
Submission ID: 16544

Modular Design and Option Value: The Impact of
System Architecture on Developer Productivity

2

Submission ID: 16544

Abstract

How do system design decisions affect the ability of a system to adapt to uncertain

future demands? While a variety of studies explore the link between a system’s design

and its technical performance (e.g., the number of defects experienced in future) few

empirical studies provide robust quantitative data on how design decisions create (or

destroy) value through their impact on a systems ability to adapt to future needs. Despite

strong theoretical and descriptive evidence that modular (i.e., loosely-coupled) systems

are easier to adapt than tightly-coupled systems, the lack of empirical confirmation of the

size and direction of such differences represents a serious gap in our knowledge with

respect to how modular designs can create “option” value.

We address this gap by analyzing the relationship between design decisions and

developer productivity in a large, successful commercial software system. Our analysis

relies upon measuring the level of coupling of 14,000 components in the system, and

using these measures to predict the productivity of developers over 8 successive six-

month periods. Critically, we adopt a panel-data approach, to control for differences in

developer skills, which are likely to dwarf other predictors of productivity. We show that

a developer contributing to the most modular parts of the system is 75% more productive

than a developer contributing to the least modular parts. Our findings are a critical first

step in highlighting the option value of modularity, in that adapting to future demands

(i.e., creating new features) takes less time and effort for more modular parts of a system.

3

Submission ID: 16544

1. Introduction

How do system design decisions affect the ability of a system to respond to future

demands? A variety of studies have examined the link between system design and

performance, with a view to developing insights into how design decisions should be

made during the development of new and complex technological systems (Banker et al,

1993; Banker and Slaughter, 2000). This work reveals the critical impact of architectural

choices in resolving potential trade-offs between, on the one hand, system performance

(e.g., in terms of speed, capacity, flexibility, etc.) and on the other, equally desirable

attributes such as reliability and maintainability, which may be associated with designs of

a rather different nature (e.g., those possessing greater modularity). Few empirical

studies however, explore how design decisions create options to improve in future.

While existing theory predicts that modular systems will be more adaptable than integral

systems (Baldwin and Clark, 2000) no work empirically confirms this prediction, nor

indicates the magnitude of differences in the degree of adaptation between designs.

This topic is especially relevant in the software industry, given the dynamics of how

software is developed. In particular, software systems rarely die. Instead, each new

version forms a platform upon which subsequent versions are built. With this approach,

today’s developers bear the consequences of system design decisions made long ago

(MacCormack et al, 2007a). Unfortunately, the first designers of a system often have

different objectives from those that follow, especially if the system is successful and long

lasting (something that may be quite uncertain at the time of its design). While early

designers prioritize speed and functionality, later designers may place greater value on

reliability and adaptability. Rarely are all these objectives met by the same design.

4

Submission ID: 16544

Complexity across systems, and the complexity of different regions within the same

system, varies widely. In the battle to channel the behavior of a large system so that

complexity is managed, the principal weapon in the designer’s arsenal is architecture.

Architects striving to make large systems tractable make them hierarchical, compose

them of independent modules, separate them into conceptual layers, and reuse parts.

These types of architecture endow systems with inherently beneficial properties, and also

address basic human limitations in dealing with complexity. Design is not easy or

straightforward, however. Weighing the costs and benefits of alternative choices is

difficult. Designers must choose between competing ways to decompose a system into

hierarchical structures and competing criteria for determining which functionality should

be clustered in each module and how interfaces between them should be structured. In

addition, hierarchy and modularity are not free – they impose their own costs, may

impact performance, and can limit the scope of future decision-making. A designer must

trade performance requirements against complexity controlling features across the system

being designed. As a result, a single system may have regions with widely varying levels

of modularity, associated costs and consequent abilities to adapt.

In this study, we evaluate the relationship between system design decisions and

developer productivity in a large, mature, commercial software system. We characterize

the system’s design using a network analysis technique called Design Structure Matrices

(DSMs) (Steward, 1981; Eppinger et al, 1994). Our analysis allows us to determine the

level of coupling between each component, and thereby to evaluate which are “Core”

(tightly-coupled to others) and which are “Peripheral” (loosely-coupled to others). Our

objective is to understand the extent to which these different levels of component

5

Submission ID: 16544

modularity drive differences in the productivity of developers when developing new

features. This measure provides a proxy for the broader “option value” associated with

different parts of the system’s design. If developing a new feature involves less time and

effort in one part of the design versus another, that part of the design, by definition, has

higher option value (all else being equal) for responding to future demands.

Software is an ideal context in which to study these issues given the information-

based nature of the product. Software code can be analyzed automatically to identify the

level of coupling between components, and hence determine which are highly

interdependent, versus those that are peripheral (MacCormack et al, 2012). Furthermore,

using software version control systems, we can directly trace the work products of

individual developers, to the parts of the design that they work within.

 Our findings make an important contribution to the literature exploring the design and

management of complex technological systems in general, and software in particular.

We find significant differences in developer productivity across this large, commercial

software system comprising 14,000 components. Specifically, developers working in the

most modular (i.e., most loosely-coupled) parts of the system are 75% more productive in

developing new features than developers working in the least modular parts of the

system. These differences are all the more dramatic given we use a panel data approach

which controls for individual differences in skill. In particular, we exploit variations in

the proportion of work developers do in different parts of the system in 8 different time

periods, adopting a “differences within developer” approach that allows us to tease out

the true impact of architecture.

6

Submission ID: 16544

 The paper proceeds as follows. In the next section, we review the prior literature on

system design, focusing on work that explores the degree to which measures of system

architecture have been shown to predict performance. We then describe our research

methods, which make use of a technique called Design Structure Matrices (DSMs) to

understand the structure of a system by measuring the level of coupling between

components. Next, we introduce the context for our study and describe the large,

commercial software system that we analyze. Finally, we report our empirical results,

and discuss their implications for the academy and for managers.

2. Literature Review

A large number of studies contribute to our understanding of the design of complex

systems (Holland, 1992; Kaufman, 1993; Rivkin, 2000; Rivkin and Siggelkow, 2007).

Many of these studies are situated in the field of technology management, exploring

factors that influence the design of physical or information-based products (Braha et al,

2006). Products are complex systems in that they comprise a large number of

components with many interactions between them. The scheme by which a product’s

functions are allocated to these components is called its “architecture” (Ulrich, 1995;

Whitney et al, 2004). Understanding how architectures are chosen, how they perform

and how they can be changed are critical topics in the study of complex system design.

