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Abstract 
 

A variety of academic work argues a relationship exists between the structure of a 

development organization and the design of the products that this organization produces.   

Specifically, products are often said to “mirror” the architectures of the organizations 

from which they come.  This dynamic occurs because an organization’s problem solving 

routines and normal patterns of communication tend to constrain the space of designs 

within which it searches for new solutions.  Such a link, if confirmed empirically, would 

be important, given that product architecture has been shown to be an important predictor 

of product performance, product variety, process flexibility and industry evolution. 

We explore this relationship in the software industry by use of a technique called 

Design Structure Matrices (DSMs), which allows us to visualize the architectures of 

different software products and to calculate metrics to compare their levels of modularity.  

Our research takes advantage of a natural experiment in this industry, where products 

exist that fulfill the same function, but that have been developed using very different 

organizational modes – specifically, open source versus closed source development.  We 

use DSMs to analyze a sample of matched-pair products – products that perform the same 

function but that have been developed via these contrasting modes of organization. 

Our results reveal significant differences in modularity, consistent with a view that 

larger, more distributed teams tend to develop products with more modular architectures.  

Furthermore, the differences between systems are substantial – the pairs we examine vary 

by a factor of eight, in terms of the potential for a design change to propagate to other 

system components.  We conclude by highlighting some implications of this result for 

both innovating managers, as well as researchers in the field.  We also assess how future 

work in this area might proceed, based upon these first steps in measuring “design.” 
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1. Introduction 
Much recent research points to the critical role of product architecture in the 

successful development of a firm’s new products and services, the competitiveness of its 

product lines and the successful evolution of its technical capabilities (e.g., Eppinger et 

al, 1994; Ulrich, 1995; Sanderson and Uzumeri, 1995; Sanchez and Mahoney, 1996; 

Schilling, 2000; Baldwin and Clark, 2000; MacCormack, 2001).  Of particular interest to 

this study, Henderson and Clark (1990) show that incumbent firms often stumble when 

faced with innovations that are “architectural” in nature.  They assert that these dynamics 

occur because product designs “mirror” the organizations that develop them, a concept 

that is sometimes referred to as duality.   In essence, the space of designs that an 

organization searches is constrained by the characteristics of the organization itself, in 

addition to the explicit choices made by its designers.  Unfortunately, the empirical 

demonstration of such a result remains elusive. 

In this study, we provide empirical evidence to support this hypothesized relationship 

between product and organizational designs.  We do this by applying an analytical 

technique called design structure matrices (DSMs) to compare a number of products in 

the software industry.  Our analysis takes advantage of the fact that software is an 

information-based product, meaning that the design comprises a series of instructions (or 

“source code”) that tell a computer what tasks to perform.  Given this characteristic, 

software products can be processed automatically to identify the dependencies that exist 

between different parts of their designs (something that cannot be done with physical 

products).  These dependency relationships, in turn, can be used to reveal various aspects 

of a design’s structure, through displaying the information visually as well as calculating 

metrics that summarize their impact on the system’s overall level of coupling. 

We chose to analyze software products because of a unique opportunity to examine 

two different organizational modes for development.  Specifically, in recent years there 

has been a growing interest in open source (or “free”) software, which is characterized 

by: a) the distribution of a program’s source code along with the binary version of the 

product1 and; b) a license that allows a user to make unlimited copies of and 

modifications to this product (DiBona et al, 1999).  Successful open source software 
                                                 
1 Commercial software is distributed in a binary form (i.e., 1’s and 0’s) that is executed by the computer. 
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projects tend to be characterized by large, distributed teams of volunteer developers who 

contribute new features, fix defects in existing code and write documentation for the 

product (Raymond, 2001; von Hippel and von Krogh, 2003).  These developers, which 

can number in the hundreds, are located around the globe hence often never meet. This 

approach stands in contrast to the proprietary “closed source” model employed by 

commercial software firms.  In this model, projects tend to be staffed by dedicated teams 

of individuals who are colocated at a single location and have open access to other team 

members.  Given this proximity, the sharing of information about solutions being adopted 

in different parts of the design is much easier, and may even be encouraged (e.g., if the 

creation of a dependency between two parts of a design would lead to increased 

performance). Consequently, the architectures of products developed using a proprietary 

development model is likely to differ from those of products developed using open 

source methods:  In particular, open source software is likely to be more “modular” than 

closed source software.  Our research seeks to examine the magnitude and direction of 

these differences in architecture. 

Our paper proceeds as follows.  In the next section, we describe the motivation for 

our research and discuss prior work in the field that pertains to understanding the link 

between product and organizational architectures.  We then describe our research 

methodology, which involves calculating the level of modularity in a software system by 

analyzing the dependencies that exist between its component elements.  Next, we discuss 

how we construct our sample of matched product pairs, each consisting of one open 

source and one closed source product.  Finally, we discuss the results of our empirical 

tests, and highlight the implications of our findings for practitioners and the academy. 

