

Copyright © 2008 by Alan MacCormack, John Rusnak, and Carliss Y. Baldwin

Working papers are in draft form. This working paper is distributed for purposes of comment and
discussion only. It may not be reproduced without permission of the copyright holder. Copies of working
papers are available from the author.

Exploring the Duality
between Product and
Organizational Architectures:
A Test of the Mirroring
Hypothesis

Alan MacCormack
John Rusnak
Carliss Y. Baldwin

Working Paper

08-039

Version 3.0: October 10th 2008

 2

Abstract

A variety of academic work argues a relationship exists between the structure of a

development organization and the design of the products that this organization produces.

Specifically, products are often said to “mirror” the architectures of the organizations

from which they come. This dynamic occurs because an organization’s problem solving

routines and normal patterns of communication tend to constrain the space of designs

within which it searches for new solutions. Such a link, if confirmed empirically, would

be important, given that product architecture has been shown to be an important predictor

of product performance, product variety, process flexibility and industry evolution.

We explore this relationship in the software industry by use of a technique called

Design Structure Matrices (DSMs), which allows us to visualize the architectures of

different software products and to calculate metrics to compare their levels of modularity.

Our research takes advantage of a natural experiment in this industry, where products

exist that fulfill the same function, but that have been developed using very different

organizational modes – specifically, open source versus closed source development. We

use DSMs to analyze a sample of matched-pair products – products that perform the same

function but that have been developed via these contrasting modes of organization.

Our results reveal significant differences in modularity, consistent with a view that

larger, more distributed teams tend to develop products with more modular architectures.

Furthermore, the differences between systems are substantial – the pairs we examine vary

by a factor of eight, in terms of the potential for a design change to propagate to other

system components. We conclude by highlighting some implications of this result for

both innovating managers, as well as researchers in the field. We also assess how future

work in this area might proceed, based upon these first steps in measuring “design.”

 3

1. Introduction
Much recent research points to the critical role of product architecture in the

successful development of a firm’s new products and services, the competitiveness of its

product lines and the successful evolution of its technical capabilities (e.g., Eppinger et

al, 1994; Ulrich, 1995; Sanderson and Uzumeri, 1995; Sanchez and Mahoney, 1996;

Schilling, 2000; Baldwin and Clark, 2000; MacCormack, 2001). Of particular interest to

this study, Henderson and Clark (1990) show that incumbent firms often stumble when

faced with innovations that are “architectural” in nature. They assert that these dynamics

occur because product designs “mirror” the organizations that develop them, a concept

that is sometimes referred to as duality. In essence, the space of designs that an

organization searches is constrained by the characteristics of the organization itself, in

addition to the explicit choices made by its designers. Unfortunately, the empirical

demonstration of such a result remains elusive.

In this study, we provide empirical evidence to support this hypothesized relationship

between product and organizational designs. We do this by applying an analytical

technique called design structure matrices (DSMs) to compare a number of products in

the software industry. Our analysis takes advantage of the fact that software is an

information-based product, meaning that the design comprises a series of instructions (or

“source code”) that tell a computer what tasks to perform. Given this characteristic,

software products can be processed automatically to identify the dependencies that exist

between different parts of their designs (something that cannot be done with physical

products). These dependency relationships, in turn, can be used to reveal various aspects

of a design’s structure, through displaying the information visually as well as calculating

metrics that summarize their impact on the system’s overall level of coupling.

We chose to analyze software products because of a unique opportunity to examine

two different organizational modes for development. Specifically, in recent years there

has been a growing interest in open source (or “free”) software, which is characterized

by: a) the distribution of a program’s source code along with the binary version of the

product1 and; b) a license that allows a user to make unlimited copies of and

modifications to this product (DiBona et al, 1999). Successful open source software

1 Commercial software is distributed in a binary form (i.e., 1’s and 0’s) that is executed by the computer.

 4

projects tend to be characterized by large, distributed teams of volunteer developers who

contribute new features, fix defects in existing code and write documentation for the

product (Raymond, 2001; von Hippel and von Krogh, 2003). These developers, which

can number in the hundreds, are located around the globe hence often never meet. This

approach stands in contrast to the proprietary “closed source” model employed by

commercial software firms. In this model, projects tend to be staffed by dedicated teams

of individuals who are colocated at a single location and have open access to other team

members. Given this proximity, the sharing of information about solutions being adopted

in different parts of the design is much easier, and may even be encouraged (e.g., if the

creation of a dependency between two parts of a design would lead to increased

performance). Consequently, the architectures of products developed using a proprietary

development model is likely to differ from those of products developed using open

source methods: In particular, open source software is likely to be more “modular” than

closed source software. Our research seeks to examine the magnitude and direction of

these differences in architecture.

Our paper proceeds as follows. In the next section, we describe the motivation for

our research and discuss prior work in the field that pertains to understanding the link

between product and organizational architectures. We then describe our research

methodology, which involves calculating the level of modularity in a software system by

analyzing the dependencies that exist between its component elements. Next, we discuss

how we construct our sample of matched product pairs, each consisting of one open

source and one closed source product. Finally, we discuss the results of our empirical

tests, and highlight the implications of our findings for practitioners and the academy.

 2. Research Motivation
The architecture of a product is the scheme by which the functions it performs are

allocated to its constituent components (Ulrich, 1995). For any given product, a number

of architectures are likely to satisfy its functional requirements. These different

architectures may differ along important performance dimensions, such as the quality of

the final product, its reliability in operation, its robustness to change and its physical size.

They may also imply a differing partitioning of tasks, thereby influencing the efficiency

 5

with which development can proceed (Von Hippel, 1990). Understanding the factors that

impact how architectures are chosen, how they are developed, how they evolve and how

they can be adapted are therefore critical topics for managerial attention.

A variety of work has sought to examine the link between a product’s architecture

and the characteristics of the organization that develops it. The roots of this work come

from the field of organization theory, where it has long been recognized that

organizations should be designed to reflect the nature of the tasks that they perform

(Lawrence and Lorsch, 1967; Burns and Stalker, 1961). In a similar fashion, transaction

cost theory predicts that different organizational forms are required to effectively solve

the contractual challenges associated with tasks that possess different levels of

uncertainty and interdependency (Williamson, 1985; Teece, 1986). To the degree that

different product architectures require a different set of tasks to be performed, this work

suggests that organizations and architectures must be aligned.

Studies that seek to examine this topic empirically follow one of two approaches.

The first explores the need to match patterns of communication within a development

project to the interfaces that exist between different parts of a product’s design. For

example, Sosa et al (2004) examine a large jet engine project, and find a strong tendency

for team communications to be aligned with design interfaces. The likelihood of

“misalignment” is shown to be greater across organizational and system boundaries.