Modularity is a concept that helps us to characterize different designs. It refers to the

way that a product’s architecture is decomposed into different parts or modules. While

there are many definitions of modularity, authors tend to agree on the concepts that lie at

its heart; the notion of interdependence within modules and independence between

7

Submission ID: 16544

modules (Ulrich, 1995). The latter concept is often referred to as “loose-coupling.”

Modular designs are loosely-coupled in that changes made to one module have little

impact on others. Just as there are degrees of coupling, there are degrees of modularity.

The costs and benefits of modularity have been discussed in a stream of research that

has sought to examine its impact on the management of complexity (Simon, 1962),

product line architecture (Sanderson and Uzumeri, 1995), manufacturing (Ulrich, 1995),

process design (MacCormack, 2001) process improvement (Spear and Bowen, 1999) and

industry evolution (Baldwin and Clark, 2000). Despite the appeal of this work however,

few studies have used robust empirical data to examine the relationship between

measures of modularity and the outcomes that it is thought to impact (Schilling, 2000;

Fleming and Sorenson, 2004). Most studies are conceptual or descriptive in nature.

Studies that attempt to measure modularity typically focus on capturing the level of

coupling that exists between different parts of a system. In this respect, the most

promising technique comes from the field of engineering, in the form of the Design

Structure Matrix (DSM). A DSM highlights the inherent structure of a design by

examining the dependencies that exist between its constituent elements in a square matrix

(Steward, 1981; Eppinger et al, 1994; Sosa et al, 2003). These elements can represent

design tasks, design parameters or the actual components. Metrics that capture the

degree of coupling between elements have been calculated from a DSM, and used to

compare different architectures (Sosa et al, 2007). DSMs have also been used to explore

the degree of alignment between task dependencies and project team communications

(Sosa et al, 2004). Recent work extends this methodology to show how design

8

Submission ID: 16544

dependencies can be automatically extracted from software code and used to understand

architectural differences (MacCormack et al, 2006). We use this approach in this paper.

2.1: System Design, Maintenance and Adaptation

The most significant empirical studies exploring the link between system design,

modularity and the cost of maintenance and adaptation have come from the field of

software. This topic is of particular importance given how software is developed. Rarely

do software projects start from scratch. Instead, the prior version is used as a platform

upon which new functionality is built. In many projects, “legacy” code exceeds newly

developed code, so significant efforts must be devoted to maintenance. Understanding

how software systems should be designed, and how design decisions drive subsequent

costs to maintain and adapt a system over time, is a crucial area for attention.

The formal study of software modularity began with Parnas (1972) who proposed the

concept of “information hiding” as a mechanism for dividing code into modular units.

This required designers to separate a module’s internal details from its external

interfaces, reducing the coordination costs involved in system development and

facilitating changes to modules without affecting other parts of the design. Subsequent

authors built on this work, proposing metrics to capture the level of coupling between

modules and cohesion within modules (e.g., Selby and Basili, 1988; Dhama, 1995).

Modular designs were asserted to have both low coupling and high cohesion. This work

complemented studies that sought to measure the complexity of the design for the

purposes of predicting the productivity of system development (e.g., McCabe 1976;

9

Submission ID: 16544

Halstead, 1976). Whereas measures of complexity focus on the number and nature of the

elements in a system, measures of modularity focus on linkages between these elements.

Studies seeking to link measures of system design with the costs of maintenance

focus on predicting the cost and frequency of changes across systems. Banker et al

(1993) examine 65 maintenance projects across 17 systems and find that project costs

increase with system complexity, as measured by the average “procedure” size and the

number of “non-local” branching statements (i.e., component interdependency). Kemerer

and Slaughter (1997) examine modification histories for 621 software modules and find

that enhancement and repair frequency increase with module complexity, as measured by

the number of module decision paths (McCabe, 1976) normalized by size. Banker and

Slaughter (2000) examine three years of modification data from 61 software applications

and find that total modification costs increase with application complexity, as measured

by the number of input/output data elements per unit of functionality. Finally, Barry et al

(2006) examine the evolution of 23 applications over a 20-year period and find that an

increase in the use of standard components (a proxy for modularity) is associated with a

decline in the frequency and magnitude of modifications.

The studies above make major contributions to our understanding of the

characteristics that drive productivity and quality in software system development.

However, they don’t address several critical issues that must be resolved in order to

assess the option value that stems from greater modularity in a software system. First,

most of these studies measure the mean complexity of components in a system, but fail to

capture data on the linkages between components – the key driver of modularity. Second,

most studies use a cross-sectional research design where the primary unit of analysis is

10

Submission ID: 16544

the system. They do not explore the relative differences in performance between the

components with different levels of modularity located within the same system. Finally,

these studies typically use the source file as the level of analysis, and not the individual

developer. Hence we do not know how differences in modularity impact an

organization’s ability to adapt, by developing new features in response to new demands.

To address the first concern, we characterize a system’s design in terms of the

coupling between components, as opposed to the complexity of the components

themselves. To address the second concern, we adopt a research design that captures data

at the component level, allowing us to determine if there are systematic differences in

performance that are explained by levels of coupling. To address the third concern, we a

research design that has the individual developer as the unit of analysis, exploring how

the productivity of each developer is influenced by where in the system design he/she is

asked to work. Hence our research hypothesis can be stated as follows:

H1: Developers working in more modular (i.e., more loosely-coupled) parts of the

system will be more productive than developers working in less modular (i.e., more

tightly-coupled) parts of the system.

3. Research Methods

Below, we describe how we apply DSMs to analyze a large, commercial software

system, allowing us to determine the level of coupling between system components.

11

Submission ID: 16544

3.1 Applying DSMs to the Analysis of Software Systems1

There are two choices to make when applying DSMs to a software product: The level

of analysis and the type of dependency to analyze. With regard to the former, there are

several levels at which a DSM can be built: The directory level, which corresponds to a

group of source files that all relate to the same subsystem; the source file level, which

corresponds to a collection of linked processes and functions; and the function level,

which corresponds to a set of instructions that perform a very specific task. We analyze

designs at the source file level for a number of reasons. First, source files are the level

most directly equivalent to the components of a physical product. Second, most prior

work on software design uses the source file as the primary level of analysis (e.g., Eick et

all, 1999; Rusovan et all, 2005; Cataldo et al, 2006). Third, tasks and responsibilities are

typically allocated to programmers at the source file level. Finally, software development

tools use the source file as the unit of analysis for updating and evolving the design.