 

 2. Research Motivation 
The architecture of a product is the scheme by which the functions it performs are 

allocated to its constituent components (Ulrich, 1995).  For any given product, a number 

of architectures are likely to satisfy its functional requirements.  These different 

architectures may differ along important performance dimensions, such as the quality of 

the final product, its reliability in operation, its robustness to change and its physical size.  

They may also imply a differing partitioning of tasks, thereby influencing the efficiency 
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with which development can proceed (Von Hippel, 1990).  Understanding the factors that 

impact how architectures are chosen, how they are developed, how they evolve and how 

they can be adapted are therefore critical topics for managerial attention. 

A variety of work has sought to examine the link between a product’s architecture 

and the characteristics of the organization that develops it.  The roots of this work come 

from the field of organization theory, where it has long been recognized that 

organizations should be designed to reflect the nature of the tasks that they perform 

(Lawrence and Lorsch, 1967; Burns and Stalker, 1961).  In a similar fashion, transaction 

cost theory predicts that different organizational forms are required to effectively solve 

the contractual challenges associated with tasks that possess different levels of 

uncertainty and interdependency (Williamson, 1985; Teece, 1986).  To the degree that 

different product architectures require a different set of tasks to be performed, this work 

suggests that organizations and architectures must be aligned. 

Studies that seek to examine this topic empirically follow one of two approaches.  

The first explores the need to match patterns of communication within a development 

project to the interfaces that exist between different parts of a product’s design.  For 

example, Sosa et al (2004) examine a large jet engine project, and find a strong tendency 

for team communications to be aligned with design interfaces.  The likelihood of 

“misalignment” is shown to be greater across organizational and system boundaries.  

Cataldo et al (2006) explore the impact of such misalignments, but in a large software 

development project.  They find that development tasks are completed faster when the 

patterns of team communication are congruent with the software’s dependency structure.  

Finally, Gokpinar et al (2006) also study the impact of misalignments in an automotive 

development program.  They find that subsystem quality is higher to the degree that team 

communications are aligned with the patterns of interfaces to other subsystems. 

While the studies above begin with the premise that a development organization must 

be designed to match the desired structure of a new product, a second stream of work 

adopts the opposite perspective.  It assumes that a development organization’s structure is 

fixed in the short-medium term, and seeks to understand the impact on new product 

designs.  This view was first articulated by Conway (1968) and is sometimes known as 

“Conway’s Law.”  He states, “Any organization that designs a system will inevitably 
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produce a design whose structure is a copy of the organization’s communication 

structure.”  The dynamics of this law are best illustrated in Henderson and Clark’s (1990) 

study of the photolithography industry, in which they show that market leadership 

changed hands each time a new generation of equipment was introduced.  These 

observations are traced to the successive failure of leading firms to respond effectively to 

architectural innovations, which involve significant changes in the way that components 

are linked together.  Such innovations challenge incumbent firms given they destroy the 

usefulness of the architectural knowledge embedded in their organization structures and 

information-processing routines, which tend to reflect the existing dominant design 

(Utterback, 1996).  When this design is no longer optimal, they find it difficult to adapt. 

The contrast between these two perspectives becomes clear when we consider what 

happens when two different types of organization attempt to develop the same product.  

Assuming that the functional requirements are identical, one might predict that the 

product architectures resulting from the two development efforts would also be similar.  

To the degree that architectural choices are driven by the characteristics of the 

organizations themselves however, the designs would be quite different.  This “mirroring 

hypothesis” can be tested by comparing the designs of a number of matched-pair 

products – products that fulfill the same function but that have been developed via 

contrasting modes of organization.  Such a natural experiment exists in software, given 

we observe two different modes of organization: open source (or distributed) versus 

closed source (or proprietary) development.  To conduct such a test however, we must 

first establish a measure by which to compare the different architectures. 

 

2.1 Product Architecture and Measures of Modularity 

Modularity is a concept that helps us to characterize different product architectures.  

It refers to the way that a product design is decomposed into different parts or modules.  

While there are many definitions of modularity, authors tend to agree on the concepts that 

lie at its heart; the notion of interdependence within modules and independence between 

modules (Ulrich, 1995).  The latter concept is referred to as “loose-coupling.”  Modular 

designs are loosely-coupled in that changes made to one module have little impact on the 

others.  Just as there are degrees of coupling, hence there are degrees of modularity. 
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The costs and benefits of modularity have been discussed in a stream of research that 

has sought to examine its impact on a range of activities including the management of 

complexity (Simon, 1962), product line architecture (Sanderson and Uzumeri, 1995), 

manufacturing (Ulrich, 1995), process design (MacCormack, 2001) process improvement 

(Spear and Bowen, 1999) and industry evolution (Baldwin and Clark, 2000).  Despite the 

appeal of this work however, few studies use empirical data to examine the relationship 

between measures of product modularity, organizational factors that influence this 

property or outcomes that it might impact (Schilling, 2000; Fleming and Sorenson, 2004).  

