over the course of 8 releases, the developer-

releases observed produced nearly 2 million lines of code as measured by the addition 

and deletion of lines in file patches.  Of these 2 million lines produced, 1.1 million were 

created to implement features or perform some other non-bug related tasks and  800,000 

were produced to fix bugs.  Our empirical measures are described in detail in Table 3. 
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Table 3: Variables Included In Models Predicting Developer Productivity 
 
Variable Purpose Type Description 

Lines of code 
produced to 
implement features 
or other non-bug 
related tasks 

Dependent 
Variable 

Count The number of lines of code produced by a 
developer to implement features or do some 
other non-bug related task.  If a patch was 
associated with multiple change requests, some 
of which were to fix bugs, then only a portion 
of the patch will count as a bug fix, and the rest 
will be considered a feature or task.  The 
number of lines of code in a patch will be 
allocated proportionally based on the 
proportion allocated to bugs and non-bugs. 

Lines of code 
produced to fix bugs 

Dependent 
Variable 

Count The number of lines of code produced by a 
developer to fix bugs during a release window.  
If a patch was associated with multiple change 
requests, only some of which were to fix bugs, 
then only a portion of the patch will count as a 
bug fix.  The number of lines of code in a patch 
will be allocated proportionally based on the 
proportion allocated to bugs and non-bugs. 

Lines of code 
produced to fix 
bugs, implement 
features, or do other 
tasks 

Dependent 
Variable 

Count The number of lines of code produced by a 
developer during a release window.  All patches 
submitted by the developer during the release 
window to fix bugs, implement features, or do 
other tasks are considered and the lines added 
plus the lines deleted in each of those patches 
are totaled. 

Years employed Control Float The time employed (in years) of the developer 
on the date of the software release.  Computed 
by subtracting the developer's hire date from 
the release date. 

Is manager? Control Boolean Boolean variable indicating whether a developer 
is a manager on the release date. 

Percent of lines 
submitted to new 
files 

Control Percent A file is considered to be a "new file" if it is less 
than two years old.  File age is computed by 
subtracting the date of the file's first patch from 
the release date.  The percentage of lines 
submitted to new files is computed by 
determining the proportion of lines produced 
by a developer during a release that modified 
new files. 
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Percent of lines 
submitted to fix 
bugs 

Control Percent The percentage of lines of code that were 
produced by a developer to fix bugs.  If a patch 
was associated with multiple change requests, 
only some of which were to fix bugs, then only 
a portion of the patch will count as a bug fix.  
The number of lines of code in a patch will be 
allocated proportionally based on the 
proportion allocated to bugs and non-bugs. 

Percent of lines 
submitted into files 
with "high" or "very 
high" McCabe 
classifications 

Control Percent A file is considered to have a "high" or "very 
high" McCabe score if the Modified cyclomatic 
complexity of the most complex 
function/method is above 20.  The percentage 
of lines submitted to files with "high" or "very 
high" McCabe scores is computed by 
determining the proportion of lines produced 
by a developer during a release that modified 
those files.  [114] 

Release index Control Categorical Each file observation has dummy variables 
indicating which of the 8 development windows 
the observation was made for. 

Login Panel Categorical Each developer login is used as a dummy 
variable.  This variable is used in fixed-effects 
panel-data models. 

Percent of lines 
submitted to core 
files 

Independent 
Variable 

Percent Determined by finding the proportion of lines 
produced that were submitted to files given the 
architectural complexity classification of "core" 
using the transitive closure based techniques 
developed by MacCormack, Baldwin, and 
Rusnak [1, 2] 

	
  
 

 Table 4 below shows descriptive data on the number of developers in each sample, 

information about their tenure and managerial status, and information about the lines of 

code they produced on average to implement features and fix bugs.  The median 

developer produced 3,200 lines of code, while the mean developer produced 4,000 lines 

changed over the course of a release.  Productivity between individuals was highly 

skewed.  The top quartile has approximately 10 times the productivity as the bottom 

quartile.  (This observation is striking, but is a generally understood phenomenon.) 
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Table 4: Developers and Activity in Each Release 
Release 1 2 3 4 5 6 7 8 
Developers in sample 35 46 59 67 64 67 69 71 

number of managers 8 9 15 13 12 13 12 8 
number of ind. contributors 27 37 44 54 52 54 57 63 

Mean time with company 4.5 4.5 5.2 4.8 4.7 5.5 5.9 5.5 
Patches produced per developer 69 79 87 70 86 82 69 68 
Lines produced per developer 3357 4214 4443 3681 4967 4406 3361 3676 

for features & tasks 1233 2168 2279 2231 3226 2867 1838 2260 
for bug fixes 2118 2038 2154 1440 1735 1531 1517 1410 

 

 Table 5 below breaks down development by type of activity being performed (feature 

work vs. bug fix) and the location of work.  Approximately half the lines coded are 

submitted to new files and half to legacy files.  One third of activity takes place in files 

with McCabe scores of high or very high.  Three quarters of activity occurs in core files. 