There are many types of dependency between source files in a software product.2 We

focus on several important dependency types used in prior work on system design

(Banker and Slaughter, 2000; Rusovan et al, 2005) specifically; function calls, class

method calls, class method definitions, and subclass definitions. Dependencies are

captured between source files, in a specific direction. For example, if FunctionA in

SourceFile1 calls FunctionB in SourceFile2, then we note that SourceFile1 depends upon

(or “uses”) SourceFile2. This dependency is marked in location (1, 2) in the DSM.

Critically, this does not imply that SourceFile2 depends upon SourceFile1; the

dependency is not symmetric unless SourceFile2 also calls a function in SourceFile1.

1 The methods described here build on prior work in this field (MacCormack et al, 2006; Sosa et al, 2009).
2 For a discussion of different dependency types, see Shaw and Garlan (1996) and Dellarocas (1996).

12

Submission ID: 16544

To capture the dependencies, we use a commercial tool called a “Call Graph

Extractor” (Murphy et al, 1998), which takes software code as input, and outputs the

dependencies between each source file.3 We display this data in a DSM using the

Architectural View. This view groups each source file into a series of nested clusters

defined by the directory structure, with boxes drawn around each layer in the hierarchy.

To illustrate, we show the Directory Structure and Architectural View for Linux v0.01 in

Figure 1. This system comprises six subsystems, three of which contain only one

component and three of which contain between 11-18 components. In the Architectural

view, each “dot” represents a dependency between two components (i.e., source files).

Figure 1: The Directory Structure and Architectural View of Linux version v0.01.

3 Dependencies can be extracted statically (from the source code) or dynamically (when the code is run).
We use a static call extractor because it uses source code as input, does not rely on program state (i.e., what
the system is doing at a point in time) and captures the system structure from the designer’s perspective.

13

Submission ID: 16544

3.2 Measuring the Level of Component Coupling

In order to assess system structure, we develop measures of the degree to which

components are coupled to each other. To achieve this, we capture all the direct and

indirect dependencies a component possesses with other components, a concept known as

“Visibility” (Sharmine and Yassine 2004; Warfield 1973). To account for the fact that

software dependencies are asymmetric we develop separate measures for dependencies

that flow into a component (“Fan-In”) versus those that flow out from it (“Fan-Out”).

To illustrate, consider the system depicted in Figure 2 in graphical and DSM form.

Element A depends upon elements B and C. In turn, element C depends upon element E,

hence a change to element E may have a direct impact on element C, and an indirect

impact on element A, with a “path length” of two. Similarly, a change to element F may

have a direct impact on element E, and an indirect impact on elements C and A, with a

path length of two and three, respectively. Element A therefore has a Fan-Out Visibility

of five, given it is connected to all other elements, either directly or indirectly.

Figure 2: Example System in Graphical and DSM Form

 A B C D E F
A 0 1 1 0 0 0
B 0 0 0 1 0 0
C 0 0 0 0 1 0
D 0 0 0 0 0 0
E 0 0 0 0 0 1
F 0 0 0 0 0 0

	

To calculate the visibility of each element, we use matrix multiplication. By raising

the DSM to successive powers of n, we obtain the direct and indirect dependencies that

exist for successive path lengths n. Summing these matrices yields the visibility matrix,

14

Submission ID: 16544

which shows the direct and indirect dependencies between elements for all possible path

lengths up to the maximum, defined by the size of the DSM.4 Figure 3 illustrates the

derivation of this matrix for the example above.

Figure 3: The Derivation of the Visibility Matrix

The measures of component visibility are derived from this matrix. Fan-In Visibility

(VFI) is obtained by summing down the columns; Fan-Out Visibility (VFO) is obtained

by summing along the rows. For comparisons between systems of different sizes, VFI

and VFO can be expressed as a percentage of the number of components in a system.

Once computed, VFI and VFO scores for components across a system can be rank-

ordered and plotted to see their distributions. Figure 4 shows the distribution of visibility

scores for one of the releases in the system we analyze. When these distributions contain

large steps demarcating the boundary between files that are loosely- and tightly-

connected, as is the case here, it indicates the network has a “core-periphery” structure

(MacCormack, 2010). In particular, this system has a large core of files that are

interdependent, sharing the same levels of Visibility Fan-In and Visibility Fan-Out. This

4 We choose to include the matrix for n=0, implying that an element will always depend upon itself.

15

Submission ID: 16544

is the largest cycle in the system. We define it as the “Core”. Other types of files are

defined by their visibility levels relative to the core, as noted in Table 1.

Figure 4: Distribution of Visibility Measures by Value reveals Bipolar Distribution

Table 1: Mapping Visibility Scores to File Type

VFI VFO File Type Description

High High Core Core regions form highly integral clusters,
containing large cycles in which components
are directly or indirectly co-dependent. They
regions are hard to decompose into smaller
parts and may become unmanageable if they
become too large.

High Low Utility Utility components are relied upon (directly or
indirectly) by a large portion of the system but
do not depend upon many other components
themselves. They have the potential to be self-
contained and stable.

Low High Control Control components invoke the functionality or
accesses the data of many other nodes. It may
coordinate their collective behavior so as to
bring about the system level function.

Low Low Peripheral Peripheral components do not influence and are
not influenced by much of the rest of the
system.

16

Submission ID: 16544

 In this research, we use each file’s classification as core, utility, control, or periphery,

as our indicator of the level of modularity. Core files are the least modular because their

high levels of connectedness indicate that they are in regions of the network that are

coupled by large cycles. Peripheral files are the most modular, because they are only

loosely-connected to other parts of the system.

4. Empirical Data and Analytical Approach

The software under examination in this study is a portion of a very large code-base

owned by a commercial firm with many years of market success. Over time, thousands

of professionals wrote software consisting of hundreds of thousands of files and millions

of lines of code in several different languages. Hereafter, we will refer to the firm by the

pseudonym “Iron Bridge Software.” This body of code forms a product platform – some

products are required for others to run. Iron Bridge organizes development activity

around a six-month cadence. Within this cadence, teams have coordinated periods for

planning, feature development, and quality control. Each development cycle concludes

with the release of a new version of the software customers. Information was extracted

from software source code for eight successive shipped versions of the software and

information about periods of development activity leading up to each release.

Architecture metrics were extracted from source code for each version of the software.

Information about development costs the organization incurred were extracted from

version control systems, change tracking systems, and human resource databases.

 Iron Bridge‘s products are developed by hundreds of software professionals, all

17

Submission ID: 16544

working to improve the same codebase. Product development teams within Iron Bridge

exercise a lot of independence when working in their regions of the source-code, and

coordinate when they meet at system interfaces. These teams share centrally managed

tools and processes however. The code-base is stored in a common version control

system, compiled using a common build system and tested using a common regression-

testing suite. Teams use a shared change tracking system, source code version control

system, shared code validation tools, and a common project management processes.