Most studies tend to be conceptual or descriptive in nature, and offer little insight into 

how modularity can be measured in a robust and repeatable fashion 

Studies that attempt to measure modularity typically focus on capturing the level of 

coupling that exists between different parts of a design.  In this respect, the most 

promising technique comes from the field of engineering, in the form of the Design 

Structure Matrix (DSM).  A DSM highlights the inherent structure of a design by 

examining the dependencies that exist between its constituent elements in a square matrix 

(Steward, 1981; Eppinger et al, 1994; Sosa et al, 2003).  These elements can represent 

design tasks, design parameters or actual components.  Metrics which capture the degree 

of coupling between elements have been calculated from a DSM, and used to compare 

different architectures (Sosa et al, 2007).  DSMs have also been used to explore the 

degree of alignment between task dependencies and project team communications (Sosa 

et al, 2004).  Recent work significantly extends this methodology to show how design 

dependencies can be automatically extracted from software code and used to understand 

architectural differences (MacCormack et al, 2006).  In this paper, we use this method to 

compare designs that come from different types of development organization.  

 

2.2 Software Design Structure 

The measurement of modularity has gained significant traction in the field of 

software, given the information-based nature of the product lends itself to analytical 

techniques that are not possible with physical products.  Critically, software systems are 

rarely re-built from scratch but instead use the prior version as a base upon which new 
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functionality is added.  This dynamic increases the importance of understanding 

techniques by which the resulting complexity can be managed. 

The formal study of software modularity began with Parnas (1972) who proposed the 

concept of information hiding as a mechanism for dividing code into modular units.  

Subsequent authors built on this work, proposing metrics to capture the level of 

“coupling” between modules and “cohesion” within modules (e.g., Selby and Basili, 

1988; Dhama, 1995).  This work complemented studies which sought to measure product 

complexity for the purposes of predicting development productivity and quality (e.g., 

McCabe 1976; Halstead, 1976).  Whereas measures of software complexity focus on 

capturing the number of elements in a design, measures of software modularity focus on 

the patterns of dependencies between these elements.  Hence a product can be both 

complex (i.e., have many parts) and modular (i.e., have few dependencies between these 

parts).  In prior work, this distinction is not always clear.2 

Efforts to measure software modularity generally follow one of two approaches.  The 

first focuses on analyzing specific types of dependency between components, for 

example, the number of non-local branching statements (Banker et al, 1993); the number 

of global variables (Schach et al, 2002); or the number of function calls (Banker and 

Slaughter, 2000; Rusovan et al, 2005).  The second infers the presence of a dependency 

between components by assessing whether they tend to be modified at the same time.  

For example, Eick et al (1999) show that code decays over time as measured by the 

number of files changed to complete a modification request; and Cataldo et al (2006) 

show that modifications involving files with higher coupling take longer to complete.  

While the latter measurement approach avoids the need to specify the type of dependency 

between components, it requires access to maintenance data that is not always available, 

or captured consistently across projects.  In multi-project comparisons, a method that 

extracts dependencies from the source code itself is therefore to be preferred. 

With the rise in popularity of open source software, interest in the topic of modularity 

has received further stimulus.  Some authors argue that open source software is inherently 

more modular than proprietary software (O’Reilly, 1999; Raymond, 2001).  Others 

suggest that modularity is a required property for this method to succeed (Torvalds, as 

                                                 
2 In some fields, complexity is defined to include inter-element interactions (Rivkin and Siggelkow, 2007). 
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quoted in DiBona, 1999).  Empirical work to date yields mixed results on this question.  

Some studies criticize the number of problematic dependencies between components in 

systems such as Linux (Schach et al, 2002; Rusovan et al, 2005).  Others provide 

quantitative and qualitative data that open source products are easier to modify (Mockus 

et al, 2002; Paulsen et al, 2004) or have fewer dependencies between their constituent 

elements (MacCormack et al, 2006).  Critically however, none of these studies provides 

an apples-to-apples comparison using products that fulfill the same function but that have 

been developed within different types of organization. 

In this paper, we explore differences in design structure between software systems of 

comparable size and function developed using contrasting modes of organization: 

specifically, open source (distributed) software versus closed source (proprietary) 

development. The use of a matched pair design allows us to control for differences in 

architecture that might be driven by differences in product function.  Our work builds 

upon recent studies which highlight how DSMs can be used to visualize and measure 

software architecture (Sullivan et al, 2001; Lopes and Bajracharya, 2005; MacCormack et 

al, 2006).  We use these methods to examine the hypothesis that the architecture of a 

product mirrors the structure of the organization in which it is developed.  We expect 

open source products to be more modular than their closed source counterparts. 

