
1

Empirical Analysis of Software Refactoring Motivation and Effects
By

Sean M. Gilliland
B.S. Computer Science, University of Nevada, Reno, 2004

Submitted to the System Design and Management Program
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management

at the

Massachusetts Institute of Technology
February 2015

© 2015 Sean M. Gilliland. All Rights Reserved

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic
copies of this thesis document in whole or in part in any medium now known or hereafter created.

Signature of Author

System Design and Management Program
January 30, 2015

Certified by

Dr. Michael A. M. Davies
Thesis Supervisor

Senior Lecturer, MIT Engineering Systems Division

Certified by
Dr. Carliss Y. Baldwin

Thesis Supervisor
William L. White Professor of Business Administration, Harvard Business School

Certified by

Dr. Alan D. MacCormack
Thesis Supervisor

MBA Class of 1949 Adjunct Professor of Business Administration, Harvard Business School

Certified by
Dr. Daniel Sturtevant

Thesis Supervisor
Research Associate, Harvard Business School

Accepted by

Patrick Hale
Director

System Design and Management Program
(Intentionally Left Blank)

2

3

Empirical Analysis of Software Refactoring Motivation and Effects

By
Sean M. Gilliland

Submitted to the System Design and Management Program on January 30, 2015

in Partial Fulfillment of the Requirements for the Degree of Master of
 Science in Engineering and Management

ABSTRACT

As complexity and levels of technical debt within software systems increase over time the
incentive of an organization to refactor legacy software likewise increases. However, the
opportunity cost of such refactoring in terms of engineering time and monetary investment have
proven difficult to effectively trade against the long term benefits of such refactoring. The
research investigates the empirical effects of a multi-year refactoring effort performed at a
world-leading software development organization. DSM architectural representations of
software pre- and post-refactoring were compared using core-periphery analysis, and various
quantitative metrics were identified and compared to identify leading indicators of refactoring.
The research finds several uniquely identifying properties of the area of the software system
identified for refactor, and performs a comparison of these properties against the architectural
complexity of those modules. The paper concludes with suggestions for additional areas of
research.

Thesis Supervisor: Dr. Michael A. M. Davies
Title: Senior Lecturer, MIT Engineering Systems Division

Thesis Supervisor: Dr. Carliss Y. Baldwin
Title: William L. White Professor of Business Administration, Harvard Business School

Thesis Supervisor: Dr. Alan D. MacCormack
Title: MBA Class of 1949 Adjunct Professor of Business Administration, Harvard Business
School

Thesis Supervisor: Dr. Daniel Sturtevant
Title: Research Associate, Harvard Business School

4

ACKNOWLEDGEMENTS

 This thesis, and indeed the entirety of my time at MIT, could not have been possible

without the support of many individuals. First, thank you to my wife Angel, whose unwavering

support and love kept me focused and gave me the courage to achieve one of my lifelong

dreams. Without you I would not be where and who I am today.

 Thank you to my family, friends, and co-workers, both at home and in Boston, whose

consistent support kept me focused and motivated to overcome any and all obstacles.

 Thank you to my thesis advisor, Dr. Michael Davies and Dr. Daniel Sturtevant for giving

me the opportunity to perform meaningful research in an area I find personally and

professionally compelling.

 Thank you to Drs. Allan MacCormack and Carliss Baldwin for their guidance and insight

while I worked through this research.

 And finally, thank you to the SDM program and MIT staff and professors for the

opportunity to study with and learn from some of the most talented and engaging people in the

world.

5

TABLE OF CONTENTS

ABSTRACT .. 3

ACKNOWLEDGEMENTS .. 4

TABLE OF CONTENTS .. 5

LIST OF FIGURES .. 8

LIST OF TABLES .. 9

Chapter 1 Introduction .. 10

1.1 Background and Motivation ... 10

1.2 Research Scope ... 11

1.3 Research Objectives .. 13

1.4 Organization of Thesis .. 15

1.5 Data of Thesis ... 17

Chapter 2 Literature Review ... 17

2.1 What is Modularity? ... 17

2.2 Modularity in Software Systems and Organizations .. 18

2.3 Software Refactoring Costs and Benefits ... 20

2.4 DSM as a Tool for Software Analysis .. 22

2.5 Core-Periphery Analysis of Software ... 22

Chapter 3 Software and Organization under Analysis .. 25

3.1 Introduction and History ... 25

6

3.2 Product versus Organizational Architecture ... 27

3.2.1 Impact of Regulation .. 27

3.2.2 Mirroring of Organizational and Product Architectures .. 28

3.2.3 Strategic Motivation for Increased Modularization ... 29

3.2.4 Impacts of Increased Inter-Module Dependence ... 30

Chapter 4 Core-Periphery Software Analysis ... 33

4.1 Introduction ... 33

4.2 Message Passing and Augmentation of Analysis ... 34

4.3 Pre-Refactoring Analysis .. 35

4.3.1 Base Core-Periphery Analysis ... 35

4.3.2 Extended Core-Periphery Analysis .. 37

4.3.3 Extended Core-Periphery Analysis with Message Passing ... 38

4.4 Post-Refactoring Analysis .. 40

4.5 Game-to-Foundation Refactoring ... 40

4.6 Summary ... 42

Chapter 5 Quantitative Impact of Refactoring .. 43

5.1 Introduction ... 43

5.2 Developer Workflow .. 44

5.3 Data Gathering Methodology ... 45

5.4 Statistics of Refactoring and Complexity ... 46

5.5 Summary of Results .. 48

7

5.5.1 Churn.. 48

5.5.2 Size and Complexity .. 48

5.5.3 Defects ... 49

5.5.4 New Development ... 49

5.6 Multivariate Regression Analysis ... 50

5.6.1 Pre-Refactoring Defect Density and Related Software Metrics 50

5.6.2 Delta Analysis of Defect Density, Cyclomatic Complexity and Related Metrics 52

5.7 Discussion of Results .. 53

5.7.1 Attributes of Modules Targeted for Refactor ... 54

5.7.2 Impact of Refactoring on Software Metrics ... 56

Chapter 6 Conclusions and Future Work .. 58

6.1 Future Work .. 61

6.2 Concluding Remarks ... 63

Chapter 7 Bibliography ... 64

Appendix A ... 66

Before Refactoring .. 66

After Refactoring .. 67

8

LIST OF FIGURES

Figure 1 High-level Module Relationship of System under Analysis .. 11

Figure 2 Software Dependency Structure using Message Passing ... 13

Figure 3 Application of the Modular Operators on a System ... 19

Figure 4 Evolution of the Foundation as a Platform ... 26

Figure 5 Product and Organizational Evolution over Time .. 29

Figure 6 Rate of Game Development over Time .. 30

Figure 7 Game Development Metrics over Time ... 31

Figure 8 Pre-Refactoring Core-Periphery Analysis using Classic MacCormack-Baldwin

Relationships ... 36

Figure 9 Extended Pre-Refactoring Core-Periphery Analysis .. 38

Figure 10 Pre-Refactoring Core-Periphery Analysis including Message Passing 39

Figure 11 Post-Refactoring Core-Periphery Analysis Progression .. 40

Figure 12 Baldwin & Clark Laptop System Modularization .. 41

Figure 13 Pre- and Post-Refactoring System Modularization .. 42

Figure 14 New Feature and Defect Workflow .. 45

Figure 15 Extended Core-Periphery Analysis of Before-Refactoring System and Game 66