 Iron Bridge was chosen for investigation because it represents a natural experiment.

Because teams at Iron Bridge have independent control over software but centralized

calendars and tools, the company has done some a number of things that enable this

research. First, the effect of process, tools, and schedule are controlled. The impact of

the architecture on costs incurred by the organization when developing within it can be

isolated in a reasonable manner. Secondly, because developers within Iron Bridge use

common tools, databases, processes and terminology, common measures related to

productivity and quality can be established across teams. Thirdly, Iron Bridge’s history

of data-collection and long periods without changes in its tooling allowed for longitudinal

analysis. Fourthly, because Iron Bridge is a commercial firm we have the opportunity to

study not only the software, but also the developers. Many research studies in this field

look at open-source systems so cannot explain productivity differences because they do

not know the true efforts applied to development. Here we can measure the productive

output of a large number of individuals and assume that they have worked a reasonably

similar amount of time. In addition, access to human-resource databases allows us to

control for time with the company and managerial status. Finally, Iron Bridge maintains

18

Submission ID: 16544

an integrated change tracking and version control system. Policy dictates that developers

include the identification number of specific features or bugs being tracked through the

development pipeline when submitting software patches into the version control system.

Tooling is designed to support this workflow and various checks are put in place to

enforce the policy. As a result, the link between feature requests, bug reports, and the

code that is submitted to implement them is intact a substantial portion of the time.

 Iron Bridge’s codebase consists of code written in C++, Java, and a scripting

language similar to Perl. The C++ portion of this codebase was chosen for this study to

make our analysis tractable. This set of files originally began as C language code, and

evolved to contain a mix of procedural C and object-oriented C++ language constructs

over time. The C++ portion of the codebase was chosen for several reasons. First, the

C++ codebase was large enough that the number of source files, amount of development

activity, and number of developers led us to believe that statistically significant results

could be obtained for this study. Second, the C++ portion of the codebase contains some

of the oldest code, and therefore contains a substantial portion of the historical

development activity. Third, because C++ is a compiled language (rather than an

interpreted language in which symbols are resolved at runtime) static analysis tools used

to extract the dependency structure of the codebase could do a reasonably good job of

accurately representing the architecture of the system. Fourth, C++ code is the heart of

the overall system. It implements many of the most important functionality and

algorithms. This portion of the code forms a platform on top of which the Java and

scripting code rest.5

5 The primary purpose of the Java portion of the codebase is to implement graphical user interfaces (GUIs)
on top of functionality provided by C++ code and the scripting language’s interpreter is implemented in

19

Submission ID: 16544

 Files were removed from the sample for a variety of reasons. Steps were taken to

clean the sample of C++ studied. In order to be included in the sample:

• Files had to be part of a product sold to customers. Steps were taken to remove files

that implemented unit tests, system tests, or non-shipping infrastructure or tools code.

• Files had to be manually written by human developers. Steps were taken to remove

code that appeared to be automatically generated rather than written.

• Header files were removed because their contents consist of interface descriptions

rather than implementation details, and because they are much smaller than other files.

 Figure 5 shows DSMs and the distribution of visibility scores for release 7. It

illustrates the means by which each C++ file in the sample was classified as core, utility,

control, or peripheral. The upper-left DSM is sorted according to the directory structure.

Bands of utility files are clearly visible, as are modules along the diagonal. The upper-

right DSM is lower-diagonalized. The process of lower diagonalization congregates the

four distinct DSM file types into distinct regions in the picture. The small box in the

upper left contains utility files, followed by core, peripheral, and control files. The

bottom two panels plot the visibility scores for files in a sorted order. When this is done,

the bimodal nature of the visibility scores is apparent. Iron Bridge’s C++ codebase has a

core-periphery rather than a hierarchical structure. These charts also indicate how files

were assigned file type classifications. The prominent step in the middle of each graph is

the demarcation line between “low” and “high” scores for purposes of defining

categories. Once files are assigned to “low” or “high” regions on both visibility

dimensions, classification is straightforward. Table 2 shows the number of files for each

C++, meaning that each line of scripted code is ultimately interpreted and executed by C++ code in the
codebase under examination.

20

Submission ID: 16544

release, and how these split across the different categories of file type. Note the growth

of the codebase and of the size of the core through time.

Figure 5: Release 7 DSMs and Visibility Plots

Table 2: File Count Broken Down by Type of File
Release 1 2 3 4 5 6 7 8
Total number of files 9937 10447 10671 11576 12186 12311 13295 13941
Architectural classification

Peripheral 2691 2305 2158 2193 1835 2981 1975 1901
Utility 543 602 636 915 679 780 685 718
Control 3262 3503 3371 3564 3923 2704 4127 4461
Core 3441 4037 4506 4904 5749 5846 6508 6861

21

Submission ID: 16544

5. Empirical Results

We explore the relationship between the fraction of lines of code an individual

contributes to “core” files during a release and their total number of lines of code

produced during that release. In these models we control for a variety of other factors

that could each be considered an alternative explanation for why a developer’s

productivity may vary. Controls tested include a developer’s tenure with the firm,

managerial status, fraction of activity working in new (rather than legacy) code, fraction

of activity spent fixing bugs, and fraction of activity working in files with high McCabe

Cylomatic complexity. The latter is a common measure of complexity in software, which

focuses on the internal complexity of components, rather than the position of components

in the network of dependencies. The goal of our analysis was to explore whether our

measures of modularity predict developer productivity after controlling for other factors.

 The sample of developers used to explore this question included 178 people who

wrote code in the C++ portion of Iron Bridge’s codebase. Because 8 releases were

measured, developers had the opportunity to appear in the dataset up to 8 times. Due to

repeats, this sample consisted of 478 distinct developer-release observations for use in

panel-data analysis. The sample included 388 observations of individual contributors and

90 observations of managers. The median amount of time a developer-release had been

with the company was slightly over 4 years. Over the course of 8 releases, the developer-

releases observed produced nearly 2 million lines of code as measured by the addition

and deletion of lines in file patches. Of these 2 million lines produced, 1.1 million were

created to implement features or perform some other non-bug related tasks and 800,000

were produced to fix bugs. Our empirical measures are described in detail in Table 3.