 

3. Research Methods3 
There are two choices to make when applying DSMs to a software product:  The unit 

of analysis and the type of dependency.  With regard to the former, there are several 

levels at which a DSM can be built:  The directory level, which corresponds to a group of 

source files that pertain to a specific subsystem; the source file level, which corresponds 

to a collection of related processes and functions; and the function level, which 

corresponds to a set of instructions that perform a specific task.  We analyze designs at 

the source file level for a number of reasons.  First, source files tend to contain functions 

with a similar focus.  Second, tasks and responsibilities are allocated to programmers at 

the source file level, allowing them to maintain control over all the functions that perform 

related tasks.  Third, software development tools use the source file as the unit of analysis 
                                                 
3 The methods we describe here build on prior work in this field (see MacCormack et al, 2006; 2007). 
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for version control. And finally, prior work on design uses the source file as the primary 

level of analysis (e.g., Eick et al, 1999; Rusovan et al, 2005; Cataldo et al, 2006).4 

There are many types of dependency between source files in a software product.5  We 

focus on one important dependency type – the “Function Call” – used in prior work on 

design structure (Banker and Slaughter, 2000; Rusovan et al, 2005).  A Function Call is 

an instruction that requests a specific task to be executed.  The function called may or 

may not be located within the source file originating the request.  When it is not, this 

creates a dependency between two source files, in a specific direction.  For example, if 

FunctionA in SourceFile1 calls FunctionB in SourceFile2, then we note that SourceFile1 

depends upon (or “uses”) SourceFile2.  This dependency is marked in location (1, 2) in 

the DSM. Note this does not imply that SourceFile2 depends upon SourceFile1; the 

dependency is not symmetric unless SourceFile2 also calls a function in SourceFile1. 

To capture function calls, we input a product’s source code into a tool called a “Call 

Graph Extractor” (Murphy et al, 1998).  This tool is used to obtain a better understanding 

of system structure and interactions between parts of the design.6  Rather than develop 

our own extractor, we tested several commercial products that could process source code 

written in both procedural and object oriented languages (e.g., C and C++), capture 

indirect calls (dependencies that flow through intermediate files), run in an automated 

fashion and output data in a format that could be input to a DSM.  A product called 

Understand C++7 was selected given it best met all these criteria. 

The DSM of a software product can be displayed using the Architectural View. This 

groups each source file into a series of nested clusters defined by the directory structure, 

with boxes drawn around each successive layer in the hierarchy.  The result is a map of 

dependencies, organized by the programmer’s perception of the design.  To illustrate, the 

Directory Structure and Architectural View for Linux v0.01 are shown in Figure 1.  Each 

“dot” represents a dependency between two particular components (i.e., source files). 

Figure 1:  The Directory Structure and Architectural View for Linux 0.01. 
                                                 
4 Source files are akin to physical components; functions are the nuts and bolts within these components. 
5 Several authors have developed comprehensive categorizations of dependency types (e.g., Shaw and 
Garlan, 1996; Dellarocas, 1996).  Our work focuses on one important type of dependency. 
6 Function calls can be extracted statically (from the source code) or dynamically (when the code is run).  
We use a static call extractor because it uses source code as input, does not rely on program state (i.e., what 
the system is doing at a point in time) and captures the system structure from the designer’s perspective. 
7 Understand C++ is distributed by Scientific Toolworks, Inc. see <www.scitools.com> for details. 
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Figure 2:  Example System in Graphical and DSM Form 

 
  A B C D E F 

A 0 1 1 0 0 0 

B 0 0 0 1 0 0 

C 0 0 0 0 1 0 

D 0 0 0 0 0 0 

E 0 0 0 0 0 1 

F 0 0 0 0 0 0 

 

We use the technique of matrix multiplication to identify the “visibility” of an 

element for any given path length (see Figure 3).  Specifically, by raising the dependency 

matrix to successive powers of n, the results show the direct and indirect dependencies 

that exist for successive path lengths of n.  By summing these matrices together we derive 

the visibility matrix V, showing the dependencies that exist between all system elements 

for all possible path lengths up to the maximum – governed by the size of the DSM itself 

(denoted by N).8  To summarize this data for the system as a whole, we compute the 

density of the visibility matrix, which we refer to as the system’s Propagation Cost.  

Intuitively, this metric captures measures the percentage of system elements that can be 

affected, on average, when a change is made to a randomly chosen element.  In the 

example below, the system has an overall propagation cost of 42%. 