Figure 16 Extended Core-Periphery Analysis of After-Refactoring System and Game 67

9

LIST OF TABLES

Table 1 Summary of Game Development Measurements over Time ... 32

Table 2 Summary of Dependence Analysis Methodologies ... 43

Table 3 Comparison of Metrics and Significance Pre- and Post-Refactoring 47

Table 4 Regression Analysis of Software Metrics to Defect Density Prior to Refactoring 51

Table 5 Regression Analysis of Refactored Metrics to Defects per File 52

Table 6 Regression Analysis of Refactored Metrics to Cyclomatic Complexity 53

Table 7 Core-Periphery Distribution of Files ... 54

Table 8 Summary of Hypotheses and Findings .. 59

Table 9 Summary of Lead Indicators of Refactoring and Improvements Realized by Refactoring

... 60

10

Chapter 1 Introduction

1.1 Background and Motivation

As software ages, is maintained, corrected, and expanded upon by developers both experienced

and new to its intent, it is natural for the relationships between the various software modules to

increase in complexity. As function is added, new form is likewise added, and relationships

between previously separate modules are established, adding to the overall tangle of the system,

unless strictly managed. This strict management of architecture is difficult to value – after all the

architecture of a software system is not what is experienced by the user, only the function that

the architecture facilitates – so over time emphasis is naturally placed on creating new function

at the cost of the long term health of the system’s architecture. This trade is referred to in

software development industries as “technical debt” [1], and functions as any debt does. New

function implemented today comes at a cost in terms of maintenance effort, engineering time,

flexibility, and an increase in the complexity of the software system in the future. Unless this

debt is continually serviced the software system eventually becomes rigid, difficult to extend and

maintain, with modifications in one area of the system inexplicably affecting other, unrelated

areas. Other less tangible costs include decreases in engineer morale, and increases in stress and

turnover [2] making complex software systems both physically and mentally taxing.

The activity of refactoring software is one way to pay down technical debt and to control

complexity. By investing time and engineering resources in the activity of software maintenance

flexibility may be maintained, tightly-coupled components serving independent needs may be

safely divided, and new features and defects are effectively isolated from disrupting other areas

of the system. All of these are desirable attributes however their return on investment is elusive

to gauge. Traditional methods of measurement – cost and time savings – tend to fail as a means

11

of measuring gains in software quality due to refactoring. Unlike physical products which may

be repeatedly replicated to prove benefits of improvement all software projects are unique,

making metrics that apply to one system foreign to another. This leads to a challenge and the

crux of this research – given a multi-year software refactoring effort at a world-leading software

development organization this research explores the application of Core-Periphery analysis to

isolate areas of refactoring, and explore benefits along the edges of functional division.

1.2 Research Scope

The primary objective of this research is to apply and evaluate Core-Periphery analysis of a

mature software system as an effective means to quantify the value of increased modularity

through refactoring. The software under analysis is a primarily C++-based system intended to

function in a highly regulated industry, and is comprised of various modules with varying

degrees of coupling. For the purposes of this study the software system can be understood as

being comprised of a highly structured module intended primarily to meet strict operating

regulations – Module A – and a highly flexible module intended primarily to provide a variety of

front-end experiences to the user – Module B. Figure 1 illustrates this relationship.

Figure 1 High-level Module Relationship of System under Analysis

12

Over the years from 2011-2014 this system has been split into two product branches, the first

representing a high degree of direct coupling between Module A and Module B, and the second

representing a decoupling of the primary modules with a well-defined, controlled interface.

These branches have evolved independently of one another with function implemented in both

using separate methods. This symmetry provides a unique opportunity to analyze the benefits

and drawbacks of the additional modularity following refactoring. Metrics for each file in each

system will be analyzed, including a Core-Periphery dependency analysis as well as a

comparison of critical attributes such as date and time of modification, number of files required

to add new features or correct defects, and number of changes within a file necessary for the

same.

The final aspect of the research is an exploration of methods to augment Core-Periphery analysis

in order to capture dependencies between files via message passing. The system under analysis

makes extensive use of message passing between its component processes, however classic static

analysis is unlikely to capture these dependencies accurately. Instead, such analysis is likely to

indicate significant dependence on files that facilitate this communication rather than the

communicating files themselves. Figure 2 illustrates this behavior.

13

Figure 2 Software Dependency Structure using Message Passing

Finally, limitations and advantages of the research methodology are presented, including

recommendations for future research.

1.3 Research Objectives

The primary objective of this research is to evaluate and quantify the benefits and drawbacks of

software refactoring within a world-leading software organization. Core-Periphery analysis of

14

the system under study both pre- and post- refactoring will be used to isolate and analyze the

primary area of refactoring – a formalized interface decoupling a highly stable and regulated

software module from a highly fluid and less regulated module. Due to the multi-disciplinary

nature of the software system all quantitative data is augmented using qualitative interviews with

individuals experienced with pre- and post-refactoring to determine both measurable and

perceived value of refactoring.

These data will be evaluated to confirm or refute the following research hypotheses. The first

four hypotheses test metrics intended to identify motivating factors in the pre-refactoring

software system. The second four hypotheses test these same metrics to measure the impact of

refactoring in the post-refactoring software system.

• H1 – We investigate the relationship between the number of components that directly or

indirectly depend on a module (Visibility Fan-In, VFI) [2], and the number of

components that are directly or indirectly depended on by a module (Visibility Fan-Out,

VFO) [2] within the system as it correlates to that module being targeted for refactoring;

we expect the VFI characteristic of refactored modules to be elevated in the area of

refactor.

• H2 – We investigate the relationship between the defect density within the system as it

correlates to refactoring; we expect modules with increased defect density to be a factor

for targeted refactoring within the system.

• H3 – We investigate the relationship between McCabe’s Cyclomatic Complexity [22]

within the system as it correlates to refactoring; we expect modules with increased

cyclomatic complexity to be a statistically significant factor for targeted refactoring

within the system.

15

• H4 – We investigate the relationship between new feature development within the system

as it correlates to refactoring; we expect modules with lower rate of new feature

development to be a factor for targeted refactoring within the system.

• H5a – We investigate the impact of refactoring on VFI and VFO within the system; we

expect refactoring to reduce these values, moving refactored modules toward the

Periphery from the Core.

• H6 – We investigate the impact of refactoring on defect density values within refactored

modules as compared to the remainder of the system; we expect refactoring to decrease

this metric in the area of refactor.

• H7 – We investigate the impact of refactoring on McCabe’s cyclomatic complexity

values within refactored modules as compared to the remainder of the system; we expect

refactoring to decrease this metric in the area of refactor.

• H8 – We investigate the impact of refactoring on new feature development within

refactored modules as compared to the remainder of the system; we expect refactoring to

increase this metric in the area of refactor.