Cataldo et al (2006) explore the impact of such misalignments, but in a large software

development project. They find that development tasks are completed faster when the

patterns of team communication are congruent with the software’s dependency structure.

Finally, Gokpinar et al (2006) also study the impact of misalignments in an automotive

development program. They find that subsystem quality is higher to the degree that team

communications are aligned with the patterns of interfaces to other subsystems.

While the studies above begin with the premise that a development organization must

be designed to match the desired structure of a new product, a second stream of work

adopts the opposite perspective. It assumes that a development organization’s structure is

fixed in the short-medium term, and seeks to understand the impact on new product

designs. This view was first articulated by Conway (1968) and is sometimes known as

“Conway’s Law.” He states, “Any organization that designs a system will inevitably

 6

produce a design whose structure is a copy of the organization’s communication

structure.” The dynamics of this law are best illustrated in Henderson and Clark’s (1990)

study of the photolithography industry, in which they show that market leadership

changed hands each time a new generation of equipment was introduced. These

observations are traced to the successive failure of leading firms to respond effectively to

architectural innovations, which involve significant changes in the way that components

are linked together. Such innovations challenge incumbent firms given they destroy the

usefulness of the architectural knowledge embedded in their organization structures and

information-processing routines, which tend to reflect the existing dominant design

(Utterback, 1996). When this design is no longer optimal, they find it difficult to adapt.

The contrast between these two perspectives becomes clear when we consider what

happens when two different types of organization attempt to develop the same product.

Assuming that the functional requirements are identical, one might predict that the

product architectures resulting from the two development efforts would also be similar.

To the degree that architectural choices are driven by the characteristics of the

organizations themselves however, the designs would be quite different. This “mirroring

hypothesis” can be tested by comparing the designs of a number of matched-pair

products – products that fulfill the same function but that have been developed via

contrasting modes of organization. Such a natural experiment exists in software, given

we observe two different modes of organization: open source (or distributed) versus

closed source (or proprietary) development. To conduct such a test however, we must

first establish a measure by which to compare the different architectures.

2.1 Product Architecture and Measures of Modularity

Modularity is a concept that helps us to characterize different product architectures.

It refers to the way that a product design is decomposed into different parts or modules.

While there are many definitions of modularity, authors tend to agree on the concepts that

lie at its heart; the notion of interdependence within modules and independence between

modules (Ulrich, 1995). The latter concept is referred to as “loose-coupling.” Modular

designs are loosely-coupled in that changes made to one module have little impact on the

others. Just as there are degrees of coupling, hence there are degrees of modularity.

 7

The costs and benefits of modularity have been discussed in a stream of research that

has sought to examine its impact on a range of activities including the management of

complexity (Simon, 1962), product line architecture (Sanderson and Uzumeri, 1995),

manufacturing (Ulrich, 1995), process design (MacCormack, 2001) process improvement

(Spear and Bowen, 1999) and industry evolution (Baldwin and Clark, 2000). Despite the

appeal of this work however, few studies use empirical data to examine the relationship

between measures of product modularity, organizational factors that influence this

property or outcomes that it might impact (Schilling, 2000; Fleming and Sorenson, 2004).

Most studies tend to be conceptual or descriptive in nature, and offer little insight into

how modularity can be measured in a robust and repeatable fashion

Studies that attempt to measure modularity typically focus on capturing the level of

coupling that exists between different parts of a design. In this respect, the most

promising technique comes from the field of engineering, in the form of the Design

Structure Matrix (DSM). A DSM highlights the inherent structure of a design by

examining the dependencies that exist between its constituent elements in a square matrix

(Steward, 1981; Eppinger et al, 1994; Sosa et al, 2003). These elements can represent

design tasks, design parameters or actual components. Metrics which capture the degree

of coupling between elements have been calculated from a DSM, and used to compare

different architectures (Sosa et al, 2007). DSMs have also been used to explore the

degree of alignment between task dependencies and project team communications (Sosa

et al, 2004). Recent work significantly extends this methodology to show how design

dependencies can be automatically extracted from software code and used to understand

architectural differences (MacCormack et al, 2006). In this paper, we use this method to

compare designs that come from different types of development organization.

2.2 Software Design Structure

The measurement of modularity has gained significant traction in the field of

software, given the information-based nature of the product lends itself to analytical

techniques that are not possible with physical products. Critically, software systems are

rarely re-built from scratch but instead use the prior version as a base upon which new

 8

functionality is added. This dynamic increases the importance of understanding

techniques by which the resulting complexity can be managed.

The formal study of software modularity began with Parnas (1972) who proposed the

concept of information hiding as a mechanism for dividing code into modular units.

Subsequent authors built on this work, proposing metrics to capture the level of

“coupling” between modules and “cohesion” within modules (e.g., Selby and Basili,

1988; Dhama, 1995). This work complemented studies which sought to measure product

complexity for the purposes of predicting development productivity and quality (e.g.,

McCabe 1976; Halstead, 1976). Whereas measures of software complexity focus on

capturing the number of elements in a design, measures of software modularity focus on

the patterns of dependencies between these elements. Hence a product can be both

complex (i.e., have many parts) and modular (i.e., have few dependencies between these

parts). In prior work, this distinction is not always clear.2

Efforts to measure software modularity generally follow one of two approaches. The

first focuses on analyzing specific types of dependency between components, for

example, the number of non-local branching statements (Banker et al, 1993); the number

of global variables (Schach et al, 2002); or the number of function calls (Banker and

Slaughter, 2000; Rusovan et al, 2005). The second infers the presence of a dependency

between components by assessing whether they tend to be modified at the same time.

For example, Eick et al (1999) show that code decays over time as measured by the

number of files changed to complete a modification request; and Cataldo et al (2006)

show that modifications involving files with higher coupling take longer to complete.

While the latter measurement approach avoids the need to specify the type of dependency

between components, it requires access to maintenance data that is not always available,

or captured consistently across projects. In multi-project comparisons, a method that

extracts dependencies from the source code itself is therefore to be preferred.

With the rise in popularity of open source software, interest in the topic of modularity

has received further stimulus. Some authors argue that open source software is inherently

more modular than proprietary software (O’Reilly, 1999; Raymond, 2001). Others

suggest that modularity is a required property for this method to succeed (Torvalds, as

2 In some fields, complexity is defined to include inter-element interactions (Rivkin and Siggelkow, 2007).

 9

quoted in DiBona, 1999). Empirical work to date yields mixed results on this question.

Some studies criticize the number of problematic dependencies between components in

systems such as Linux (Schach et al, 2002; Rusovan et al, 2005). Others provide

quantitative and qualitative data that open source products are easier to modify (Mockus

et al, 2002; Paulsen et al, 2004) or have fewer dependencies between their constituent

elements (MacCormack et al, 2006). Critically however, none of these studies provides

an apples-to-apples comparison using products that fulfill the same function but that have

been developed within different types of organization.