22

Submission ID: 16544

Table 3: Variables Included In Models Predicting Developer Productivity

Variable Purpose Type Description

Lines of code
produced to
implement features
or other non-bug
related tasks

Dependent
Variable

Count The number of lines of code produced by a
developer to implement features or do some
other non-bug related task. If a patch was
associated with multiple change requests, some
of which were to fix bugs, then only a portion
of the patch will count as a bug fix, and the rest
will be considered a feature or task. The
number of lines of code in a patch will be
allocated proportionally based on the
proportion allocated to bugs and non-bugs.

Lines of code
produced to fix bugs

Dependent
Variable

Count The number of lines of code produced by a
developer to fix bugs during a release window.
If a patch was associated with multiple change
requests, only some of which were to fix bugs,
then only a portion of the patch will count as a
bug fix. The number of lines of code in a patch
will be allocated proportionally based on the
proportion allocated to bugs and non-bugs.

Lines of code
produced to fix
bugs, implement
features, or do other
tasks

Dependent
Variable

Count The number of lines of code produced by a
developer during a release window. All patches
submitted by the developer during the release
window to fix bugs, implement features, or do
other tasks are considered and the lines added
plus the lines deleted in each of those patches
are totaled.

Years employed Control Float The time employed (in years) of the developer
on the date of the software release. Computed
by subtracting the developer's hire date from
the release date.

Is manager? Control Boolean Boolean variable indicating whether a developer
is a manager on the release date.

Percent of lines
submitted to new
files

Control Percent A file is considered to be a "new file" if it is less
than two years old. File age is computed by
subtracting the date of the file's first patch from
the release date. The percentage of lines
submitted to new files is computed by
determining the proportion of lines produced
by a developer during a release that modified
new files.

23

Submission ID: 16544

Percent of lines
submitted to fix
bugs

Control Percent The percentage of lines of code that were
produced by a developer to fix bugs. If a patch
was associated with multiple change requests,
only some of which were to fix bugs, then only
a portion of the patch will count as a bug fix.
The number of lines of code in a patch will be
allocated proportionally based on the
proportion allocated to bugs and non-bugs.

Percent of lines
submitted into files
with "high" or "very
high" McCabe
classifications

Control Percent A file is considered to have a "high" or "very
high" McCabe score if the Modified cyclomatic
complexity of the most complex
function/method is above 20. The percentage
of lines submitted to files with "high" or "very
high" McCabe scores is computed by
determining the proportion of lines produced
by a developer during a release that modified
those files. [114]

Release index Control Categorical Each file observation has dummy variables
indicating which of the 8 development windows
the observation was made for.

Login Panel Categorical Each developer login is used as a dummy
variable. This variable is used in fixed-effects
panel-data models.

Percent of lines
submitted to core
files

Independent
Variable

Percent Determined by finding the proportion of lines
produced that were submitted to files given the
architectural complexity classification of "core"
using the transitive closure based techniques
developed by MacCormack, Baldwin, and
Rusnak [1, 2]

	

 Table 4 below shows descriptive data on the number of developers in each sample,

information about their tenure and managerial status, and information about the lines of

code they produced on average to implement features and fix bugs. The median

developer produced 3,200 lines of code, while the mean developer produced 4,000 lines

changed over the course of a release. Productivity between individuals was highly

skewed. The top quartile has approximately 10 times the productivity as the bottom

quartile. (This observation is striking, but is a generally understood phenomenon.)

24

Submission ID: 16544

Table 4: Developers and Activity in Each Release
Release 1 2 3 4 5 6 7 8
Developers in sample 35 46 59 67 64 67 69 71

number of managers 8 9 15 13 12 13 12 8
number of ind. contributors 27 37 44 54 52 54 57 63

Mean time with company 4.5 4.5 5.2 4.8 4.7 5.5 5.9 5.5
Patches produced per developer 69 79 87 70 86 82 69 68
Lines produced per developer 3357 4214 4443 3681 4967 4406 3361 3676

for features & tasks 1233 2168 2279 2231 3226 2867 1838 2260
for bug fixes 2118 2038 2154 1440 1735 1531 1517 1410

 Table 5 below breaks down development by type of activity being performed (feature

work vs. bug fix) and the location of work. Approximately half the lines coded are

submitted to new files and half to legacy files. One third of activity takes place in files

with McCabe scores of high or very high. Three quarters of activity occurs in core files.

Table 5: Activity For Average Developer by Task and File Type by Release
Release 1 2 3 4 5 6 7 8
Developers in sample 35 46 59 67 64 67 69 71
Lines produced per developer 3357 4214 4443 3681 4967 4406 3361 3676
Lines produced in DSM 2471 3030 3160 2784 3622 3261 2582 2763
Type of patch

for features & tasks 1233 2168 2279 2231 3226 2867 1838 2260
for bug fixes 2118 2038 2154 1440 1735 1531 1517 1410
% lines for bug fixes 63% 48% 48% 39% 35% 35% 45% 38%

Age of file
old file (>= 2 years) 2006 2235 2104 1704 2420 2204 1575 1791
new file (< 2 years) 1319 1882 2274 1951 2518 2162 1771 1828
% lines in new files 39% 45% 51% 53% 51% 49% 53% 50%

Component complexity
low McCabe (< 21) 1901 2550 2742 2428 2737 2729 2166 2198
high McCabe (>= 21) 1354 1509 1614 1215 2171 1608 1148 1407
% lines high McCabe file 40% 36% 36% 33% 44% 37% 34% 38%

Architectural complexity
peripheral file 241 47 142 112 102 147 130 20
utility file 33 12 8 58 86 73 21 28
control file 609 402 737 733 761 614 435 736
core file 1511 2510 2242 1856 2635 2392 1971 1976
% lines in core file 61% 83% 71% 67% 73% 73% 76% 72%

25

Submission ID: 16544

 In order to analyze the determinants of developer productivity, we construct three

models using the software developer as the unit of analysis. In the first model, the

dependent variable is the total number of lines produced by an individual to implement

features or do other non bug-related tasks (the number of bug-fix lines is included as a

control). In the second model, the dependent variable is the number of lines of code

produced by that individual to fix defects (the number of lines that person produced for

purposes other than to fix bugs is included as a control). In the third model, the

dependent variable is the total number of lines of code produced by an individual during

a given release window for features, tasks, and bug fixes (the percentage of lines

dedicated to bug-fixes is included as a control). The independent variable under study in

all three sets of models is the percentage of lines a person submitted to “core” files. This

measure is designed to estimate the amount of work the individual does in files with high

levels of architectural complexity (i.e., low levels of modularity).