1.4 Organization of Thesis

Chapter 2 of this thesis reviews the existing literature of modularity and its effects on software

systems, software refactoring costs and benefits, design structure matrices as tools to represent

and analyze software structure, and Core-Periphery analysis of software. This review is

followed by a discussion of the DSM framework as it has been previously applied to Core-

Periphery analysis at Ironbridge Technology. Focus is placed on the application of the Core-

Periphery method to analyze the tangible and intangible impact of complex software

architecture, as well as its potential to isolate and compare specific software modules between

systems.

16

Chapter 3 discusses the software development organization and software system under analysis,

providing a general overview of the software and organizational architecture. This architecture

is then broken down along lines of increasing regulatory requirements, and overlaid with the

software organization’s structure to identify ideal locations of increased modularity across both

product and organizational boundaries. This analysis is then performed using the organization’s

refactored software architecture and re-compared.

Chapter 4 introduces Core-Periphery analysis of the software system both pre- and post-

refactoring, expressing the software’s internal dependencies in DSM form. Due to its extensive

application, the software concept of message passing and its drawbacks to generalized static

dependence analysis is then discussed. A solution to this drawback is proposed, implemented,

and then utilized to augment the Core-Periphery analysis with additional software dependencies

that may have previously been overlooked. This augmented view of both systems serves as the

basis for further analysis, with the area identified in Chapter 3 as the primary focus.

Chapter 5 provides an overview and analysis of gathered meta-data for each file in both views of

the system. This data is gathered directly from the software organization’s version control

systems, and provide views of various qualities of different areas of the software systems. These

metrics include code rate of change, activity of developers at all experience levels, and number

of file modifications necessary to implement new features and correct defects. This information

is overlaid with Core-Periphery analysis from Chapter 4 to visualize these data across different

module categories.

17

Chapter 6 provides a final discussion of research findings, beyond answering the primary

research questions. Advantages and disadvantages of the framework are discussed, and areas of

future work are identified that could strengthen the analysis.

1.5 Data of Thesis

Data for the background literature research is obtained from publically available published works

by various experts in their respective fields. Data used to analyze the software system pre- and

post-refactoring has been directly queried from the software organization’s version control

systems, defect tracking systems, and project tracking systems; these data reflect the entire

recorded history of each file in the system. Exact measurements are not shared within this

research, however conclusions and derived data visualizations, tables, and charts are included.

High-level software and organizational architecture are derived from software design

documentation and organizational charts shared by the software organization, and have been

anonymized in accordance with an agreement with the organization. Detailed software

architecture of both system views is derived using Core-Periphery tools developed by Dr. Dan

Sturtevant and Scientific Tool’s Understand software package.

Chapter 2 Literature Review

2.1 What is Modularity?

Before a discussion of the impact of modularity on complex systems, it is important to establish

what constitutes modularity, and how it can be applied to the software under analysis. It is well

established that modularity is a desirable attribute, a useful tool for managing complexity, and is

actively sought by organizations and engineers both as good design. Clark and Baldwin [3]

describe a system as “modular” when it exhibits the attributes of interdependence within and

18

independence across structurally independent units. These independent units, and the

relationships between them together form the larger system. Sanchez and Mahoney [4] describe

modularity as a special form of design creating high degrees of independence between modules

through the use of standardized component interface specifications, with these interfaces

specifying the inputs and outputs linking the components of the design. Gauthier and Ponto [5]

similarly describe a module as a separate and distinct system component whose inputs and

outputs are well-defined, and whose independence may be used to isolate errors and deficiencies

from the remainder of the system. For the purposes of this study a system is considered to be

modular if it exhibits the qualities of high internal cohesion and low external coupling, with well-

defined interfaces that establish expected inputs and outputs with other modules.

2.2 Modularity in Software Systems and Organizations

Structure and its impact within both software systems and organizations has been the subject of

discussion for many years and by many authors. Organizations and software systems are

particularly well suited to modular structure due to their relatively similar logical compositions –

organizational structure facilitates the completion of tasks by “quasi-independent divisions” just

as software systems produce value through the coordination of modules of routines to create

customized applications [4]. Developers of software systems benefit from and actively seek

increased modularity in order to facilitate flexibility and adaptability, and achieve this through

minimization of coupling between modules, effectively encapsulating information within each

module; this encapsulation not only allows individual modules to be constructed without specific

knowledge of the internal workings of other modules, but allows modules to be replaced,

reinserted, or further decomposed without interrupting the function of the overall system [4].

19

By isolating and maintaining well-structured interfaces between modules the system is capable

of transformation in several dimensions, each applicable to a different system need. Baldwin and

Clark [3] identified six distinct operations which leverage the well-established interfaces and

independent nature of modules –augmentation, exclusion, substitution, splitting, inversion, and

porting. Augmentation and exclusion add and remove modules respectively, substitution

replaces one module with another, splitting divides and replaces a single module with multiple

modules, inversion re-encapsulates a portion of a module and moves it higher in the design

hierarchy, and porting describes the act of modifying a module’s interface to facilitate

compatibility in more than one system. A modular system is thus capable of adaptation and

reconfiguration as business and design needs change over time. From Design Rules: The Power

of Modularity [3] p. 143, Figure 3 illustrates the application of these modular operators.

Figure 3 Application of the Modular Operators on a System

In an analysis of open source software, MacCormack et al. [6] establish a method of analysis

utilizing design structure matrices to measure the relative degrees of modularity within a system

by measuring the cost of dependence between elements. They establish two primary costs –

propagation cost, which assumes the cost of dependence between elements is constant regardless

of logical distance between modules, and clustered cost, which assumes the cost of dependence

20

differs depending on whether elements are contained within the same or different clusters. In

this way it is possible to establish a level of relative modularity of a system, and empirically

calculate where modules (intended and otherwise) exist within a system’s structure.

2.3 Software Refactoring Costs and Benefits

Mens and Tourwe [7], describe the need for evolution and adaptation as an “intrinsic property of

software.” It is an activity that controls complexity of software as it ages, is modified, extended,

and maintained by the myriad developers involved in even the simplest of software development.

Because it is an accepted, natural activity, the primary question when facing refactoring is not if

it is required, but how and where to refactor the software for greatest effect. While the activity

of refactoring can be broken down into distinct activities, the primary goal of software

refactoring remains as improving the internal structure of the code without altering its external

behavior [8].

The goals of software refactoring immediately lend themselves well to the concept of

modularity. Through encapsulation and the establishment of well-defined interfaces the external

behavior of a software module can be verified as constant, while the internal components of the

module may be effectively modified without knowledge of or impact to the internal workings of

other modules. Because of this relationship, highly modular systems are not only adaptable as

discussed in Section 2.2, but lend themselves well to internal evolution and iteration, thus

effectively facilitating the natural software development activity of refactoring. Baldwin and

Clark [3] describe system evolution as a value-seeking process in which architecture is modified

in order to best fit system needs as they change.

21

Many tools have been applied in the past to software refactoring in an effort to best identify

points of improvement, support buy-versus-build decisions, determine sub-component quality

analysis, test resource allocation, and identification of error-prone components. Coleman, et al.

in a 1994 IEEE article [9] identified and evaluated five of these tools – all of which

quantitatively measured software maintainability in relation to primary software metrics, and

were applied by major software organizations as simple measures of maintainability consumed

by “line” engineers to effect improvement. These tools effectively identified problematic areas

of the code base that aligned with the expert’s intuition of where difficulties could be located,

lending credence to their opinions. Importantly, these tools could be applied at differing levels

of system decomposition – component, sub-system, and whole-system – in order to provide

system-level insight.