In this paper, we explore differences in design structure between software systems of

comparable size and function developed using contrasting modes of organization:

specifically, open source (distributed) software versus closed source (proprietary)

development. The use of a matched pair design allows us to control for differences in

architecture that might be driven by differences in product function. Our work builds

upon recent studies which highlight how DSMs can be used to visualize and measure

software architecture (Sullivan et al, 2001; Lopes and Bajracharya, 2005; MacCormack et

al, 2006). We use these methods to examine the hypothesis that the architecture of a

product mirrors the structure of the organization in which it is developed. We expect

open source products to be more modular than their closed source counterparts.

3. Research Methods3
There are two choices to make when applying DSMs to a software product: The unit

of analysis and the type of dependency. With regard to the former, there are several

levels at which a DSM can be built: The directory level, which corresponds to a group of

source files that pertain to a specific subsystem; the source file level, which corresponds

to a collection of related processes and functions; and the function level, which

corresponds to a set of instructions that perform a specific task. We analyze designs at

the source file level for a number of reasons. First, source files tend to contain functions

with a similar focus. Second, tasks and responsibilities are allocated to programmers at

the source file level, allowing them to maintain control over all the functions that perform

related tasks. Third, software development tools use the source file as the unit of analysis

3 The methods we describe here build on prior work in this field (see MacCormack et al, 2006; 2007).

 10

for version control. And finally, prior work on design uses the source file as the primary

level of analysis (e.g., Eick et al, 1999; Rusovan et al, 2005; Cataldo et al, 2006).4

There are many types of dependency between source files in a software product.5 We

focus on one important dependency type – the “Function Call” – used in prior work on

design structure (Banker and Slaughter, 2000; Rusovan et al, 2005). A Function Call is

an instruction that requests a specific task to be executed. The function called may or

may not be located within the source file originating the request. When it is not, this

creates a dependency between two source files, in a specific direction. For example, if

FunctionA in SourceFile1 calls FunctionB in SourceFile2, then we note that SourceFile1

depends upon (or “uses”) SourceFile2. This dependency is marked in location (1, 2) in

the DSM. Note this does not imply that SourceFile2 depends upon SourceFile1; the

dependency is not symmetric unless SourceFile2 also calls a function in SourceFile1.

To capture function calls, we input a product’s source code into a tool called a “Call

Graph Extractor” (Murphy et al, 1998). This tool is used to obtain a better understanding

of system structure and interactions between parts of the design.6 Rather than develop

our own extractor, we tested several commercial products that could process source code

written in both procedural and object oriented languages (e.g., C and C++), capture

indirect calls (dependencies that flow through intermediate files), run in an automated

fashion and output data in a format that could be input to a DSM. A product called

Understand C++7 was selected given it best met all these criteria.

The DSM of a software product can be displayed using the Architectural View. This

groups each source file into a series of nested clusters defined by the directory structure,

with boxes drawn around each successive layer in the hierarchy. The result is a map of

dependencies, organized by the programmer’s perception of the design. To illustrate, the

Directory Structure and Architectural View for Linux v0.01 are shown in Figure 1. Each

“dot” represents a dependency between two particular components (i.e., source files).

Figure 1: The Directory Structure and Architectural View for Linux 0.01.

4 Source files are akin to physical components; functions are the nuts and bolts within these components.
5 Several authors have developed comprehensive categorizations of dependency types (e.g., Shaw and
Garlan, 1996; Dellarocas, 1996). Our work focuses on one important type of dependency.
6 Function calls can be extracted statically (from the source code) or dynamically (when the code is run).
We use a static call extractor because it uses source code as input, does not rely on program state (i.e., what
the system is doing at a point in time) and captures the system structure from the designer’s perspective.
7 Understand C++ is distributed by Scientific Toolworks, Inc. see <www.scitools.com> for details.

3.1 M

T

degre

eleme

indire

very

2004)

T

DSM

B and

eleme

on el

a cha

eleme

depen

Measuring S

The method b

ee of couplin

ent causes a

ectly (i.e., th

closely rela

) which in tu

To illustrate,

M form. We

d C, so a ch

ent C depen

ement C, an

ange to elem

ents C and A

ndencies bet

System Mod

by which w

ng it exhibit

a (potential)

hrough a cha

ated to and b

urn, is based

consider the

see that elem

hange to ele

nds upon ele

nd an indirec

ment F may h

A with path

tween eleme

dularity

we characteri

s, as capture

 change to

ain of depend

builds upon

d upon the co

e example sy

ment A dep

ement C ma

ment E, so a

ct impact on

have a direct

lengths of tw

ents for path

ze the struct

ed by the de

other eleme

dencies that

the concept

oncept of rea

ystem depict

ends upon (

ay have a di

a change to

element A,

t impact on

wo and three

lengths of fo

ture of a de

gree to whic

ents in the s

exist across

t of visibility

achability ma

ted in Figur

or “calls fun

irect impact

element E m

with a path

element E, a

e, respective

our or more.

esign is by m

ch a change

system, eithe

s elements).

y (Sharmine

atrices (War

re 2 in both g

nctions withi

t on element

may have a

length of tw

and an indire

ely. There ar

.

1

measuring th

to any singl

er directly o

 This work i

e and Yassin

rfield 1973).

graphical an

in”) element

t A. In turn

direct impac

wo. Similarly

ect impact o

re no indirec

1

he

le

or

is

ne

nd

ts

n,

ct

y,

on

ct

 12

Figure 2: Example System in Graphical and DSM Form

 A B C D E F

A 0 1 1 0 0 0

B 0 0 0 1 0 0

C 0 0 0 0 1 0

D 0 0 0 0 0 0

E 0 0 0 0 0 1

F 0 0 0 0 0 0

We use the technique of matrix multiplication to identify the “visibility” of an

element for any given path length (see Figure 3). Specifically, by raising the dependency

matrix to successive powers of n, the results show the direct and indirect dependencies

that exist for successive path lengths of n. By summing these matrices together we derive

the visibility matrix V, showing the dependencies that exist between all system elements

for all possible path lengths up to the maximum – governed by the size of the DSM itself

(denoted by N).8 To summarize this data for the system as a whole, we compute the

density of the visibility matrix, which we refer to as the system’s Propagation Cost.

Intuitively, this metric captures measures the percentage of system elements that can be

affected, on average, when a change is made to a randomly chosen element. In the

example below, the system has an overall propagation cost of 42%.