 

Table 5: Activity For Average Developer by Task and File Type by Release 
Release 1 2 3 4 5 6 7 8 
Developers in sample 35 46 59 67 64 67 69 71 
Lines produced per developer 3357 4214 4443 3681 4967 4406 3361 3676 
Lines produced in DSM 2471 3030 3160 2784 3622 3261 2582 2763 
Type of patch                 

for features & tasks 1233 2168 2279 2231 3226 2867 1838 2260 
for bug fixes 2118 2038 2154 1440 1735 1531 1517 1410 
% lines for bug fixes 63% 48% 48% 39% 35% 35% 45% 38% 

Age of file         
old file (>= 2 years) 2006 2235 2104 1704 2420 2204 1575 1791 
new file (< 2 years) 1319 1882 2274 1951 2518 2162 1771 1828 
% lines in new files 39% 45% 51% 53% 51% 49% 53% 50% 

Component complexity         
low McCabe (< 21) 1901 2550 2742 2428 2737 2729 2166 2198 
high McCabe (>= 21) 1354 1509 1614 1215 2171 1608 1148 1407 
% lines high McCabe file 40% 36% 36% 33% 44% 37% 34% 38% 

Architectural complexity         
peripheral file 241 47 142 112 102 147 130 20 
utility file 33 12 8 58 86 73 21 28 
control file 609 402 737 733 761 614 435 736 
core file 1511 2510 2242 1856 2635 2392 1971 1976 
% lines in core file 61% 83% 71% 67% 73% 73% 76% 72% 

 



25 

Submission ID: 16544 

 

 In order to analyze the determinants of developer productivity, we construct three 

models using the software developer as the unit of analysis.  In the first model, the 

dependent variable is the total number of lines produced by an individual to implement 

features or do other non bug-related tasks (the number of bug-fix lines is included as a 

control).  In the second model, the dependent variable is the number of lines of code 

produced by that individual to fix defects (the number of lines that person produced for 

purposes other than to fix bugs is included as a control).  In the third model, the 

dependent variable is the total number of lines of code produced by an individual during 

a given release window for features, tasks, and bug fixes (the percentage of lines 

dedicated to bug-fixes is included as a control).  The independent variable under study in 

all three sets of models is the percentage of lines a person submitted to “core” files.  This 

measure is designed to estimate the amount of work the individual does in files with high 

levels of architectural complexity (i.e., low levels of modularity). 

 In each of these models, we use a panel-data approach that aims to control for 

individual differences in developer productivity.  Dummy variables are included for each 

of the 8 releases and each of the individual developers.  By including these dummy 

variables, we construct regressions that capture changes in productivity within individuals 

rather than between them.  That is, these regressions are designed to determine if 

individuals are less productive during releases in which they worked in more modular 

parts of the design, rather than to determine if a group of people working in the more 

modular parts are more productive than a group working in less modular parts. 

 A variety of controls were included for the individual including length of 

employment, managerial status, the amount of work done in new (rather than legacy) 
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files and amount of work done in files with high levels of McCabe cyclomatic 

complexity.  Parameters for all models were estimated using a Negative Binomial 

regression due to the count nature of the dependent variable and the fact that the 

conditional data is overdispersed, invalidating the assumptions of the simpler Poisson 

model.  The Zelig framework built into the R statistical software suite was used to run 

regressions and subsequent simulations to estimate the value of parameters. 

 The results for regressions predicting the productivity of an individual during a 

release window are shown below.  Note that while each of these regressions contained 

dummy variables for the release and the individual, these dummies were omitted from 

tables.  Table 6 shows results for regressions in which the productivity of individuals 

implementing features and doing other non-bug tasks is predicted.  (Each model 

contained the lines produced to fix bugs as a control.)  Developers are much more 

productive when developing features and working in new (rather than legacy) files.  They 

are less productive when developing features and working in files with high McCabe 

cyclomatic complexity.  After all the controls are included in the model, developers are 

found to be less productive when developing features and working in core files.  This 

result is significant at the 5% level. 
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Table 6: Predicting Developer Lines of Code for New Features (one Release) 

  

  