However, in spite of the tools and general support for the benefits of software refactoring

relatively few empirical studies have been performed to evaluate the value and cost of software

refactoring. The outcome of those studies that have been performed can at times be

contradictory – for instance, Kim et al. [10] note that while Weissberger and Diehl [11] find that

high levels of refactoring are often followed by high levels of introduced defects, Ratzinger et al

[12] find that increased levels of refactoring actually have the opposite effect. In their analysis

of the impact of refactoring at Microsoft, Kim et al. [10] identify several roadblocks that

contribute to the cost of refactoring, including regression defects, code churn, merge conflicts,

resource conflicts with other projects, additional overhead for code reviews and reviewers, and

the risk of committing too much engineering time or over engineering the system. While

engineers intuitively understand the benefits of refactoring, these contradictory findings serve to

22

complicate the already difficult task of identifying where and when to refactor for the most

benefit.

2.4 DSM as a Tool for Software Analysis

The Design Structure Matrix (DSM) has proven a useful analysis tool for a variety of

applications in both organizational and technical systems. DSMs represent modules and their

relational data in a two-dimensional grid format, providing an effective method of categorizing

the relationships between individual components as well as component groups. Components

with high levels of coupling can be effectively clustered, and components on which a high

number of other components are dependent (or vice versa) stand out clearly using this kind of

analysis. Originally introduced by Steward in 1981 [13], it has been applied extensively in the

intervening years by a variety of managerial and technical experts [14, 15, 16]. MacCormack et

al [6] note that one of the primary benefits of DSM analysis is its ability to highlight system

modularity based not only on the number of dependencies between components, but also based

on the pattern of those dependencies – this provides insight into the actual architecture of the

analyzed system.

2.5 Core-Periphery Analysis of Software

Dr. Dan Sturtevant’s 2013 doctoral thesis, System Design and the Cost of Architectural

Complexity [2], analyzes the physical and psychological cost incurred by architectural

complexity finding that measuring architectural complexity is equivalent (and in some cases

superior to) traditional methods of measuring software complexity. One of the primary analysis

methods applied in this research is MacCormack and Baldwin’s Core-Periphery analysis of

architectural DSM diagrams [2, 17], which captures the level of coupling between any given file

and the rest of the system. Sturtevant describes this method in the following five steps:

23

• Capture a network representation of a software product’s source-code using dependency

extraction tools

• Find all indirect paths in the network by computing the graph’s transitive closure

• Assign two visibility scores to each file that represent its reachability from other files or

ability to reach other files in the network

• Use these visibility scores to classify each file as one of four types: peripheral, utility,

control, or core

This method derives the actual architecture of a software system by extracting and analyzing the

following software dependencies:

• From the site of a function call to the site of the function’s definition

• From the site of a class method invocation to the site of the class method’s definition

• From the site of a class method invocation to the site of the class definition

• From the site of a subclass definition to the site of the parent class definition

• From the site of a non-trivial user-defined type instantiation to the site where that type is

defined

These values are then used to categorize files into one of four types:

• Peripheral files share the characteristic of low incoming and outgoing dependencies.

These are the most isolated files within the system.

• Shared files do not depend on many other files, but are depended on by a high number of

files. These files provide functionality used throughout the system.

• Control files depend on many other files, but are not highly depended on. These files

coordinate behavior provided elsewhere in the system.

24

• Core files share the characteristic of high incoming and outgoing dependencies. These

files represent areas of high coupling within the system, and are thus the most difficult to

develop and maintain.

Sturtevant’s analysis found mathematically significant correlation between the classification of a

file / module, and the productivity and general mental health of those engineers contributing to

that portion of the software. Increased architectural complexity resulted in more modifications

necessary to effect change, both in correcting defects and adding new features, as well as an

increase in defect density, a decrease in average length of tenure, and a general decrease in

engineer productivity. Each of these metrics directly impacts both quality and quantity of

software produced, leading to significant motive for engineering organizations to control the

levels of architectural complexity in their products, in addition to more traditional complexity

metrics such as McCabe cyclomatic complexity [2, 22].

The ability to not only effectively facilitate refactoring, but to also effectively identify areas of

the code base expected to benefit the most from refactoring could prove to be valuable

information for organizations pursuing refactoring. Kim et al. [10] performed interviews with

more than 1000 engineers at Microsoft who participated in multiple refactoring efforts in the

Windows Vista operating system, and while engineers were able to eloquently identify the

benefits and risks of refactoring, the act of identifying where to perform refactoring was largely

left to intuition and first-hand experience with highly complex areas of the system. In fact, while

refactoring tools are actively included in Microsoft’s Visual Studio software development

environment, 71 percent of Kim’s respondents indicated that while these tools were useful, they

served as only part of a larger refactoring effort including a comprehensive architectural analysis.

25

The Core-Periphery method visualizes the VFI and VFO metrics of the software system in order

to effectively analyze software architecture and identify areas in need of refactor.

Chapter 3 Software and Organization under Analysis

3.1 Introduction and History

The system under analysis constitutes a highly regulated entertainment product comprised of

software, hardware, and firmware to create an end-to-end solution. While initially deployed in

the 1990s and early 2000s as a single highly-coupled system the software sub-system has since

been further decomposed along two primary functional requirements:

• A highly structured platform (Foundation) responsible for delivering the majority of

regulatory requirements, accounting, money-handling, security, and operator

configuration; and

• A flexible software component (game) responsible for delivering customized and highly

variable player-facing content.

Very early releases of this system packaged the Foundation one-to-one with a game representing

a unified product with both regulatory requirements and game content released together. As time

progressed the naturally divergent purposes of the platform were identified and effectively

separated from game development, revolutionizing the product and producing families of

Foundation support upon which multiple games could be released. The software was effectively

divided into two components, allowing all released games to benefit from new features and

defects that were corrected in that Foundation family, and inversely ensuring backward

compatibility would be maintained.

26

Figure 4 Evolution of the Foundation as a Platform

The internal structure of the organization itself underwent a similar transformation during this

period of time, with the game development teams, once co-located with the Foundation

developers, being separated into various “studios” each of which developed games targeting

different regulatory jurisdictions and market segments. This separation of concerns allowed

games and game studios to evolve at a rapid pace, experiment with new game formats and

presentations, while the Foundation evolved at a slower, more deliberate pace dictated by its

primary objective of maintaining regulatory compliance and stability.

However this separation of concerns did not come with an implementation of true modularity.

The Foundation and game still bore high levels of coupling which fell into the following

categories:

• Dependence via class inheritance, callbacks, and function invocation

• Dependence via message passing, and several categories of events representing changes

in both the internal state of the system as well as the presentation of that internal state

27

This ad-hoc communication structure allowed the less-structured games to alter the internal state

of the entire software system along multiple points of entry. Despite a robust body of

documentation specifying expected use, this communication structure created tight coupling

between these two components both serving opposing objectives, and would frequently lead to

unexpected internal system states resulting in numerous defects without a clear owner.