Figure 3: The Derivation of the Visibility Matrix

8 Note that we choose to include the matrix for n=0 meaning that each element depends upon itself.

M0 M1 M2
 A B C D E F
A 1 0 0 0 0 0
B 0 1 0 0 0 0
C 0 0 1 0 0 0
D 0 0 0 1 0 0
E 0 0 0 0 1 0
F 0 0 0 0 0 1

 A B C D E F
A 0 1 1 0 0 0
B 0 0 0 1 0 0
C 0 0 0 0 1 0
D 0 0 0 0 0 0
E 0 0 0 0 0 1
F 0 0 0 0 0 0

 A B C D E F
A 0 0 0 1 1 0
B 0 0 0 0 0 0
C 0 0 0 0 0 1
D 0 0 0 0 0 0
E 0 0 0 0 0 0
F 0 0 0 0 0 0

M3 M4 V = Σ Mn ; n = [0,4]
 A B C D E F
A 0 0 0 0 0 1
B 0 0 0 0 0 0
C 0 0 0 0 0 0
D 0 0 0 0 0 0
E 0 0 0 0 0 0
F 0 0 0 0 0 0

 A B C D E F
A 0 0 0 0 0 0
B 0 0 0 0 0 0
C 0 0 0 0 0 0
D 0 0 0 0 0 0
E 0 0 0 0 0 0
F 0 0 0 0 0 0

 A B C D E F
A 1 1 1 1 1 1
B 0 1 0 1 0 0
C 0 0 1 0 1 1
D 0 0 0 1 0 0
E 0 0 0 0 1 1
F 0 0 0 0 0 1

 13

4. Sample Construction and Analysis Approach
Our analysis approach is based upon comparing the architectures of products that

perform similar functions, but that have been developed using different organizational

modes. To do this, we construct a sample of matched product pairs, then for each pair,

we test the hypothesis that the open source product (i.e., the one developed by a larger,

more distributed team) is more modular than the closed source product (i.e., the one

developed by a smaller, more centralized team). Our matching process takes into account

the function of the software (e.g., a spreadsheet) as well as the level of sophistication it

provides. This is achieved by pairing products of a similar size, thereby controlling for

potential differences in modularity related to the differing scope of products.

Developing an ideal sample proves difficult for two reasons. First, many open source

projects are relatively small efforts involving only a handful of people and a few

thousand lines of code (Howison and Crowston, 2004). Yet we need products

sufficiently complex for the dynamics we are exploring to produce meaningful

differences in architecture. To tackle this problem, we focus only on successful open

source efforts resulting in products that are widely used and have a minimum size.9 Only

a small number of projects meet these criteria. The second challenge is that commercial

firms regard source code as a form of intellectual property, hence are reluctant to release

it and cautious about work that seeks to compare it with “free” open source equivalents.

Where an ideal match is not available, we therefore adopt two different strategies: First,

we try to identify a matched product which was once closed but is now open, and use the

first release of the open version as a proxy for the closed source architecture; and second,

where information on the nature of the team is available, we try to identify a product

developed by a smaller, more centralized team, even if under an open source license.

Table 1 describes the resulting sample of five paired products. Note that there are

several well-known and successful open source products for which we could not find a

suitable match (e.g., the Apache web server project). Note also that we provide two

possible closed source matches to the Linux operating system, given that our ideal

9 Use was determined by downloads and other data on the number of user installations. Size was measured
using the number of source files in the product. After reviewing potential projects, we defined a minimum
threshold of 300 source files as being representative of a successful open source project.

 14

matched pair – the Solaris operating system, developed by Sun Microsystems – is

significantly larger and more sophisticated than the open source product.

Table 1: The Sample of Matched Product Pairs

 “Open” “Closed” Comments
1 Gnucash MyBooks

Financial management software. MyBooks is
a commercial product that has been disguised.
It is what we call an “ideal” pair.

2 Abiword OpenWrite Word processing software. OpenWrite comes
from Star Office, a closed commercial product
that was released as OpenOffice in 2000.

3 Gnumeric OpenCalc Spreadsheet software. OpenCalc comes from
Star Office, a closed commercial product that
was released as OpenOffice in 2000.

4 Linux a) OpenSolaris
b) XNU

Operating system software. Solaris is an
operating system developed by Sun. Its source
code was released in 2004. XNU is the kernel
from Apple’s Darwin operating system.

5 MySQL Berkeley DB Database software. Berkeley DB is developed
by a team of less than 10 people.10 MySQL is
developed by a large, distributed team.11

While our final sample contains only five pairs, it provides sufficient statistical power

for a test of the mirroring hypothesis in two ways. First of all, each matched pair

represents an independent test of this hypothesis, given that we analyze the data on

visibility at the component level, and conduct a test of differences between the two

populations (i.e., between open source and closed source components).12 We can

therefore draw inferences about the differences in modularity between the two products

in each pair. And second, our set of five matched pairs provides a test of this hypothesis

across the population of large, successful open source products for which closed source

equivalents can be found. This test is conducted by comparing whether the five open

source products have a lower propagation cost than the five closed source products. 13

10 Source: Interview with one of the company founders.
11 MySQL employs 60 developers in 25 nations; 70% work at home (The Economist, Mar 16th 2006).
12 Specifically, we examine the visibility data at the component level and conduct a Mann-Whitney-U test
of differences between the two populations of components. We use this test because the distribution of
visibility data among components is non-normal in nature, hence a simple t-test does not suffice.
13 Assuming the null hypothesis, the chance of finding that the open source product is more modular than
the closed source product in all of the five matched pairs is given by (0.5)5 = 003125 (p<0.05).

 15

5. Empirical Results
Data on the propagation costs for each matched pair is shown in Table 2. We find

statistically significant differences in propagation cost between all of our matched

product pairs. Furthermore, the direction of these differences supports our hypothesis in

each of the five cases. The DSMs for each matched product pair are shown in Appendix

A. Below, we use these visual comparisons, in conjunction with the data on propagation

cost, to discuss the insights revealed by each comparison. Thereafter, we examine the

third pair in our sample in further detail, given the propagation cost of the open source

product in this pair appears to be significantly higher than for the others.

Table 2: Differences in Propagation Cost for each Matched Product Pair

Product Category “Open” “Closed” Test Stat

1: Financial Mgmt 7.74% 56.06% p<0.1%

2: Word Processing 8.25% 41.77% p<0.1%

3: Spreadsheet 23.62% 54.31% p<0.1%

4a: Operating System 7.18% 22.59% p<0.1%

4b: Operating System 7.21% 24.83% p<0.1%

5: Database 11.30% 43.23% p<0.1%

In pair number one, we see distinct differences in architecture. The open source

product is divided into many smaller modules, with few dependencies between them.

The exception is one block of files in the center that are called by much of the rest of the

system, a structure we call a “vertical bus,” given it delivers functionality to many other

components. By comparison, the closed source product has one very large module,

within which there are many dependencies between elements. The system’s propagation

cost is over 50%, in contrast to the open source product, which is less than 8%.