Table 7 shows results for regression in which the productivity of individuals correcting 

defects during a release is predicted.  (Each model contained the lines produced for 

feature work as a control.)  Developers are more productive when implementing bug 

fixes if they are working in new (rather than legacy files).  Developers with more 

experience (those with longer tenures at the firm) are more productive when fixing bugs 

than less experienced developers.  The ability to effectively fix bugs appears to grow with 

experience more than feature-development productivity.  Developers are also much less 

productive when fixing bugs in the core than when fixing bugs elsewhere.  This result is 

significant at the 0.1% level.  Working in the core has a stronger negative impact on the 

productivity of those fixing bugs than those implementing features. 
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Table 7: Predicting Developer Lines of Code to Fix Defects (one Release) 

 

 Table 8 shows results for regressions in which total developer productivity (features 

and bug-fixes combined) during a release is predicted.  Employees with more years of 

experience are more productive.  While this is not surprising, it is interesting to note that 

the strength of the effect grew as other controls were added, suggesting that as employees 

gain experience, they are moved into more complex regions of the codebase, work more 

on legacy code, or work on harder bug fixes, thereby suppressing the productivity gains 

they would have if left in more approachable regions of the codebase.  When developers 

work in new files (those less than 2 years old) they are much more productive. This 

suggests that new feature development is easier than maintaining legacy code.  As might 

be expected, developers are much less productive when they are working on bug fixes 

than when they are implementing features.  Surprisingly, McCabe cyclomatic complexity 

had no statistically significant impact on developer productivity.  Finally, during time 

periods in which an individual worked more in core files, the number of total lines of 

code they produced declined.  Architectural complexity has a significant negative impact 

on a developer’s overall productivity.  This result is significant at the 1% level. 
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Table 8: Predicting Total Lines of Code for a Developer (one Release) 

 

 

5.1  Interpreting the Results 

 Three sets of simulations were run to determine the response of the outcome variables 

(the number of lines that the typical developer would produce during a release) to 

changes in a developer’s percentage of activity in the core.  In these simulations, most 

control variables were set to their mean values.  The “typical” developer was selected by 

choosing the individual owning the person-specific dummy variable coefficient with the 

median value.  Managerial status was set to false.  Length of employment was set to the 

mean value of 5.1 years.  The percent of lines contributed by this prototypical developer 

to new files (those under 2 years of age) was set to 44%.  The percent of lines contributed 

to files with high McCabe cyclomatic complexity (with scores above 20) was set to 38%.  

The results of these simulations are shown in Figure 6. 
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Figure 6: Simulations of Developer Productivity 

 

  

 First, a set of simulations was run to predict the expected productivity that would be 

achieved if 100% of a developer’s effort could be dedicated implementing new features 

or doing other non-bug related tasks, and no bug-fixing were necessary.  This simulation 

used the full version of the regression model shown in Table 6.  (In addition to setting 

controls to the values just described, the control variable lines for bug fixes was set to 0.) 
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  The blue line shown in Figure 6 shows the result of varying the percent of lines 

submitted to core files on feature productivity for this prototypical individual.  All else 

equal, the developer working only on features in the periphery would produce 10655 

lines of changes during a release.  This same individual only produced 6083 lines for 

features when working in the core.  A second set of simulations was run to predict the 

expected productivity that would be achieved if a developer was forced to dedicate 100% 

of his effort to fixing bugs.  This simulation used the full version of the regression model 

shown in Table 7.  (In addition to setting controls to the values previously described, the 

control variable lines for features and tasks was set to 0.)  The red line in Figure 6 shows 

the response of bug-fix productivity when the percent of lines submitted to the core is 

varied.  All else equal, if a developer works only on bug fixes in the periphery, 2815 lines 

of changes would be produced.  This same individual would produce only 1567 lines if 

working in the core. Our third (and final) simulation was run to predict the expected 

productivity that would be achieved if a developer spent the typical proportion of time 

split between feature work and bug fixes.  This simulation used the full version of the 

regression model shown in Table 8.  (In addition to setting controls to the values 

previously described, the control variable pct lines for bugs was set to the mean value of 

52%.)  The green line in 6 shows the impact of varying the percent of lines submitted to 

core files on overall productivity.  All else equal, the typical developer working in the 

periphery will produce 5359 lines of changes during a release while this same individual 

would only produce 3594 lines if working in the core. 