It was this level of coupling and opposing directives of the involved software components that

served as the initial motivation to refactor the system. This effort finalized the modularity begun

in the years prior establishing a distinct separation between the Foundation and game

components with a well-defined interface. Two channels of communication were established

using web sockets based on XML messaging between the components – the first channel

managed reconciliation of the system’s internal state between the Foundation and the game,

while the second channel managed the presentation of the system’s state to the player and

operator.

Following this refactoring, the Foundation has since progressed as two independent products –

the first representing the highly-coupled pre-refactoring architecture, the second representing the

modularized post-refactoring architecture. For the purposes of this study the most recent

revisions of both products is used as an exemplar for that paradigm.

3.2 Product versus Organizational Architecture

3.2.1 Impact of Regulation

The effects of regulation have been made apparent throughout not only the organization under

analysis, but also the software system it produces. Conway’s Law [18, 19] predicts that this is to

be expected – the structure of an organization reflects the product created by that organization.

28

As the product matured through the 1990s and early 2000s this was made most apparent in the

eventual separation between the Foundation and game. The directive of the Foundation to

satisfy strict regulatory requirements demanded that its development cycles eventually include

longer design and testing phases to consider the swiftly increasing interactions between

jurisdictional needs and new features necessary for game development.

Games, on the other hand, experienced an opposing effect – mostly liberated of regulatory needs

emphasis was instead placed on high levels of iteration, with dozens of games created per year.

The interfaces between the Foundation and the Game modules rapidly began to experience

strain, churn, and increased levels of maintenance due to these differences in necessary

development velocity. This effect of architectural shear quickly outgrew the monolithic view of

the system evident in its initial releases, driving the establishment of the first system platform

and the separation of both game developers into separate teams, and games themselves into

separate products.

3.2.2 Mirroring of Organizational and Product Architectures

MacCormack et al [20] explored the application of Conway’s Law as it applied to tightly- and

loosely-coupled organizations, finding that loosely-coupled organizations tended to create more

modular software out of necessity – modules allowed disparate teams to modify and improve the

software independently. The same pattern is observed in the organizational changes occurring

during this period of architectural shear. As the product experienced tension between iteration

and stability, so too did the teams contributing to its development. At this time game

development “studios” were created, and located independently from the teams now responsible

for the newly-created Foundation.

29

Communication between the Foundation and game teams was ad-hoc and informal, still in the

initial stages of separation. This process was eventually formalized with the creation of an

intermediary team through which communication was facilitated. This organizational change

was soon followed by product refactoring that formalized the module interface between the

software Foundation and games. Current organizational architecture overlaid with areas of

jurisdictional responsibility closely match the refactored product architecture, including the now

formalized communication channels required to finalize initial modularity first motivated by

opposing levels of regulatory compliance.

Figure 5 Product and Organizational Evolution over Time

3.2.3 Strategic Motivation for Increased Modularization

Over the course of the three phases of the product lifecycle described in Figure 5 the number of

games capable of being deployed with any given Foundation increased rapidly. By altering the

manner in which games were deployed the Phase 3 architecture experienced explosive growth in

number of supported products as compared to previous iterations. In contrast to the

organizational structure, the modularity in the software system that achieved this growth was not

formalized – the interface between the Foundation and Game modules consisted of ad-hoc

message passing, direct method invocation, and shared library dependencies resulting in

lingering tight coupling at the software level.

30

Figure 6 Rate of Game Development over Time

3.2.4 Impacts of Increased Inter-Module Dependence

Phase 3 Foundation development was itself divided into multiple releases (families) over time,

each representing progressively increased levels of game feature support and jurisdictional

compliance. Six of these releases were analyzed during this research. A set of exemplar games

were selected at random per family all sharing similar criteria:

• The game must represent original development

• The game must be approved by its corresponding regulatory bodies and sold as a product

• The game must represent consistent expected development complexity (the set is of

similar style, brand, and design)

31

Figure 7 Game Development Metrics over Time

The software package Understand, a static analysis tool developed by Scientific Toolworks, Inc.,

was then used to generate a screening measurement of the level of coupling between these

exemplar games and the Foundation for which the game was targeted. This measurement

includes only direct method invocation, class inheritance, and other statically-detectable

dependencies and does not include dependencies generated by message-passing or shared

libraries. These results are shared in Figure 7, and show a generally increasing trend with the

final set of games targeting Family 6 representing more than twice the original level of

dependence.

32

Table 1 Summary of Game Development Measurements over Time

In addition to the levels of inter-module dependence, other metrics affecting game development:

engineering hours, test hours, and number of found defects, were also measured for each of the

exemplar games. Each also shared a generally increasing trend, and a simple correlation

indicates a statistically significant (p < 0.05) correlation for two of the three metrics, which

provided initial research direction despite not being enough to prove causation. This relationship

could serve as the topic of an altogether separate course of research.

With the value of modularity in deployment and organizational structure already historically

proven, the increasing overhead of game development over time generated great strategic value

in both mitigating and controlling the levels of dependence between the Foundation and Game.

This resulted in a concerted refactoring effort of the Foundation to support and drive this new

formalized communication channel. It is this refactoring effort that is the subject of this

research.

Phase 3 # Dependencies Mean Dev. Hours Mean Test Hours Mean # Defects
Family 1 11211 440 223 3
Family 2 15460 559 269 36
Family 3 17130 555 297 33
Family 4 14282 558 445 26
Family 5 17159 620 490 35
Family 6 23155 705 903 115
Correlation 0.95 0.87 0.95

33

Chapter 4 Core-Periphery Software Analysis

4.1 Introduction

The primary tool applied to analyze the software system both pre- and post-refactoring is

MacCormack and Baldwin’s Core-Periphery analysis [2, 17]. This analysis considers each file

within the software system to represent a node in a network. The software instructions contained

in each file contain references to data structures and instructions contained not only within the

file, but also commonly include dependencies on data and instructions defined in other files.

Those familiar with programming will immediately recognize the common practice of

declaration versus definition as a simple example of this type of dependence. Directionality of

dependence in this analysis is represented in the network as a relationship from the file of use to

the file of declaration.

The following relationships are considered as dependencies for the purposes of this research as

previously applied by Sturtevant [2]:

• From the site of a function call to the site of the function’s definition

• From the site of a class method invocation to the site of the class method’s definition

• From the site of a class method invocation to the site of the class definition

• From the site of a subclass definition to the site of the parent class definition

• From the site of a non-trivial user-defined type instantiation to the site where that type is

defined

The software package Understand, a static analysis tool developed by Scientific Toolworks, Inc.,

has been applied to both views of the software under analysis in order to derive these

relationships between C and C++ files in both systems.

34

4.2 Message Passing and Augmentation of Analysis

A common practice in modern software systems is the concept of message passing. In software

engineering message passing is the act of a process constructing and sending a package of data to

another process then responsible for its interpretation, and subsequent action based on the data

contained in the message. The act of message passing is fundamental to the function of modern

software systems, including communication within a program, across programs, and across

computers (for example, an intra- or internet) [21]. Various techniques to achieve message

passing may be applied, however they all fundamentally differ from the act of direct method

invocation generally used to indicate dependence between two modules – as in the methodology

described above. Because of the levels of indirection involved with message passing

implementation, dependencies between components that send messages and components that

receive messages are often difficult to detect using traditional static analysis.