In pair number two, the visual differences are not as distinctive as in the first pair.

Each product is divided into many modules of similar size. However, there the closed

source product has a greater density of dependencies between elements, and these

dependencies are spread throughout the system, rather than being concentrated within a

 16

few modules. As a result of this pattern, the propagation cost is over 40%, in contrast to

the open source product, which has a low figure of only 8.25%.

In pair number three, our hypothesis is once again supported. We note however, that

the open source product has a much higher propagation cost – at more than 23% - than

any other open source product in our sample. Indeed, the open source product,

Gnumeric, has a larger density of dependencies than the closed source product. Many of

these dependencies are to a group of files within the largest module, although

surprisingly, these files are not isolated within a separate sub-module. By contrast, the

closed source product OpenCalc possesses a more hierarchical structure, with a few top-

level modules, within which there are a number of smaller sub-modules. Despite having

a lower dependency density, this product has a very high propagation cost, suggesting

that it is the pattern of dependencies, and not the absolute number, that is the problem.

In our fourth product category, we consider two potential matched pairs. In the first,

which compares Linux with Solaris, our hypothesis is supported. The propagation cost of

Solaris is over 22%, a significant number given the system’s size. The figure implies

that, on average, a change to a source file has the potential to impact over 2,400 other

files. By contrast, the figure for Linux is around 7%. While still large in absolute terms,

the difference between these two systems is significant, especially with regard to

contributors choosing between the two. Our results suggest that contributing to Linux is

far easier, all else being equal, than contributing to the “open” version of Solaris.

The comparison above is not “ideal” in that Solaris is significantly larger than Linux,

consisting of twice as many source files. The differences in propagation cost may

therefore be driven, in part, by differences in the functionality these systems provide.14

To address this issue, we look at a second matched product – XNU – and compare it to a

version of Linux of similar size.15 The result is remarkably consistent with that of

Solaris. The propagation cost of XNU is just over 24%, in comparison to 7.4% for a

version of Linux of similar size. Of note, the structure of these products looks similar.

14 Note that in every code base we have access to, propagation cost tends to remain broadly constant or
decline as the system grows in size. This is a product of the fact that the rate of dependency addition is
often lower than the rate of growth in source file pairs, hence the density of the visibility matrix declines
with size. This dynamic biases the test against our hypothesis when comparing Linux and Solaris.
15 XNU is the kernel of Apple’s Darwin operating system. It was developed by a company called NeXT.
Its origins lie in a small operating system kernel called Mach, which was developed at Carnegie-Mellon.

 17

Indeed, the density of dependencies in each system is comparable. Once again, this

suggests that the pattern of dependencies in XNU is what drives higher propagation cost.

In essence, this pattern leads to a higher number of indirect links between components.

In pair number five, our hypothesis is once again supported. This pair is unusual in

that the closed source product comprises a large number of very small modules (i.e., it

has a “flat” hierarchy). It therefore may appear more modular from an architect’s

viewpoint. However, the number and pattern of dependencies between source files is

such that the product has a very high propagation cost of over 43%. By comparison, the

open source product contains an additional layer of hierarchy, with several sub-modules

nested within a larger module containing half the system’s files. Combined with its

lower dependency density, this structure yields a propagation cost of just over 11%.

5.1 Exploring the High Propagation Cost in Gnumeric

While our hypothesis is supported in all the pairs we examine, there does appear to be

one anomaly within the group of open source products. Specifically, the open source

spreadsheet, Gnumeric, has a higher propagation cost than other open source products.

One explanation is that spreadsheet applications require more tightly-integrated

architectures, and hence both open and closed source products have higher propagation

cost than other types of product. Alternatively, Gnumeric may not, in fact, involve a

large, distributed development team. To identify whether this explanation has merit, we

examined the number of contributors for GnuMeric in comparison to other open projects.

We gathered data from two different sources: the credits file and the change log. The

credits file is a list of key individuals who have contributed to a system’s development.

Each individual’s name is listed once, and when added is generally never removed. The

change log is a detailed listing of each change made to the product in each new version.

Some change logs, such as the one used in GnuMeric, identify the unique individuals

who have developed the new code being added/changed.16

16 Note that we do not use the Concurrent Versioning System (CVS) system for our analysis, a tool that is
sometimes used to control new submissions of source code in a project. In many projects, contributions are
batched together and submitted by a few individuals who have “source access.” But these individuals are
not the authors of the code they submit. Using a change log overcomes this potential limitation.

 18

To capture the number of major contributors, we developed a script to count how

many names appeared in the credit file of each open source product in our study. We

captured this data for multiple versions, creating a plot of the size of the credits file as the

system grows in size. Figure 4 displays the result. GnuMeric has a much smaller number

of credits file entries than other open source products of similar size. By contrast, Linux,

AbiWord and Gnucash all have similar patterns of contributor growth, with three to five

times as many credits file entries relative to their size.17

Figure 4: Number of Credits File Entries for Open Source Products

To capture the extent of each individual’s contributions we developed a script to

count how many times each unique name appeared in Gnumeric’s change log, providing

a proxy for the proportion of submissions attributable to each. For comparison, we

conducted the same analysis for an open source project that maintained similar data, and

for which the system had a low propagation cost: the Apache web server.18 The results

are shown in Figure 5. The contrast is clear. In Gnumeric, one individual accounts for

almost 40% of changes, the top four for ~70% and the top 9 for ~90%. In Apache, the

top individual accounts for less than 7% of changes and the top four less than 25%.

17 Note that MySQL dos not have a credits file of equivalent structure to the other open source products.
18 The propagation cost for the version of Apache web server closest in size to Gnumeric is less than 1%.

0

50

100

150

200

250

0 500 1000 1500

E
nt

rie
s

in
 C

re
di

ts
 F

ile

Size of System (Source Files)

Number of Credits File Entries versus System Size

Abiword
GnuCash
GnuMeric
Linux

Figur

In

patter

devel

Tabl

In

year.

incre

signif

In co

19 The
in part
other o
et al (2

re 5: Devel

n Table 3, w

rn of contrib

lopment is c

e 3: Develo

n Figure 6,

 This yield

ased substan

ficant declin

mbination, t

e tightly-integra
ticipation. Dev
open source pr
2006) argue th

oper Contr

we plot the G

butions is c

oncentrated

oper Contrib

we plot the

s a fascinati

ntially in th

ne. From a p

these data su

ated nature of G
velopers contri
rojects, in order
at open source

ibutions for

GnuMeric co

consistent th

within a few

butions for

e number of

ing insight.

he first year

peak of over

uggest that G

Gnumeric’s de
ibuting to Gnum
r to ensure thei
 projects requi

r GnuMeric

ontributor d

hroughout th

w key individ

GnuMeric

f unique con

 While the n

of the proj

r 50 people,

Gnumeric’s d

esign may a ma
meric need to u
ir changes do n
re an “architec

c (left) and A

data by year.

he project’s

duals.

by Year (19

ntributors no

number of c

ect, the tren

the number

development

ajor factor in ex
understand far
not affect other
cture for partici

Apache (rig

 This highl

life. In any

998-2004)

ted in the c

contributors

nd thereafter

falls to betw

t does not inv

xplaining the d
more of the sy

r parts. Indeed
ipation” in ord

1

ght)

lights that th

y given yea

hange log b

to GnuMeri

r was one o

ween 10-15.

volve a large

declining trend
ystem than in
d, MacCormack
der to succeed.