 

Figure 3:  The Derivation of the Visibility Matrix 

 
                                                 
8 Note that we choose to include the matrix for n=0 meaning that each element depends upon itself. 

M0 M1 M2 
   A  B  C  D  E  F 
A  1  0  0  0  0  0 
B  0  1  0  0  0  0 
C  0  0  1  0  0  0 
D  0  0  0  1  0  0 
E  0  0  0  0  1  0 
F  0  0  0  0  0  1 

   A  B  C  D  E  F 
A  0  1  1  0  0  0 
B  0  0  0  1  0  0 
C  0  0  0  0  1  0 
D  0  0  0  0  0  0 
E  0  0  0  0  0  1 
F  0  0  0  0  0  0 

   A  B  C  D  E  F 
A  0  0  0  1  1  0 
B  0  0  0  0  0  0 
C  0  0  0  0  0  1 
D  0  0  0  0  0  0 
E  0  0  0  0  0  0 
F  0  0  0  0  0  0 

M3 M4 V = Σ Mn ; n = [0,4] 
   A  B  C  D  E  F 
A  0  0  0  0  0  1 
B  0  0  0  0  0  0 
C  0  0  0  0  0  0 
D  0  0  0  0  0  0 
E  0  0  0  0  0  0 
F  0  0  0  0  0  0 

   A  B  C  D  E  F 
A  0  0  0  0  0  0 
B  0  0  0  0  0  0 
C  0  0  0  0  0  0 
D  0  0  0  0  0  0 
E  0  0  0  0  0  0 
F  0  0  0  0  0  0 

   A  B  C  D  E  F 
A  1  1  1  1  1  1 
B  0  1  0  1  0  0 
C  0  0  1  0  1  1 
D  0  0  0  1  0  0 
E  0  0  0  0  1  1 
F  0  0  0  0  0  1 
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4. Sample Construction and Analysis Approach 
Our analysis approach is based upon comparing the architectures of products that 

perform similar functions, but that have been developed using different organizational 

modes.  To do this, we construct a sample of matched product pairs, then for each pair, 

we test the hypothesis that the open source product (i.e., the one developed by a larger, 

more distributed team) is more modular than the closed source product (i.e., the one 

developed by a smaller, more centralized team). Our matching process takes into account 

the function of the software (e.g., a spreadsheet) as well as the level of sophistication it 

provides.  This is achieved by pairing products of a similar size, thereby controlling for 

potential differences in modularity related to the differing scope of products. 

Developing an ideal sample proves difficult for two reasons.  First, many open source 

projects are relatively small efforts involving only a handful of people and a few 

thousand lines of code (Howison and Crowston, 2004).  Yet we need products 

sufficiently complex for the dynamics we are exploring to produce meaningful 

differences in architecture.  To tackle this problem, we focus only on successful open 

source efforts resulting in products that are widely used and have a minimum size.9  Only 

a small number of projects meet these criteria.  The second challenge is that commercial 

firms regard source code as a form of intellectual property, hence are reluctant to release 

it and cautious about work that seeks to compare it with “free” open source equivalents.  

Where an ideal match is not available, we therefore adopt two different strategies:  First, 

we try to identify a matched product which was once closed but is now open, and use the 

first release of the open version as a proxy for the closed source architecture; and second, 

where information on the nature of the team is available, we try to identify a product 

developed by a smaller, more centralized team, even if under an open source license.   

Table 1 describes the resulting sample of five paired products.  Note that there are 

several well-known and successful open source products for which we could not find a 

suitable match (e.g., the Apache web server project). Note also that we provide two 

possible closed source matches to the Linux operating system, given that our ideal 

                                                 
9 Use was determined by downloads and other data on the number of user installations.  Size was measured 
using the number of source files in the product.  After reviewing potential projects, we defined a minimum 
threshold of 300 source files as being representative of a successful open source project. 
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matched pair – the Solaris operating system, developed by Sun Microsystems – is 

significantly larger and more sophisticated than the open source product. 

 

Table 1:  The Sample of Matched Product Pairs 

 “Open” “Closed” Comments 
1 Gnucash MyBooks 

 
Financial management software.  MyBooks is 
a commercial product that has been disguised.  
It is what we call an “ideal” pair. 

2 Abiword OpenWrite Word processing software.  OpenWrite comes 
from Star Office, a closed commercial product 
that was released as OpenOffice in 2000. 

3 Gnumeric OpenCalc Spreadsheet software.  OpenCalc comes from 
Star Office, a closed commercial product that 
was released as OpenOffice in 2000. 

4 Linux a) OpenSolaris
b) XNU 

Operating system software.  Solaris is an 
operating system developed by Sun.  Its source 
code was released in 2004.  XNU is the kernel 
from Apple’s Darwin operating system. 

5 MySQL Berkeley DB Database software.  Berkeley DB is developed 
by a team of less than 10 people.10  MySQL is 
developed by a large, distributed team.11 

 
While our final sample contains only five pairs, it provides sufficient statistical power 

for a test of the mirroring hypothesis in two ways.  First of all, each matched pair 

represents an independent test of this hypothesis, given that we analyze the data on 

visibility at the component level, and conduct a test of differences between the two 

populations (i.e., between open source and closed source components).12 We can 

therefore draw inferences about the differences in modularity between the two products 

in each pair.   And second, our set of five matched pairs provides a test of this hypothesis 

across the population of large, successful open source products for which closed source 

equivalents can be found. This test is conducted by comparing whether the five open 

source products have a lower propagation cost than the five closed source products. 13 