The software system under analysis makes extensive use of this technique, obfuscating the actual

architecture of the system when analyzed using traditional static analysis. To overcome this

drawback the following analysis has been applied to augment the dependency list:

• For each event declared within the system, include a dependence from the file processing

the event to the file posting the event.

Two methods of event dependence identification were attempted in order to fully capture the

additional dependencies. The first method added instrumentation to the system process

responsible for posting and distribution of internal events, capturing dependence information at

runtime as the system was exercised. However, because this method required exercising all

possible code paths within the system to ensure a complete analysis it proved unsatisfactory.

The second method performed a second static analysis pass of the system, recognizing patterns

35

of event declaration and event handling applied within the software system – while this method

proved robust in identifying a complete set of dependencies, it required intimate knowledge of

the system under analysis making its direct application in other software systems difficult. In the

future, it may prove useful to augment the analysis by modeling event posters and event handlers

considered by the software firm to represent dependencies within its system. The act of

modeling implementation-specific methods has been applied by other static analysis tools, such

as Coverity Prevent, to handle similar firm-specific design patterns that require hints to the

analysis engine as to their use. Results of the analysis both with and without this augmentation

will be provided to allow effective comparison.

4.3 Pre-Refactoring Analysis

The analysis of both systems has been presented in three stages – the first presenting a system

analysis using the classic MacCormack-Baldwin core-periphery method, the second additionally

applying inter-file dependencies detected by the Understand static analysis tool, and the third

additionally applying message passing dependencies identified within the system.

4.3.1 Base Core-Periphery Analysis

Error! Reference source not found.8 shows the results of base Core-Periphery analysis of the s

oftware system which demonstrates several notable characteristics – it shows what appears to be

an exceptionally small number of files designated Core and Shared, and an exceptionally large

number of files designated as Control, Periphery, and Singleton. The Singleton entities represent

those files which exist in an independent relationship network outside of the primary cluster of

files – no detected relationships exist between these files and the remainder of the system. This

relationship pattern demonstrates an exceptionally low level of coupling within the software

system, and does not match the notional expectations of the system engineers. The Periphery in

this case accounts for 25% of the total system, Control accounts for ~32%, and the Core only

36

2.5%. 35% of the system has been detected as a Singleton with no connection to the rest of the

system. In an effort to further explore potentially missing relationships we explore other types of

dependencies available through Understand static analysis.

1

Figure 8 Pre-Refactoring Core-Periphery Analysis using Classic MacCormack-Baldwin Relationships

1 Subsequent to the main body of work for this thesis effort has continued on improved Core-Periphery
segmentation. While primary findings remain unchanged updated images are included in Appendix A for reference.

37

4.3.2 Extended Core-Periphery Analysis

The extended Core-Periphery Analysis includes classic dependencies identified by MacCormack

and Baldwin described in section 1.1 and enumerated in section 2.5 to additionally include the

following:

• From the site of object initialization to the site of object definition

• From the site of object inheritance to the site of the inherited object’s definition

• From the site of object implementation to the site of object declaration

• From the site of object override to the site of the overridden object’s definition

• From the site of object use or modification to the site of object definition

In addition to considering a wider range of relationships, the use of the term “object” in these

conditions allows finer granularity in contrast to considering specific software constructs such as

functions, classes, sub-classes, and user-defined types. Error! Reference source not found.9 s

hows the results of the modified analysis. While the outcome is closer to our expected results,

the figure still shows an exceptionally small core comprising now ~2% of the total files in the

system, and an extremely large periphery containing over 50% of the total system. The

Singleton percentage has now dropped to 28%. We suspect information is still missing, and

further explore augmenting the analysis.

38

Figure 9 Extended Pre-Refactoring Core-Periphery Analysis

4.3.3 Extended Core-Periphery Analysis with Message Passing

The final pass of analysis applies the additional dependencies represented by information

transmission between entities within the system as described in Section 4.2. Error! Reference s

ource not found.10 displays the results of this analysis with an additional 1400 missing

39

dependencies, and shows the system with clear Core-Periphery module relationships. The Core

has nearly doubled to 5% of files within the system, the Periphery now contains 34% of total,

and Control and Shared-category files now represent a reasonable 18% each. 25% of the system

is still detected as Singleton – a significant portion of these files represent menu pages designed

for user configuration of the system’s operating environment. The effects of the system’s

internal architecture on selection of area of refactor are discussed further in Chapter 5.

Figure 10 Pre-Refactoring Core-Periphery Analysis including Message Passing

40

4.4 Post-Refactoring Analysis

Error! Reference source not found.1 shows the results of the analysis applied above to the r

efactored system in abbreviated form. The effects of additional message-passing dependencies

are exaggerated in this view of the system with a notable initial absence of files in the Shared

category, and the eventual emergence of the Core. We see the same progression from a largely

hierarchical system to the Core-Periphery system we expect.

Figure 11 Post-Refactoring Core-Periphery Analysis Progression

4.5 Game-to-Foundation Refactoring

Extending Core-Periphery analysis to the combined Game-and-Foundation software package

highlights the architectural results of the refactoring and its success in eliminating inter-module

dependence. Baldwin and Clark [3] link the existence of off-diagonal dependence between

modules to systemic inefficiency, creating cycles that require cross team conferences, trade-offs,

and compromises to resolve. To address these inefficiencies, they describe a process by which

design engineers and architects carry the knowledge of these previous difficulties forward as

products evolve, solidifying decisions earlier in the development process. While these decisions

restrict the viable solution space by designating certain design characteristics as “privileged”

41

they remove potentially troublesome off-diagonal dependencies both in the product and team

structure. Figure 12 shows side-by-side comparison of a laptop computer’s system structure as

studied in Design Rules: The Power of Modularity [3]. The system structure shifts from ad-hoc

with many off-diagonal dependencies to structured modules using design rules.

Figure 12 Baldwin & Clark Laptop System Modularization

This same shift is visible in the architectural structure of the pre- and post-refactored system.

Figure 13 shows an extended Core-Periphery analysis now including the Foundation (in the

upper left) and the Game (in the lower right), sorted with respect to directory structure. The

analysis reveals undesirable inter-module dependencies in the pre-refactoring view, while the

post-refactoring view shows these dependencies have since been removed. This demonstrates a

clear modular decomposition as described by Baldwin and Clark, and mirrors the organizational

modularization discussed in Chapter 3.

42

Figure 13 Pre- and Post-Refactoring System Modularization

4.6 Summary

Table 2 Summary of Dependence Analysis Methodologies summarizes the findings between the

various methods of dependence analysis. While message passing accounts for only 1400 missing

dependencies (4% of total) in both views of the system these dependencies account for up to

66% of dependencies for files considered Core and up to 75% of dependences for files

considered Shared. They additionally reduce Singletons by up to 10% and represent sufficient

coupling to reduce Periphery files by up to 20%. This pattern of behavior matches the intuitive

expectation that Core files are more likely to pass information between themselves, and that

there are significant amounts of internal system coupling not detectable through classic methods

of static code analysis.