9

he

ar,

by

ic

of
19

e,

k

 20

distributed team. In fact, development contributions are highly concentrated. As a result,

the high propagation cost we observe lends further support to the mirroring hypothesis.

Figure 6: The Number of Unique Contributors to GnuMeric over time

6. Discussion
Our results make an important contribution to the academy in several ways. First,

they reveal substantial differences in the levels of modularity between software systems

of similar size and function. The pairs we examine vary by a factor of eight, in terms of

the potential for a design change to propagate to other system components. This result

has significant implications for those who must design such systems. It shows that a

product’s architecture is not wholly determined by function, but is also influenced by a

variety of other factors, including the characteristics of the organization within which

development occurs. The space of possible designs within which solutions are sought

appears to be constrained by the nature of the context within which search occurs.

In this respect, our study provides evidence to support the hypothesis that a product’s

architecture tends to mirror the structure of the organization within which it is developed.

In all of the pairs we examine, the open source product is more modular than that of a

product of comparable size developed by a smaller, more centralized team. Furthermore,

in the one open source product that possesses a relatively high propagation cost, the

anomaly can be explained. We show that the open source product is not the result of a

0

10

20

30

40

50

60

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

 21

large, distributed team. Rather, the pattern of development is more consistent with that of

a small co-located team. In combination, our results provide strong and compelling

evidence to support the mirroring hypothesis in our sample of matched pairs.

We should note that the mirroring phenomenon is consistent with two rival causal

mechanisms. The first is that designs evolve to reflect their development environments.

In closed source projects, dedicated teams employed by a single firm and located at a

single site develop the design. Problems are solved by face-to-face interaction, and

performance “tweaked” by taking advantage of the access that module developers have to

the information and solutions developed in other modules. Even if not an explicit

managerial choice, the design naturally becomes more tightly-coupled. By contrast, in

open source products, a large and widely distributed team develops the design. Face-to-

face communications are rare given most developers never meet, hence fewer

connections between the modules are established. The architecture that evolves is more

modular as a result of the inherent limitations on communication.

Alternatively, our observations may be a product of purposeful choices made by the

system architects. For closed source products, the sole aim is to develop a product that

maximizes performance at a point in time. The benefits of modularity, given the

competitive context, may not be viewed as significant. By contrast, for open source

products, the benefits of modularity are far greater. Without a modular design, there is

little hope that contributors can understand enough of a design to contribute to it, or

develop new features and fix defects without affecting many other parts of the system.

Open source products therefore need to be modular to both attract a developer

community and also to facilitate the work of this community. Our data can be explained

by either of these causal mechanisms. In practice, both are likely to work in parallel.

Our work suggests that managers of the innovation process must strive to understand

the influences on their design choices that stem directly from the way they are organized.

The challenge is that these influences are seldom explicit, but are a result of the complex

interplay between a firm’s normal problem solving and information processing routines,

and the space of designs that must be searched to arrive at a new solution. While a firm

can look backwards and see what kinds of designs it is predisposed to produce, it is hard

to look forward, and imagine what new designs might be possible. The commercial

 22

software managers we work with almost always think their designs are highly modular.

When shown these results however, they realize how much more can be achieved.

Our findings have important implications for development organizations given the

recent trend towards “open” innovation and the increased use of partners in R&D projects

(Chesbrough, 2003; Iansiti and Levian, 2004; MacCormack et al, 2007). In particular,

they imply that these new organizational arrangements will have a distinct impact on the

nature of the designs they produce, and hence may affect product performance in

unintended ways. In essence, our work suggests that R&D partnering choices, as well as

the division of tasks that these choices imply, cannot be managed independently of the

design process itself (von Hippel, 1990). Decisions taken in one realm will ultimately

affect performance in the other. Managers must understand the implications of these

organizational choices, in terms of the constraints they place on the solution space.

Several limitations of our study must be considered in assessing the generalizability

of results. First, our work is conducted in the software industry, a unique context given

that designs exist purely as information, and are not bounded by physical limits. Whether

these results will hold for physical products requires empirical confirmation. Second, our

sample comprises only five matched pairs, a limitation that stems from the lack of

successful open source products of sufficient size and complexity, and the difficulty in

obtaining commercial source code that firms regard as a form of intellectual property.

Third, we do not directly test the functional equivalence of the pairs we analyze, instead

relying on comparing products only of similar size. As a result, some of the differences

we observe may be associated with actual differences in the level of performance

between products. Finally, the pairs that we analyze were, in general, not developed at

the same time. Open source products tend to be developed only after a product category

reaches some level of maturity. Hence our results could be explained, in part, by learning

that occurs between the release of closed and open products.20

Our work opens up a number of areas for future study. With respect to methods, we

show that dependency analysis provides a powerful lens with which to examine product

architecture. While we focus on only a few types of dependency, our methods can be

20 Note that the learning that occurs is not based upon observing proprietary source code, since firms do not
typically release this. But greater knowledge about a product category in general might still allow open
source products to benefit from advances in design (i.e., be more modular for a given performance level).

 23

generalized to others, assuming that they can be identified from source code. With

respect to studies of modularity, our work provides visibility of a phenomena which was

previously hidden, and metrics with which to compare different products. This approach

promises to facilitate the study of a variety of important research questions that have

previously been answered only via purely descriptive or conceptual work.

For example, one reason we observe differences in product architecture relates to the

performance trade-offs that exist between architectures with different characteristics.

There are strong theoretical arguments why such trade-offs exist, yet little empirical

evidence to confirm their presence. Does greater modularity require trade-offs with other

aspects of performance? Intriguingly, our work suggests that, in practice, many designs

are not at the performance “frontier” where a trade-off exists, but lie below it due to

architectural inefficiencies or “slack” (MacCormack et al, 2006). If this is true, there

may be scope to improve a design along multiple dimensions without a performance

penalty. Exploring such issues via the measurement of architecture and product

performance will help reveal managerial strategies for moving designs towards the

frontier. And they will help us understand the trade-offs involved in moving along it.