 In each of these models, we use a panel-data approach that aims to control for

individual differences in developer productivity. Dummy variables are included for each

of the 8 releases and each of the individual developers. By including these dummy

variables, we construct regressions that capture changes in productivity within individuals

rather than between them. That is, these regressions are designed to determine if

individuals are less productive during releases in which they worked in more modular

parts of the design, rather than to determine if a group of people working in the more

modular parts are more productive than a group working in less modular parts.

 A variety of controls were included for the individual including length of

employment, managerial status, the amount of work done in new (rather than legacy)

26

Submission ID: 16544

files and amount of work done in files with high levels of McCabe cyclomatic

complexity. Parameters for all models were estimated using a Negative Binomial

regression due to the count nature of the dependent variable and the fact that the

conditional data is overdispersed, invalidating the assumptions of the simpler Poisson

model. The Zelig framework built into the R statistical software suite was used to run

regressions and subsequent simulations to estimate the value of parameters.

 The results for regressions predicting the productivity of an individual during a

release window are shown below. Note that while each of these regressions contained

dummy variables for the release and the individual, these dummies were omitted from

tables. Table 6 shows results for regressions in which the productivity of individuals

implementing features and doing other non-bug tasks is predicted. (Each model

contained the lines produced to fix bugs as a control.) Developers are much more

productive when developing features and working in new (rather than legacy) files. They

are less productive when developing features and working in files with high McCabe

cyclomatic complexity. After all the controls are included in the model, developers are

found to be less productive when developing features and working in core files. This

result is significant at the 5% level.

27

Submission ID: 16544

Table 6: Predicting Developer Lines of Code for New Features (one Release)

Table 7 shows results for regression in which the productivity of individuals correcting

defects during a release is predicted. (Each model contained the lines produced for

feature work as a control.) Developers are more productive when implementing bug

fixes if they are working in new (rather than legacy files). Developers with more

experience (those with longer tenures at the firm) are more productive when fixing bugs

than less experienced developers. The ability to effectively fix bugs appears to grow with

experience more than feature-development productivity. Developers are also much less

productive when fixing bugs in the core than when fixing bugs elsewhere. This result is

significant at the 0.1% level. Working in the core has a stronger negative impact on the

productivity of those fixing bugs than those implementing features.

28

Submission ID: 16544

Table 7: Predicting Developer Lines of Code to Fix Defects (one Release)

 Table 8 shows results for regressions in which total developer productivity (features

and bug-fixes combined) during a release is predicted. Employees with more years of

experience are more productive. While this is not surprising, it is interesting to note that

the strength of the effect grew as other controls were added, suggesting that as employees

gain experience, they are moved into more complex regions of the codebase, work more

on legacy code, or work on harder bug fixes, thereby suppressing the productivity gains

they would have if left in more approachable regions of the codebase. When developers

work in new files (those less than 2 years old) they are much more productive. This

suggests that new feature development is easier than maintaining legacy code. As might

be expected, developers are much less productive when they are working on bug fixes

than when they are implementing features. Surprisingly, McCabe cyclomatic complexity

had no statistically significant impact on developer productivity. Finally, during time

periods in which an individual worked more in core files, the number of total lines of

code they produced declined. Architectural complexity has a significant negative impact

on a developer’s overall productivity. This result is significant at the 1% level.

29

Submission ID: 16544

Table 8: Predicting Total Lines of Code for a Developer (one Release)

5.1 Interpreting the Results

 Three sets of simulations were run to determine the response of the outcome variables

(the number of lines that the typical developer would produce during a release) to

changes in a developer’s percentage of activity in the core. In these simulations, most

control variables were set to their mean values. The “typical” developer was selected by

choosing the individual owning the person-specific dummy variable coefficient with the

median value. Managerial status was set to false. Length of employment was set to the

mean value of 5.1 years. The percent of lines contributed by this prototypical developer

to new files (those under 2 years of age) was set to 44%. The percent of lines contributed

to files with high McCabe cyclomatic complexity (with scores above 20) was set to 38%.

The results of these simulations are shown in Figure 6.

30

Submission ID: 16544

Figure 6: Simulations of Developer Productivity

 First, a set of simulations was run to predict the expected productivity that would be

achieved if 100% of a developer’s effort could be dedicated implementing new features

or doing other non-bug related tasks, and no bug-fixing were necessary. This simulation

used the full version of the regression model shown in Table 6. (In addition to setting

controls to the values just described, the control variable lines for bug fixes was set to 0.)

31

Submission ID: 16544

 The blue line shown in Figure 6 shows the result of varying the percent of lines

submitted to core files on feature productivity for this prototypical individual. All else

equal, the developer working only on features in the periphery would produce 10655

lines of changes during a release. This same individual only produced 6083 lines for

features when working in the core. A second set of simulations was run to predict the

expected productivity that would be achieved if a developer was forced to dedicate 100%

of his effort to fixing bugs. This simulation used the full version of the regression model

shown in Table 7. (In addition to setting controls to the values previously described, the

control variable lines for features and tasks was set to 0.) The red line in Figure 6 shows

the response of bug-fix productivity when the percent of lines submitted to the core is

varied. All else equal, if a developer works only on bug fixes in the periphery, 2815 lines

of changes would be produced. This same individual would produce only 1567 lines if

working in the core. Our third (and final) simulation was run to predict the expected

productivity that would be achieved if a developer spent the typical proportion of time

split between feature work and bug fixes. This simulation used the full version of the

regression model shown in Table 8. (In addition to setting controls to the values

previously described, the control variable pct lines for bugs was set to the mean value of

52%.) The green line in 6 shows the impact of varying the percent of lines submitted to

core files on overall productivity. All else equal, the typical developer working in the

periphery will produce 5359 lines of changes during a release while this same individual

would only produce 3594 lines if working in the core.

 Our results suggest that the effect that modularity has on developer productivity is

strong. All else equal, system design accounts for a near halving of the lines of code that

32

Submission ID: 16544

can be produced by an individual in any given release as one moves from the periphery to

the core. At Iron Bridge, approximately 70% of lines produced go into core files. Based

on the contents of Figure 6, one might speculate that a refactoring which shrunk the core

such that only 50% of average developer’s lines produced went into core files would

yield a productivity increase of 10%. In addition, one should remember that “all else” is

not actually equal. The strong relationship between defects and complexity found in

previous work (Sosa et al, 2012) tells us that developers in the core will spend more of

their time contending with bugs, thereby magnifying the impact presented on the green

line in Figure 6. If shrinking the core reduced the number of bugs a developer had to

contend with, it would increase the amount of time spent on the blue curve rather than the

red curve, resulting in significant productivity gains.