                                                 
10 Source: Interview with one of the company founders. 
11 MySQL employs 60 developers in 25 nations; 70% work at home (The Economist, Mar 16th 2006). 
12 Specifically, we examine the visibility data at the component level and conduct a Mann-Whitney-U test 
of differences between the two populations of components.  We use this test because the distribution of 
visibility data among components is non-normal in nature, hence a simple t-test does not suffice. 
13 Assuming the null hypothesis, the chance of finding that the open source product is more modular than 
the closed source product in all of the five matched pairs is given by (0.5)5 = 003125 (p<0.05). 
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5.  Empirical Results 
Data on the propagation costs for each matched pair is shown in Table 2.  We find 

statistically significant differences in propagation cost between all of our matched 

product pairs.  Furthermore, the direction of these differences supports our hypothesis in 

each of the five cases.  The DSMs for each matched product pair are shown in Appendix 

A.  Below, we use these visual comparisons, in conjunction with the data on propagation 

cost, to discuss the insights revealed by each comparison.  Thereafter, we examine the 

third pair in our sample in further detail, given the propagation cost of the open source 

product in this pair appears to be significantly higher than for the others. 

 

Table 2:  Differences in Propagation Cost for each Matched Product Pair 

Product Category “Open” “Closed” Test Stat 

1:   Financial Mgmt 7.74% 56.06% p<0.1% 

2:   Word Processing 8.25% 41.77% p<0.1% 

3:   Spreadsheet 23.62% 54.31% p<0.1% 

4a: Operating System 7.18% 22.59% p<0.1% 

4b: Operating System 7.21% 24.83% p<0.1% 

5:   Database 11.30% 43.23% p<0.1% 

 

In pair number one, we see distinct differences in architecture.  The open source 

product is divided into many smaller modules, with few dependencies between them.  

The exception is one block of files in the center that are called by much of the rest of the 

system, a structure we call a “vertical bus,” given it delivers functionality to many other 

components.  By comparison, the closed source product has one very large module, 

within which there are many dependencies between elements.  The system’s propagation 

cost is over 50%, in contrast to the open source product, which is less than 8%. 

In pair number two, the visual differences are not as distinctive as in the first pair.  

Each product is divided into many modules of similar size.  However, there the closed 

source product has a greater density of dependencies between elements, and these 

dependencies are spread throughout the system, rather than being concentrated within a 
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few modules.  As a result of this pattern, the propagation cost is over 40%, in contrast to 

the open source product, which has a low figure of only 8.25%. 

In pair number three, our hypothesis is once again supported.  We note however, that 

the open source product has a much higher propagation cost – at more than 23% - than 

any other open source product in our sample.  Indeed, the open source product, 

Gnumeric, has a larger density of dependencies than the closed source product. Many of 

these dependencies are to a group of files within the largest module, although 

surprisingly, these files are not isolated within a separate sub-module.  By contrast, the 

closed source product OpenCalc possesses a more hierarchical structure, with a few top-

level modules, within which there are a number of smaller sub-modules.  Despite having 

a lower dependency density, this product has a very high propagation cost, suggesting 

that it is the pattern of dependencies, and not the absolute number, that is the problem. 

In our fourth product category, we consider two potential matched pairs.  In the first, 

which compares Linux with Solaris, our hypothesis is supported.  The propagation cost of 

Solaris is over 22%, a significant number given the system’s size.  The figure implies 

that, on average, a change to a source file has the potential to impact over 2,400 other 

files.  By contrast, the figure for Linux is around 7%.  While still large in absolute terms, 

the difference between these two systems is significant, especially with regard to 

contributors choosing between the two.  Our results suggest that contributing to Linux is 

far easier, all else being equal, than contributing to the “open” version of Solaris. 

The comparison above is not “ideal” in that Solaris is significantly larger than Linux, 

consisting of twice as many source files.  The differences in propagation cost may 

therefore be driven, in part, by differences in the functionality these systems provide.14  

To address this issue, we look at a second matched product – XNU – and compare it to a 

version of Linux of similar size.15  The result is remarkably consistent with that of 

Solaris.  The propagation cost of XNU is just over 24%, in comparison to 7.4% for a 

version of Linux of similar size.  Of note, the structure of these products looks similar.  

                                                 
14 Note that in every code base we have access to, propagation cost tends to remain broadly constant or 
decline as the system grows in size.  This is a product of the fact that the rate of dependency addition is 
often lower than the rate of growth in source file pairs, hence the density of the visibility matrix declines 
with size.  This dynamic biases the test against our hypothesis when comparing Linux and Solaris. 
15 XNU is the kernel of Apple’s Darwin operating system.  It was developed by a company called NeXT.  
Its origins lie in a small operating system kernel called Mach, which was developed at Carnegie-Mellon. 
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Indeed, the density of dependencies in each system is comparable.  Once again, this 

suggests that the pattern of dependencies in XNU is what drives higher propagation cost.  

In essence, this pattern leads to a higher number of indirect links between components. 