Herbert Simon (1962) was the first to argue for the systematic study of design more

than 40 years ago, claiming, ‘…the proper study of mankind is the science of design.’

However, his ambitious vision for the field has proven elusive. The study of design has

been constrained by, among other things, limited theory, methods and tools that can deal

with the complexity of everyday designs, and more importantly, to make them visible,

allowing us to compare their structures. The methods we have developed promise to

open up a host of questions that, until now, were beyond our analytical capabilities.

A

M

G

S
D
P

APPENDIX A:

Matched Pair 1

Gnucash 1.8

Size = 466
Dependency De
Propagation Cos

: COMPARISO

1: Financial M

8.4

ensity = 1.3672%
st = 7.7428%

ON OF DSMs

Management Sof

%

FOR EACH PR

ftware

RODUCT PAI

MyBooks

Size = 471
Dependency
Propagation

IR

s

y Density = 2.28
Cost = 56.0609

863%
9%

24

 25

A

M

A

S
D
P

APPENDIX A:

Matched Pair 2

Abiword 0.9

Size = 841
Dependency De
Propagation Cos

: COMPARISO

2: Word Proce

9.1

ensity = 0.51832
st = 8.2524%

ON OF DSMs

essing Software

2%

FOR EACH PR

e

RODUCT PAI

OpenOffi

Size = 790
Dependency
Propagation

IR

ficeWrite 1.0

y Density = 1.02
Cost = 41.7699

0

276%
9%

26

A

M

G

S
D
P

APPENDIX A:

Matched Pair 3

GnuMeric 1

Size = 450
Dependency De
Propagation Cos

: COMPARISO

3: Spreadsheet

.4.2

ensity = 1.6119%
st = 23.6222%

ON OF DSMs

t Software

%

FOR EACH PRRODUCT PAI

OpenOffi

Size = 532
Dependency
Propagation

IR

ficeCalc 1.0

y Density = 1.37
Cost = 54.3071

773%
1%

27

A

M

L

S
D
P

APPENDIX A:

Matched Pair 4

Linux 2.6.8.

Size = 6675
Dependency De
Propagation Cos

: COMPARISO

4a: Operating

.1

ensity = 0.11118
st = 7.1827%

ON OF DSMs

System (Linux

8%

FOR EACH PR

x versus Solaris

RODUCT PAI

s)

OpenSola

Size = 12080
Dependency
Propagation

IR

aris 35

0
y Density = 0.07

Cost = 22.5903
7714%
3%

28

A

M

L

S
D
P

APPENDIX A:

Matched Pair 4

Linux 2.1.32

Size = 1032
Dependency De
Propagation Cos

: COMPARISO

4b: Operating

2

ensity = 0.56402
st = 7.2139%

ON OF DSMs

System (Linux

2%

FOR EACH PR

x versus XNU)

RODUCT PAI

XNU 123

Size = 994
Dependency
Propagation

IR

3.5

y Density = 0.69
Cost = 24.8286

9836%
6%

29

A

P

M

S
D
P

APPENDIX A:

Pair 5: Databas

MySQL 3.2

Size = 465
Dependency De
Propagation Cos

: COMPARISO

se Software

0.32a

ensity = 0.94485
st = 11.3049%

ON OF DSMs

5%

FOR EACH PRRODUCT PAI

BerkeleyD

Size = 344
Dependency
Propagation

IR

DB 4.3.27

y Density = 1.87
Cost = 43.2311

794%
1%

30

 31

References
Baldwin, Carliss Y. and Kim B. Clark (2000). Design Rules, Volume 1, The Power of Modularity, Cambridge MA:
MIT Press.

Banker, Rajiv D. and Sandra A. Slaughter (2000) "The Moderating Effect of Structure on Volatility and
Complexity in Software Enhancement," Information Systems Research, 11(3):219-240.

Banker, Rajiv D., Srikant Datar, Chris Kemerer, and Dani Zweig (1993) "Software Complexity and Maintenance
Costs," Communications of the ACM, 36(11):81-94.

Burns, T., and G.M. Stalker (1961) The Management of Innovation, Tavistock Publications, London, England.

Cataldo, Marcelo, Patrick A. Wagstrom, James D. Herbsleb and Kathleen M. Carley (2006) "Identification of
Coordination Requirements: Implications for the design of Collaboration and Awareness Tools," Proc. ACM Conf.
on Computer-Supported Work, Banff Canada, pp. 353-362

Chesbrough, Henry. (2003) Open Innovation, Harvard Business School Press, Boston MA.

Conway, M.E. (1968) "How do Committee's Invent," Datamation, 14 (5): 28-31.

Dellarocas, C.D. (1996) "A Coordination Perspective on Software Architecture: Towards a design Handbook for
Integrating Software Components," Unpublished Doctoral Dissertation, M.I.T.

Dhama, H. (1995) "Quantitative Models of Cohesion and Coupling in Software," Journal of Systems Software,
29:65-74.

Dibona, C., S. Ockman and M. Stone (1999) Open Sources: Voices from the Open Source Revolution, Sebastopol,
CA: O’Reilly and Associates.

Eick, Stephen G., Todd L. Graves, Alan F. Karr, J.S. Marron and Audric Mockus (1999) "Does Code Decay?
Assessing the Evidence from Change Management Data," IEEE Transactions of Software Engineering, 27(1):1-12.

Eppinger, S. D., D.E. Whitney, R.P. Smith, and D.A. Gebala, (1994). "A Model-Based Method for Organizing
Tasks in Product Development," Research in Engineering Design 6(1):1-13

Gokpinar, B., W. Hopp and S.M.R. Iravani (2007) "The Impact of Product Architecture and Organization Structure
on Efficiency and Quality of Complex Product Development," Northwestern University Working Paper.

Halstead, Maurice H. (1977) Elements of Software Science, Operating, and Programming Systems Series Volume
7. New York, NY: Elsevier

Henderson, R., and K.B. Clark (1990) "Architectural Innovation: The Reconfiguration of Existing Product
Technologies and the Failure of Established Firms," Administrative Sciences Quarterly, 35(1): 9-30.

Howison, J. & Crowston K (2004) "The perils and pitfalls of mining SourceForge," Proceedings of Mining
Software Repositories Workshop, International Conference on Software Engineering, May 2004.

Iansiti, M. and R. Levian (2004) The Keystone Advantage, Harvard Business School Press, Boston, MA.

Lawrence, Paul R. and Jay W. Lorsch (1967) Organization and Environment, Harvard Business School Press,
Boston, MA.

Lopes, Cristina V. and Sushil K. Bajracharya (2005) “An Analysis of Modularity in Aspect-oriented Design,” in
AOSD ’05: Proceedings of the 4th International Conference on Aspect-oriented Software Development, ACM
Press, pp. 15-26.