6. Discussion

Our work makes an important contribution to the academy and to the practice of

managers. In particular, we show that components with higher levels of interdependency

are associated with lower levels of productivity in a large, commercial software system.

The magnitude of the differences between components is surprisingly large. Specifically,

we find that modular components are associated with an increase in new feature

productivity of 75% as compared to tightly-coupled components.

Our paper makes an important contribution to academic study, in that we highlight

the potential for architectural change to create value in mature technological systems.

While prior studies have developed many insights into the process of system design,

fewer have focused on the potential for these early decisions to become “misaligned”

33

Submission ID: 16544

with the mission of a system over the longer-term, especially if priorities change in terms

of valuing performance attributes such as cost and efficiency. These insights have

particular relevance in contexts where the life of a system is uncertain, and where there

are distinct trade-offs in design associated with differing performance characteristics. For

example, a new start-up developing an Internet software application would not prioritize

maintainability over speed, given there is only a low probability the firms or the system

will be long-lasting. Should the start-up succeed however, the design decisions

embedded in the system design may become increasingly misaligned with requirements,

consuming greater amounts of cost as the system grows and evolves. Such a dynamic

suggests the need for a periodic review of critical system design decisions, especially

when it is clear that the life of a system may be extended versus early expectations.

Our results also have important implications for managers. Above all, they highlight

the importance of design decisions made early in the life of a complex system. Choices

about levels of component coupling are typically founded upon the trade-offs faced

within the current version of a design, for example, in terms of superior performance

versus increased reliability. Yet our results reveal the long-lasting nature of these

choices. Tightly-coupled components cost significantly more to maintain many years

after a system has been introduced. The challenge for a decision-maker is that these

longer-term costs are neither easy to calculate nor as salient as the near-term benefits that

may stem from a design that is more tightly-coupled. Given these factors, it is likely that

managers systematically under-invest in modularity when developing complex systems.

Our work highlights a set of methods that can help managers to justify architectural

changes in such systems, even at the later stages of a system’s life.

34

Submission ID: 16544

Several limitations of our study must be considered in assessing the generalizability

of our results. First, our work is conducted in the software industry, a unique context

given that designs exist purely as information, and are not bounded by physical limits.

Whether the results would be replicated in industries based upon electronic hardware or

physical systems remains an important empirical question. Second, we examine a single

product in this industry, hence cannot be sure that the findings apply to other software

products. While we examine the costs of system design across a sample of 14,000

components, this sample comes from a single product, hence will reflect idiosyncratic

practices and design choices associated with the parent organization that developed it.

Finally, while we speculate on the potential value that could be released via a redesign,

these actions would have costs and other (perhaps unintended) impacts on system

performance. Decisions on the benefits of architectural change must therefore carefully

assess these other costs and impacts before it is known if this would be optimal.

This work generates a number of promising avenues for future study. First, we need

to understand the extent to which design choices vary, for example, across products that

perform similar functions. If designs are, to a large degree, dictated by function, the

ability to improve on the dynamics observed here might be limited (i.e., some designs

may need to be more tightly-coupled than others). Second, work is needed to expose the

broader organizational influences on a system’s design, which steer firms away from

what appear to be optimal choices. Given prior work suggests that products “mirror” the

organizations that develop them, the misalignment of system design and long-term

requirements may stem more from the nature of the firm, than any functional need

(Conway, 1968; Henderson and Clark, 1990; MacCormack et al, 2007b). Finally, the

35

Submission ID: 16544

methods described here can be used to assess the degree to which regular patterns are

found in system design and evolution. Prior work has shown that systems comprise a

central core around which are arranged peripheral components (Tushman and Murmann,

1998). Future research could explore the prevalence of such patterns and identify the

factors that explain differences between them. This agenda promises to help us

understand the choices available to a designer, as well as the potential to change these

choices and thereby release additional value later in a systems life.

REFERENCES

Alexander, Christopher (1964) Notes on the Synthesis of Form, Cambridge, MA: Harvard

University Press.

Baldwin, Carliss Y. and Kim B. Clark (2000). Design Rules, Volume 1, The Power of

Modularity, Cambridge MA: MIT Press.

Banker, Rajiv D. and Sandra A. Slaughter (2000) "The Moderating Effect of Structure on

Volatility and Complexity in Software Enhancement," Information Systems Research,

11(3):219-240.

Barabasi, A. Scale-Free Networks: A Decade and Beyond, Science, Vol 325: 412-413

Braha, Dan., A.A. Minai and Y. Bar-Yam (2006) "Complex Engineered Systems: Science

meets technology," Springer: New England Complex Systems Institute, Cambridge, MA.

Cataldo, Marcelo, Patrick A. Wagstrom, James D. Herbsleb and Kathleen M. Carley (2006)

"Identification of Coordination Requirements: Implications for the design of Collaboration

and Awareness Tools," Proc. ACM Conf. on Computer-Supported Work, Banff Canada, pp.

353-362

Christensen, Clayton M. (1997) The Innovator's Dilemma: When New Technologies Cause

Great Firms to Fail, Boston MA: Harvard Business School Press.

Clark, Kim B. (1985) "The Interaction of Design Hierarchies and Market Concepts in

Technological Evolution," Research Policy 14 (5): 235-51.

Conway, M.E. (1968) "How do Committee's Invent," Datamation, 14 (5): 28-31.

Dellarocas, C.D. (1996) "A Coordination Perspective on Software Architecture: Towards a

design Handbook for Integrating Software Components," Unpublished Doctoral Dissertation,

M.I.T.

36

Submission ID: 16544

Dosi, Giovanni (1982) "Technological paradigms and technological trajectories," Research

Policy, 11: 147-162

Eick, Stephen G., Todd L. Graves, Alan F. Karr, J.S. Marron and Audric Mockus (1999)

"Does Code Decay? Assessing the Evidence from Change Management Data," IEEE

Transactions of Software Engineering, 27(1):1-12.

Eppinger, S. D., D.E. Whitney, R.P. Smith, and D.A. Gebala, (1994). "A Model-Based

Method for Organizing Tasks in Product Development," Research in Engineering Design

6(1):1-13

Fleming, L. and O. Sorenson, "Science and the Diffusion of Knowledge." Research Policy

33, no. 10 (December 2004): 1615-1634

Gokpinar, B., W. Hopp and S.M.R. Iravani (2007) "The Impact of Product Architecture and

Organization Structure on Efficiency and Quality of Complex Product Development,"

Northwestern Univ. Working Paper.

Henderson, R., and K.B. Clark (1990) "Architectural Innovation: The Reconfiguration of

Existing Product Technologies and the Failure of Established Firms," Administrative

Sciences Quarterly, 35(1): 9-30.