In pair number five, our hypothesis is once again supported.  This pair is unusual in 

that the closed source product comprises a large number of very small modules (i.e., it 

has a “flat” hierarchy).  It therefore may appear more modular from an architect’s 

viewpoint.  However, the number and pattern of dependencies between source files is 

such that the product has a very high propagation cost of over 43%.  By comparison, the 

open source product contains an additional layer of hierarchy, with several sub-modules 

nested within a larger module containing half the system’s files.  Combined with its 

lower dependency density, this structure yields a propagation cost of just over 11%. 

 

5.1 Exploring the High Propagation Cost in Gnumeric 

While our hypothesis is supported in all the pairs we examine, there does appear to be 

one anomaly within the group of open source products.  Specifically, the open source 

spreadsheet, Gnumeric, has a higher propagation cost than other open source products.  

One explanation is that spreadsheet applications require more tightly-integrated 

architectures, and hence both open and closed source products have higher propagation 

cost than other types of product.  Alternatively, Gnumeric may not, in fact, involve a 

large, distributed development team.  To identify whether this explanation has merit, we 

examined the number of contributors for GnuMeric in comparison to other open projects. 

We gathered data from two different sources: the credits file and the change log. The 

credits file is a list of key individuals who have contributed to a system’s development.  

Each individual’s name is listed once, and when added is generally never removed.  The 

change log is a detailed listing of each change made to the product in each new version.  

Some change logs, such as the one used in GnuMeric, identify the unique individuals 

who have developed the new code being added/changed.16 

                                                 
16 Note that we do not use the Concurrent Versioning System (CVS) system for our analysis, a tool that is 
sometimes used to control new submissions of source code in a project.  In many projects, contributions are 
batched together and submitted by a few individuals who have “source access.”  But these individuals are 
not the authors of the code they submit.  Using a change log overcomes this potential limitation. 
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To capture the number of major contributors, we developed a script to count how 

many names appeared in the credit file of each open source product in our study.  We 

captured this data for multiple versions, creating a plot of the size of the credits file as the 

system grows in size. Figure 4 displays the result.  GnuMeric has a much smaller number 

of credits file entries than other open source products of similar size.  By contrast, Linux, 

AbiWord and Gnucash all have similar patterns of contributor growth, with three to five 

times as many credits file entries relative to their size.17 

 

Figure 4:  Number of Credits File Entries for Open Source Products 

 
 

To capture the extent of each individual’s contributions we developed a script to 

count how many times each unique name appeared in Gnumeric’s change log, providing 

a proxy for the proportion of submissions attributable to each.  For comparison, we 

conducted the same analysis for an open source project that maintained similar data, and 

for which the system had a low propagation cost: the Apache web server.18  The results 

are shown in Figure 5.  The contrast is clear.  In Gnumeric, one individual accounts for 

almost 40% of changes, the top four for ~70% and the top 9 for ~90%.  In Apache, the 

top individual accounts for less than 7% of changes and the top four less than 25%. 

 

 

                                                 
17 Note that MySQL dos not have a credits file of equivalent structure to the other open source products. 
18 The propagation cost for the version of Apache web server closest in size to Gnumeric is less than 1%. 
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distributed team.  In fact, development contributions are highly concentrated.  As a result, 

the high propagation cost we observe lends further support to the mirroring hypothesis. 

 

Figure 6:  The Number of Unique Contributors to GnuMeric over time 

 
 

6.  Discussion 
Our results make an important contribution to the academy in several ways.  First, 

they reveal substantial differences in the levels of modularity between software systems 

of similar size and function.  The pairs we examine vary by a factor of eight, in terms of 

the potential for a design change to propagate to other system components.  This result 

has significant implications for those who must design such systems.  It shows that a 

product’s architecture is not wholly determined by function, but is also influenced by a 

variety of other factors, including the characteristics of the organization within which 

development occurs.  The space of possible designs within which solutions are sought 

appears to be constrained by the nature of the context within which search occurs. 

In this respect, our study provides evidence to support the hypothesis that a product’s 

architecture tends to mirror the structure of the organization within which it is developed.  

In all of the pairs we examine, the open source product is more modular than that of a 

product of comparable size developed by a smaller, more centralized team.   Furthermore, 

in the one open source product that possesses a relatively high propagation cost, the 

anomaly can be explained.  We show that the open source product is not the result of a 
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large, distributed team.  Rather, the pattern of development is more consistent with that of 

a small co-located team.  In combination, our results provide strong and compelling 

evidence to support the mirroring hypothesis in our sample of matched pairs. 

We should note that the mirroring phenomenon is consistent with two rival causal 

mechanisms.  The first is that designs evolve to reflect their development environments.  

In closed source projects, dedicated teams employed by a single firm and located at a 

single site develop the design.  Problems are solved by face-to-face interaction, and 

performance “tweaked” by taking advantage of the access that module developers have to 

the information and solutions developed in other modules.  Even if not an explicit 

managerial choice, the design naturally becomes more tightly-coupled.  By contrast, in 

open source products, a large and widely distributed team develops the design.  Face-to-

face communications are rare given most developers never meet, hence fewer 

connections between the modules are established.  The architecture that evolves is more 

modular as a result of the inherent limitations on communication. 