43

Table 2 Summary of Dependence Analysis Methodologies

Chapter 5 Quantitative Impact of Refactoring

5.1 Introduction

In addition to analyzing the architectural impact of increased modularity through refactoring, this

study also analyzes the quantitative impact of refactoring on both software systems. To

understand the benefits gained and costs incurred by the underlying architectural changes the

following measurements of file activity are derived from the firm’s code base:

• Number of files changed per work item type (defect or new development)

• Number of in-file modifications required per work item type

• Number of unique authors per work item type

• Rate of change of modifications in areas of the code base directly impacted by the

refactoring

Utilizing the API provided by the firm’s version control software, defect and work tracking

systems, and source code the following information has been derived for each revision of each

file in both product lines:

• File name and path

• File revision number

• Date of modification

Base Analysis Extended Analysis Message Passing Base Analysis Extended Analysis Message Passing
System type Hierarchical Hierarchical Core-Periphery Hierarchical Hierarchical Core-Periphery
Direct Dependencies 31884 38315 39757 26024 35117 36416
Core Percent 2.46% 1.80% 4.75% 0.82% 1.75% 4.94%
Shared Count 272 434 911 28 525 1251
Core Count 135 99 261 52 111 313
Peripheral Count 1376 2346 1885 1521 3117 2399
Control Count 1783 1078 1024 2121 825 730
Singleton Count 1924 1533 1409 2617 1761 1646

Pre-Refactor Post-Refactor

44

• Author

• Associated change request

• Change request type (defect or new development)

• Lines added, modified, and removed

• Age of change request prior to completion of work

5.2 Developer Workflow

Established practice among developers at the software organization provides a strong linkage

between modifications required in the code base and the work item initiating the change. A

common defect workflow applied at the firm begins with a defect identified by either internal

test or the quality assurance department entered into a defect tracking database. This item is

then synchronized to the change request system utilized by the software development teams, and

eventually linked to the version control system once a modification is committed that corrects the

defect. In this manner a direct chain of responsibility is established and maintained directly from

the uniquely identified defect to the changes effected in the software system. The following

diagram depicts the complete workflow for both defects and new development:

45

Figure 14 New Feature and Defect Workflow

5.3 Data Gathering Methodology

The following rules were applied to include or exclude files from analysis:

• Third-party or automatically generated files have been excluded from analysis

• Files excluded from the released product have been excluded from analysis

• Files that do not include at least 1 line of executable code have been excluded from

analysis

• Header files have been excluded from analysis

We differentiate files as belonging into two groups, either along the area of refactoring or rest of

the system. In this analysis, “along the area of refactoring” refers to those modules that directly

contain modifications to facilitate communication between the game and that component. In

general these files contribute to the accounting, security, configuration, and management of the

game state machine.

46

5.4 Statistics of Refactoring and Complexity

For both pre- and post-refactoring releases of the system, approximately 2400 files were

analyzed following the exclusions listed above. Over the lifetime of the pre-refactoring system

approximately 150,000 modifications have been made in 17,000 files by just under 100

engineers; 2/3rds of those modifications corrected defects and the remainder implemented new

features. The post-refactoring system represents a much shorter development timeline with a

total of 25,000 modifications in 10,000 files by 50 engineers – with the same ratio of defects-to-

features.

Statistical analysis applied in this study follows the approach used by Kim et al. [10] to analyze

refactoring by Microsoft engineers in the Windows Vista operating system. This analysis uses a

two-sided, unpaired Wilcoxon rank sum test to identify statistically significant differences in a

variety of software engineering metrics between the area of refactoring and the rest of the system

in the pre-refactoring product, and identifies statistically significant impacts of refactoring in the

post-refactoring product. This analysis begins with a discussion of code churn due to its level of

relative importance to the software organization during this period of refactoring.

Refactoring impact on the software metrics between the pre- and post-refactoring systems has

been normalized to reflect the relative impact on the primary area of refactor versus

improvements made in the remainder of the system. Kim describes this process:

“Suppose that the top 5 percent of most preferentially refactored modules decreased

the value of a software metric by 5 on average, while the bottom 95 percent increased

the metric value by 10 on average. On average, a modified module has increased the

metric value by 9.25. We then normalize the decrease in the top 5 percent group (-5)

47

and the increase in the bottom 95 percent group (+10) with respect to the absolute value

of the average change (9.25) average of all modified modules, resulting in -0.54 and

+1.08 respectively”

Table 3 contains results of this analysis.

Table 3 Comparison of Metrics and Significance Pre- and Post-Refactoring

Area of Refactor Rest of System p-value Area of Refactor Rest of System p-value
Churn
Changes 1376 6152 671 1674
Changed Files 2001 17467 2871 8927
Total Churn 15.93 13.13 0.66 (1.18) (0.96) 0.48
Defect Churn 0.10 0.03 0.04 (4.44) (0.14) 0.44
Feature Churn 0.12 0.04 0.07 1.76 0.81 0.49

Size
Mean LOC 510.30 157.79 0.03 (1.65) 1.66 0.09
Files 284.00 2294.00 471.00 1878.00

Complexity
Visibility Fan In 573.70 235.89 0.01 (1.96) (0.76) 0.74
Visibility Fan Out 457.83 460.31 0.89 0.70 0.69 0.48
Mean Cyclomatic 23.79 9.78 0.05 (0.45) 1.36 0.04

Defects
Total Defects 819 4993 294 756
Files Changed for Defects 1062 10852 569 1718
Mean Defects per File 8.60 3.55 0.48 (1.94) (0.76) 0.54
Mean Files Changed per Defect 1.36 2.44 0.00 0.54 (1.39) 0.09
Mean Modifications per Defect 4.08 6.48 0.02 (0.67) (1.08) 0.37
Mean Number Developers per Defect 1.16 1.07 0.81 (1.99) 0.75 0.92
Mean Age of Defect (days) 24.36 16.01 0.04 0.88 1.03 0.61

New Development
Total New Features 557 1669 377 918
Files Changed for Features 939 17615 2302 7209
Mean Files Changed per Feature 1.64 3.87 0.00 1.40 0.90 0.67
Mean Modifications per Feature 5.73 9.74 0.04 0.85 (1.46) 0.11
Mean Number Developers per Feature 1.19 1.12 0.41 (1.79) (0.80) 0.23
Mean age of feature request 88.94 62.08 0.05 1.92 0.77 0.54

Pre-Refactoring Δ Pre-Post

48

5.5 Summary of Results

5.5.1 Churn

The results of the analysis on the pre-refactoring system indicate a statistically significant

difference along only one primary metric – the number of files modified to correct defects as a

ratio of the total number of files within the module as defined by

(!"#$%&	()*%+	,-.!/%0	(1&	0%(%,2+
212.*	()*%+)!	#10"*%

). Along the area of refactor a mean 10% of the files within the

module required modification in order to correct a defect, as opposed to a mean 3% in the rest of

the system. On the other hand, while more than three times the number of files on average

required modification in order to implement new features, and more than 3.5 times the number of

files required modification overall, no other results were found to be statistically significant in

comparison to the distribution of results from the remainder of the system. It is notable,

however, that levels of total churn (212.*	,-.!/%0	()*%+
212.*	()*%+)!	#10"*%

) and levels of defect churn were both

reduced in the post-refactoring product while levels of feature churn on average increased.