Holland, John H. (1992) Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control and Artificial Intelligence, 2nd Ed.

Cambridge, MA: MIT Press.

Kauffman, Stuart A. (1993) The Origins of Order, New York: Oxford University Press

Klepper, Steven (1996) “Entry, Exit, Growth and Innovation over the Product Life Cycle,

American Economic Review, 86(30):562-583.

Landes, D. (1983) Revolution in Time, Harvard University Press, Cambridge, MA

Langlois, Richard N. and Paul L. Robertson (1992). “Networks and Innovation in a Modular

System: Lessons from the Microcomputer and Stereo Component Industries,” Research

Policy, 21: 297-313, reprinted in Managing in the Modular Age: Architectures, Networks,

and Organizations, (G. Raghu, A. Kumaraswamy, and R.N. Langlois, eds.) Blackwell,

Oxford/Malden, MA.

MacCormack, Alan and M. Iansiti, (2009) "Intellectual Property, Architecture and the

Management of Technological Transitions: Evidence from Microsoft Corporation," Journal

of Product Innovation Management, 26: 248-263

MacCormack, Alan D. (2001). “Product-Development Practices That Work: How Internet

Companies Build Software,” Sloan Management Review 42(2): 75-84.

MacCormack, Alan, John Rusnak and Carliss Baldwin (2006) “Exploring the Structure of

Complex Software Designs: An Empirical Study of Open Source and Proprietary Code,”

Management Science, 52(7): 1015-1030.

37

Submission ID: 16544

MacCormack, Alan, John Rusnak and Carliss Baldwin (2007a) "The Impact of Component

Modularity on Design Evolution: Evidence from the Software Industry," Harvard Business

School Working Paper, 08-038.

MacCormack, Alan, John Rusnak and Carliss Baldwin (2007b) "Exploring the Duality

between Product and Organizational Architectures," Harvard Business School Working

Paper, 08-039.

Marple, D. (1961), “The decisions of engineering design,” IEEE Transactions of Engineering

Management, 2: 55-71.

Murmann, Johann Peter and Koen Frenken (2006) "Toward a Systematic Framework for

Research on Dominant Designs, Technological Innovations, and Industrial Change,"

Research Policy 35:925-952.

Murphy, G. C., D. Notkin, W. G. Griswold, and E. S. Lan. (1998) An empirical study of

static call graph extractors. ACM Transactions on Software Engineering and Methodology,

7(2):158--191

Rivkin, Jan W. (2000) “Imitation of Complex Strategies” Management Science 46:824-844.

Rivkin, Jan W. and Nicolaj Siggelkow (2007) "Patterned Interactions in Complex Systems:

Implications for Exploration," Management Science, 53(7):1068-1085.

Rusovan, Srdjan, Mark Lawford and David Lorge Parnas (2005) "Open Source Software

Development: Future or Fad?" Perspectives on Free and Open Source Software, ed. Joseph

Feller et al., Cambridge, MA: MIT Press.

Sanderson, S. and M. Uzumeri (1995) "Managing Product Families: The Case of the Sony

Walkman," Research Policy, 24(5):761-782.

Schilling, Melissa A. (2000). “Toward a General Systems Theory and its Application to

Interfirm Product Modularity,” Academy of Management Review 25(2):312-334, reprinted in

Managing in the Modular Age: Architectures, Networks, and Organizations (G. Raghu, A.

Kumaraswamy, and R.N. Langlois, eds.), Blackwell, Oxford/Malden, MA.

Sharman, D. and A. Yassine (2004) "Characterizing Complex Product Architectures,"

Systems Engineering Journal, 7(1).

Shaw, Mary and David Garlan (1996). Software Architecture: An Emerging Discipline,

Upper Saddle River, NJ: Prentice-Hall.

Simon, Herbert A. (1962) “The Architecture of Complexity,” Proceedings of the American

Philosophical Society 106: 467-482, repinted in idem. (1981) The Sciences of the Artificial,

2nd ed. MIT Press, Cambridge, MA, 193-229.

Sosa, M., J. Mihm, and T. Browning. (2009). "Can we predict the generation of bugs?

Software architecture and quality in open-Source development." INSEAD working paper

2009/45/TOM

38

Submission ID: 16544

Sosa, Manuel, Steven Eppinger and Craig Rowles (2007) "A Network Approach to Define

Modularity of Components in Complex Products," Transactions of the ASME Vol 129:

1118-1129

Spear, S. and K.H. Bowen (1999) "Decoding the DNA of the Toyota Production System,"

Harvard Business Review, September-October.

Steward, Donald V. (1981) “The Design Structure System: A Method for Managing the

Design of Complex Systems,” IEEE Transactions on Engineering Management EM-28(3):

71-74 (August).

Suarez, F and J.M. Utterback, (1995) Dominant Designs and the Survival of Firms, Strategic

Management Journal, Vol. 16: 415-430

Tushman, Michael L. and Lori Rosenkopf (1992) "Organizational Determinants of

Technological Change: Toward a Sociology of Technological Evolution," Research in

Oragnizational Behavior Vol 14: 311-347

Tushman, Michael L. and Murmann, J. Peter (1998) "Dominant designs, technological cycles

and organizational outcomes" in Staw, B. and Cummings, L.L. (eds.) Research in

Organizational Behavior, JAI Press, Vol. 20.

Ulrich, Karl (1995) “The Role of Product Architecture in the Manufacturing Firm,” Research

Policy, 24:419-440, reprinted in Managing in the Modular Age: Architectures, Networks, and

Organizations, (G. Raghu, A. Kumaraswamy, and R.N. Langlois, eds.) Blackwell,

Oxford/Malden, MA.

Utterback, J. M. (1996) Mastering the Dynamics of Innovation, Harvard Business School

Press, Boston, MA.

Utterback, J. M. and F. Suarez (1991) Innovation, Competition and Industry Structure,

Research Policy, 22: 1-21

von Krogh, G. M. Stuermer, M. Geipel, S. Spaeth, S. Haefliger (2009) "How Component

Dependencies Predict Change in Complex Technologies," ETH Zurich Working Paper

Warfield, J. N. (1973) "Binary Matricies in System Modeling," IEEE Transactions on

Systems, Management, and Cybernetics, Vol. 3.

Whitney, Daniel E. (Chair) and the ESD Architecture Committee (2004) "The Influence of

Architecture in engineering Systems," Engineering Systems Monograph,

http://esd.mit.edu/symposium/pdfs/monograph/architecture-b.pdf, accessed December 10th

2007

	