MacCormack, Alan D. (2001). “Product-Development Practices That Work: How Internet Companies Build
Software,” Sloan Management Review 42(2): 75-84.

MacCormack, Alan, John Rusnak and Carliss Baldwin (2006) “Exploring the Structure of Complex Software
Designs: An Empirical Study of Open Source and Proprietary Code,” Management Science, 52(7): 1015-1030.

MacCormack, Alan, John Rusnak and Carliss Baldwin (2007) "The Impact of Component Modularity on Design
Evolution: Evidence from the Software Industry," Harvard Business School Working Paper, 08-038.

 32

MacCormack, Alan, Theodore Forbath, Patrick Kalaher and Peter Brooks (2007) “Innovation through
Collaboration: A New Source of Competitive Advantage,” Harvard Business School Working Paper 07-079.

McCabe, T.J. (1976) "A Complexity Measure," IEEE Transactions on Software Engineering, vol. 2, no. 4,
Jul/Aug, pp. 308-320

Mockus, Audris, Roy T. Fielding and James D. Herbsleb (2002) "Two Case Studies of Open Source Software
Development: Apache and Mozilla," ACM Transactions on Software Engineering and Methodology, 11(3):309-
346.

Murphy, G. C., D. Notkin, W. G. Griswold, and E. S. Lan. (1998) An empirical study of static call graph
extractors. ACM Transactions on Software Engineering and Methodology, 7(2):158--191

O'Reilly, T. (1999) Lessons from Open Source Software Development, Comms. ACM 42(4) 33-37.

Parnas, David L. (1972b) "On the Criteria to Be Used in Decomposing Systems into Modules," Communications of
the ACM 15: 1053-58.

Paulson, James W., Giancarlo Succi and Armin Eberlein (2003) "An Empirical Study of Open-Source and Closed-
Source Software Products," IEEE Transactions on Software Engineering, 30(4):246-256.

Raymond, Eric S. (2001) The Cathedral and the Bazaar O’Reilly & Associates, Inc., Sebastopol, CA.

Rivkin, Jan W. and Nicolaj Siggelkow (2007) "Patterned Interactions in Complex Systems: Implications for
Exploration," Management Science, 53(7):1068-1085.

Rusovan, Srdjan, Mark Lawford and David Lorge Parnas (2005) "Open Source Software Development: Future or
Fad?" Perspectives on Free and Open Source Software, ed. Joseph Feller et al., Cambridge, MA: MIT Press.

Sanchez, Ronald A. and Joseph T. Mahoney (1996). “Modularity, flexibility and knowledge management in
product and organizational design”. Strategic Management Journal, 17: 63-76, reprinted in Managing in the
Modular Age: Architectures, Networks, and Organizations (G. Raghu, A. Kumaraswamy, and R.N. Langlois, eds.),
Blackwell, Oxford/Malden, MA.

Sanderson, S. and M. Uzumeri (1995) "Managing Product Families: The Case of the Sony Walkman," Research
Policy, 24(5):761-782.

Schach, Stephen R., Bo Jin, David R. Wright, Gillian Z. Heller and A. Jefferson Offutt (2002) "Maintainability of
the Linux Kernel," IEE Proc. Software, Vol. 149. IEE, Washington, D.C. 18-23.

Schilling, Melissa A. (2000). “Toward a General Systems Theory and its Application to Interfirm Product
Modularity,” Academy of Management Review 25(2):312-334, reprinted in Managing in the Modular Age:
Architectures, Networks, and Organizations (G. Raghu, A. Kumaraswamy, and R.N. Langlois, eds.), Blackwell,
Oxford/Malden, MA.

Selby, R. and V. Basili (1988) "Analyzing Error-Prone System Coupling and Cohesion," University of Maryland
Computer Science Technical Report UMIACS-TR-88-46, CS-TR-2052, June 1988.

Sharman, D. and A. Yassine (2004) "Characterizing Complex Product Architectures," Systems Engineering
Journal, 7(1).

Shaw, Mary and David Garlan (1996). Software Architecture: An Emerging Discipline, Upper Saddle River, NJ:
Prentice-Hall.

Simon, Herbert A. (1962) “The Architecture of Complexity,” Proceedings of the American Philosophical Society
106: 467-482, repinted in idem. (1981) The Sciences of the Artificial, 2nd ed. MIT Press, Cambridge, MA, 193-
229.

Sosa, Manuel, Steven Eppinger and Craig Rowles (2003) "Identifying Modular and Integrative Systems and their
Impact on Design Team Interactions", ASME Journal of Mechanical Design, 125 (June): 240-252.

Sosa, Manuel, Steven Eppinger and Craig Rowles (2004) "The Misalignment of Product Architecture and
Organizational Structure in Complex Product Development," Management Science, 50(December):1674-1689

Sosa, Manuel, Steven Eppinger and Craig Rowles (2007) "A Network Approach to Define Modularity of

 33

Components in Complex Products," Transactions of the ASME Vol 129: 1118-1129

Spear, S. and K.H. Bowen (1999) "Decoding the DNA of the Toyota Production System," Harvard Business
Review, September-October.

Steward, Donald V. (1981) “The Design Structure System: A Method for Managing the Design of Complex
Systems,” IEEE Transactions on Engineering Management EM-28(3): 71-74 (August).

Sullivan, Kevin, William G. Griswold, Yuanfang Cai and Ben Hallen (2001). “The Structure and Value of
Modularity in Software Design,” SIGSOFT Software Engineering Notes, 26(5):99-108.

Teece, David J. (1986) "Profiting from Technological Innovation: Implications for Integration, Collaboration,
Licensing and Public Policy," Research Policy, 15: 285-305.

Ulrich, Karl (1995) “The Role of Product Architecture in the Manufacturing Firm,” Research Policy, 24:419-440,
reprinted in Managing in the Modular Age: Architectures, Networks, and Organizations, (G. Raghu, A.
Kumaraswamy, and R.N. Langlois, eds.) Blackwell, Oxford/Malden, MA.

Utterback, James M (1994). Mastering the Dynamics of Innovation, Harvard Business School Press, Boston, MA.

von Hippel, Eric (1990) "Task Partitioning: An Innovation Process Variable," Research Policy 19: 407-18.

von Hippel, Eric and Georg von Krogh (2003) "Open Source Software and the 'Private Collective' Innovation
Model: Issues for Organization Science," Organization Science, 14(2):209-223.

Warfield, J. N. (1973) "Binary Matricies in System Modeling," IEEE Transactions on Systems, Management, and
Cybernetics, Vol. 3.

Williamson, Oliver E. (1985). The Economic Institutions of Capitalism, New York, NY: Free Press.