Alternatively, our observations may be a product of purposeful choices made by the 

system architects.  For closed source products, the sole aim is to develop a product that 

maximizes performance at a point in time.  The benefits of modularity, given the 

competitive context, may not be viewed as significant.  By contrast, for open source 

products, the benefits of modularity are far greater.  Without a modular design, there is 

little hope that contributors can understand enough of a design to contribute to it, or 

develop new features and fix defects without affecting many other parts of the system.  

Open source products therefore need to be modular to both attract a developer 

community and also to facilitate the work of this community.  Our data can be explained 

by either of these causal mechanisms.  In practice, both are likely to work in parallel. 

Our work suggests that managers of the innovation process must strive to understand 

the influences on their design choices that stem directly from the way they are organized.  

The challenge is that these influences are seldom explicit, but are a result of the complex 

interplay between a firm’s normal problem solving and information processing routines, 

and the space of designs that must be searched to arrive at a new solution.  While a firm 

can look backwards and see what kinds of designs it is predisposed to produce, it is hard 

to look forward, and imagine what new designs might be possible. The commercial 
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software managers we work with almost always think their designs are highly modular. 

When shown these results however, they realize how much more can be achieved. 

Our findings have important implications for development organizations given the 

recent trend towards “open” innovation and the increased use of partners in R&D projects 

(Chesbrough, 2003; Iansiti and Levian, 2004; MacCormack et al, 2007).  In particular, 

they imply that these new organizational arrangements will have a distinct impact on the 

nature of the designs they produce, and hence may affect product performance in 

unintended ways.   In essence, our work suggests that R&D partnering choices, as well as 

the division of tasks that these choices imply, cannot be managed independently of the 

design process itself (von Hippel, 1990).  Decisions taken in one realm will ultimately 

affect performance in the other.  Managers must understand the implications of these 

organizational choices, in terms of the constraints they place on the solution space. 

Several limitations of our study must be considered in assessing the generalizability 

of results.  First, our work is conducted in the software industry, a unique context given 

that designs exist purely as information, and are not bounded by physical limits.  Whether 

these results will hold for physical products requires empirical confirmation.  Second, our 

sample comprises only five matched pairs, a limitation that stems from the lack of 

successful open source products of sufficient size and complexity, and the difficulty in 

obtaining commercial source code that firms regard as a form of intellectual property.  

Third, we do not directly test the functional equivalence of the pairs we analyze, instead 

relying on comparing products only of similar size.  As a result, some of the differences 

we observe may be associated with actual differences in the level of performance 

between products.  Finally, the pairs that we analyze were, in general, not developed at 

the same time. Open source products tend to be developed only after a product category 

reaches some level of maturity.  Hence our results could be explained, in part, by learning 

that occurs between the release of closed and open products.20 

Our work opens up a number of areas for future study.  With respect to methods, we 

show that dependency analysis provides a powerful lens with which to examine product 

architecture. While we focus on only a few types of dependency, our methods can be 

                                                 
20 Note that the learning that occurs is not based upon observing proprietary source code, since firms do not 
typically release this.  But greater knowledge about a product category in general might still allow open 
source products to benefit from advances in design (i.e., be more modular for a given performance level). 
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generalized to others, assuming that they can be identified from source code. With 

respect to studies of modularity, our work provides visibility of a phenomena which was 

previously hidden, and metrics with which to compare different products.  This approach 

promises to facilitate the study of a variety of important research questions that have 

previously been answered only via purely descriptive or conceptual work. 

For example, one reason we observe differences in product architecture relates to the 

performance trade-offs that exist between architectures with different characteristics.  

There are strong theoretical arguments why such trade-offs exist, yet little empirical 

evidence to confirm their presence.  Does greater modularity require trade-offs with other 

aspects of performance?  Intriguingly, our work suggests that, in practice, many designs 

are not at the performance “frontier” where a trade-off exists, but lie below it due to 

architectural inefficiencies or “slack” (MacCormack et al, 2006).  If this is true, there 

may be scope to improve a design along multiple dimensions without a performance 

penalty.  Exploring such issues via the measurement of architecture and product 

performance will help reveal managerial strategies for moving designs towards the 

frontier.  And they will help us understand the trade-offs involved in moving along it. 

Herbert Simon (1962) was the first to argue for the systematic study of design more 

than 40 years ago, claiming, ‘…the proper study of mankind is the science of design.’  

However, his ambitious vision for the field has proven elusive.  The study of design has 

been constrained by, among other things, limited theory, methods and tools that can deal 

with the complexity of everyday designs, and more importantly, to make them visible, 

allowing us to compare their structures.  The methods we have developed promise to 

open up a host of questions that, until now, were beyond our analytical capabilities. 
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