 Our results suggest that the effect that modularity has on developer productivity is 

strong.  All else equal, system design accounts for a near halving of the lines of code that 
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can be produced by an individual in any given release as one moves from the periphery to 

the core.  At Iron Bridge, approximately 70% of lines produced go into core files. Based 

on the contents of Figure 6, one might speculate that a refactoring which shrunk the core 

such that only 50% of average developer’s lines produced went into core files would 

yield a productivity increase of 10%.  In addition, one should remember that “all else” is 

not actually equal.  The strong relationship between defects and complexity found in 

previous work (Sosa et al, 2012) tells us that developers in the core will spend more of 

their time contending with bugs, thereby magnifying the impact presented on the green 

line in Figure 6. If shrinking the core reduced the number of bugs a developer had to 

contend with, it would increase the amount of time spent on the blue curve rather than the 

red curve, resulting in significant productivity gains. 

 

6. Discussion 

Our work makes an important contribution to the academy and to the practice of 

managers.  In particular, we show that components with higher levels of interdependency 

are associated with lower levels of productivity in a large, commercial software system.  

The magnitude of the differences between components is surprisingly large.  Specifically, 

we find that modular components are associated with an increase in new feature 

productivity of 75% as compared to tightly-coupled components. 

Our paper makes an important contribution to academic study, in that we highlight 

the potential for architectural change to create value in mature technological systems.  

While prior studies have developed many insights into the process of system design, 

fewer have focused on the potential for these early decisions to become “misaligned” 
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with the mission of a system over the longer-term, especially if priorities change in terms 

of valuing performance attributes such as cost and efficiency.  These insights have 

particular relevance in contexts where the life of a system is uncertain, and where there 

are distinct trade-offs in design associated with differing performance characteristics.  For 

example, a new start-up developing an Internet software application would not prioritize 

maintainability over speed, given there is only a low probability the firms or the system 

will be long-lasting.  Should the start-up succeed however, the design decisions 

embedded in the system design may become increasingly misaligned with requirements, 

consuming greater amounts of cost as the system grows and evolves.   Such a dynamic 

suggests the need for a periodic review of critical system design decisions, especially 

when it is clear that the life of a system may be extended versus early expectations.   

Our results also have important implications for managers.  Above all, they highlight 

the importance of design decisions made early in the life of a complex system.  Choices 

about levels of component coupling are typically founded upon the trade-offs faced 

within the current version of a design, for example, in terms of superior performance 

versus increased reliability.  Yet our results reveal the long-lasting nature of these 

choices.  Tightly-coupled components cost significantly more to maintain many years 

after a system has been introduced.  The challenge for a decision-maker is that these 

longer-term costs are neither easy to calculate nor as salient as the near-term benefits that 

may stem from a design that is more tightly-coupled.  Given these factors, it is likely that 

managers systematically under-invest in modularity when developing complex systems.  

Our work highlights a set of methods that can help managers to justify architectural 

changes in such systems, even at the later stages of a system’s life. 
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Several limitations of our study must be considered in assessing the generalizability 

of our results.  First, our work is conducted in the software industry, a unique context 

given that designs exist purely as information, and are not bounded by physical limits.  

Whether the results would be replicated in industries based upon electronic hardware or 

physical systems remains an important empirical question.  Second, we examine a single 

product in this industry, hence cannot be sure that the findings apply to other software 

products.  While we examine the costs of system design across a sample of 14,000 

components, this sample comes from a single product, hence will reflect idiosyncratic 

practices and design choices associated with the parent organization that developed it.  

Finally, while we speculate on the potential value that could be released via a redesign, 

these actions would have costs and other (perhaps unintended) impacts on system 

performance. Decisions on the benefits of architectural change must therefore carefully 

assess these other costs and impacts before it is known if this would be optimal. 

This work generates a number of promising avenues for future study.  First, we need 

to understand the extent to which design choices vary, for example, across products that 

perform similar functions.  If designs are, to a large degree, dictated by function, the 

ability to improve on the dynamics observed here might be limited (i.e., some designs 

may need to be more tightly-coupled than others).  Second, work is needed to expose the 

broader organizational influences on a system’s design, which steer firms away from 

what appear to be optimal choices.  Given prior work suggests that products “mirror” the 

organizations that develop them, the misalignment of system design and long-term 

requirements may stem more from the nature of the firm, than any functional need 

(Conway, 1968; Henderson and Clark, 1990; MacCormack et al, 2007b).  Finally, the 
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methods described here can be used to assess the degree to which regular patterns are 

found in system design and evolution.  Prior work has shown that systems comprise a 

central core around which are arranged peripheral components (Tushman and Murmann, 

1998).  Future research could explore the prevalence of such patterns and identify the 

factors that explain differences between them.  This agenda promises to help us 

understand the choices available to a designer, as well as the potential to change these 

choices and thereby release additional value later in a systems life. 
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