5.5.2 Size and Complexity

Comparing the area of refactor versus the remainder of the system indicates a significantly larger

number of both average number of lines of code in the files identified for refactor (an average of

three times the number of executable lines of code) as well as the levels of McCabe cyclomatic

complexity (an average of 2.5 times more complex). Notably, the VFI levels of modules

targeted for refactoring are significantly higher than the remainder of the system, while the VFO

levels show no statistical difference.

49

Following the refactor we find that lines of executable code in the area of refactor showed a

relative decrease, however the distribution is not statistically different from the remainder of the

system. On the other hand, we see mean levels of cyclomatic complexity showing a small but

statistically significant (p < 0.04) decrease in the area of refactor as opposed to small increase in

the rest of the system.

5.5.3 Defects

Applying the method of analysis to the impact of defects on the area of refactor finds that the

number of files changed per defect, as well as the number of modifications required within those

files, is significantly lower than the remainder of the system, however the mean amount of time

required to correct those defects was approximately 50% higher on average. The number of

developers involved in correcting defects was on average just over one, consistent with the

number of developers required in the remainder of the system.

Significance analysis shows no statistically significant shift in the area of refactor as compared to

the remainder of the system. Modifications required to correct defects per-file showed a general

decrease, while the average time required to correct defects increased in both cases.

5.5.4 New Development

We find that the impact of new development is overall very similar to the observed behavior of

defects. The mean number of total files changed, as well as the number of required

modifications within those files, is significantly lower in the area of refactor than the remainder

of the system. However, the average age of a new feature is approximately 50% higher in the

area of refactor, indicating an increase in implementation time. As before the number of

50

developers involved in the implementation of new features is just over one in all areas of the

system under analysis.

Our analysis found no statistically significant changes for new feature development between the

area of refactor and the remainder of the system post-refactoring. In general the total number of

files requiring modification to implement new features as well as the time required to implement

new features shows a trend of increasing following the refactor.

5.6 Multivariate Regression Analysis

5.6.1 Pre-Refactoring Defect Density and Related Software Metrics

In order to identify potential trends and ideal areas of focus for future refactoring effort we

perform multivariate regression analysis on the data with a primary focus on the relationships

between defects within a module and other metrics both within and outside the area of refactor.

This analysis is performed on the pre-refactoring data set in order to capture metric relationships

without the impact of refactored modules.

Table 44 shows the results of regression analysis predicting the defects per file of a given module

as other metrics shift in the area of refactor. In order to identify potential model variables we

first perform a correlation analysis between all measured metrics and the number of defects per

file, selecting metrics with correlation p < 0.05 as our initial model, a dummy variable (Location)

is added to the model in order to differentiate modules along the area of refactor from those in

the remainder of the system. We then begin regression by assigning defects detected per file as

the dependent variable, and assigning independent variables as { LOC, Location, McCabe’s

Cyclomatic Complexity, VFI, VFO, Average Files Changed per Defect, Mean Developers per

51

Feature, Amount of Feature Churn, Amount of Total Churn, and # Commits to the Module }.

Stepwise backward and forward refinement is then applied to reduce the number of model

variables.

Table 4 Regression Analysis of Software Metrics to Defect Density Prior to Refactoring

The regression results verify our intuition that the number of defects per file is primarily

impacted by lines of code in a file and total amount of churn within its module as defined by

total changes within a module divided by total files within the module. This is indicative not

only of significant rework related to feature implementation, but defect correction – an indication

that defect changes either themselves introduce defects, or do not completely correct the targeted

defect.

Additionally, the results are indicative of problematic modules sharing excessive levels of

internal coupling requiring modifications for both features and defects to span a high proportion

of files within a module, reducing change locality and correspondingly introducing further

defects. These results also verify our expectations of the impact of McCabe’s cyclomatic

complexity as it becomes not only increasingly impactful to levels of defects but simultaneously

more statistically significant. The results indicate that such factors as location of the file in the

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.8911925 1.370915 -2.838 0.0176 *
LOC 0.0144937 0.0028471 5.091 0.00047 ***
Cyclomatic Complexity: Low 4.1724378 1.7936651 2.326 0.04232 *
Cyclomatic Complexity: Moderate 4.4941601 1.5144789 2.967 0.01411 *
Cyclomatic Complexity: Very High 8.8401945 2.3565035 3.751 0.00378 **
Total Churn 0.7006372 0.024185 28.97 5.60E-11 ***
Total Commits -0.0004372 0.0001991 -2.196 0.05277 .

52

system relative to the area of refactor, number of developers per feature, and amount of feature

churn are not significant indicators of defects.

5.6.2 Delta Analysis of Defect Density, Cyclomatic Complexity and Related Metrics

In an effort to identify impactful modifications performed during the refactoring, Table 55

presents multivariate regression of contributory factors in changes for both defects and

cyclomatic complexity between the Pre- and Post-Refactor systems. As before we begin the

regression by performing a preliminary correlation test and accepting variables with p < 0.05 as

our initial model. Stepwise forward and backward regression is then performed.

Table 5 Regression Analysis of Refactored Metrics to Defects per File

Regression analysis of the impact of refactored metrics on defect density reinforces the prior

results and again follows expectations showing significant correlation between a pair of primary

factors. Modules displaying an increase in defect density shared a corresponding increase in

total churn, following the initial regression results of the pre-refactored system. The same

increase in defect density between the pre- and post-refactored systems can also be seen in

modules that shared an increase in cyclomatic complexity – a factor specifically targeted by the

refactoring engineers for improvement. The regression analysis did not show a statistically

significant correlation between defect density and modules both within and outside of the area of

refactor, the number of new features introduced, and other metric deltas.

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.36299 0.20486 -1.77 0.09818 .
Δ Total Churn 1.10225 0.07285 15.13 4.54E-10 ***
Δ Cyclomatic Complexity 0.42727 0.09614 4.444 0.00056 ***

53

In order to explore the impact of refactoring on cyclomatic complexity in various software

modules Table 6 presents multivariate regression relating contributory factors to changes in the

cyclomatic complexity following the same method outlined above.

Table 6 Regression Analysis of Refactored Metrics to Cyclomatic Complexity

Results of the regression analysis reinforce the strong correlation to changes in defects per file as

shown above, however complexity shares an inverse relationship to total churn. As expected, the

regression indicates a direct relationship with lines of executable code as well as the number of

files modified within a module to correct defects and the average age of a defect before

correction. Finally, the analysis indicates a direct relationship between change in cyclomatic

complexity and changes in the number of files necessary to correct defects, but an inverse

relationship with the change in number of lines of code necessary to correct defects within those

files.

5.7 Discussion of Results

In order to effectively correlate results to the initial research hypotheses we divide the discussion

of the results of this analysis into two sections with the first discussing results of hypotheses

meant to test software metrics affecting the selection of modules for refactor, and the second

discussing results of refactoring on those software metrics.

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.44593 0.33252 -1.34 0.20956
Δ LOC 0.25232 0.06567 3.842 0.00326 **
Δ Total Churn -1.56094 0.27492 -5.68 0.0002 ***
Δ Defects per File 1.2872 0.23472 5.484 0.00027 ***
Δ Mean Age of Defect 0.31289 0.09296 3.366 0.00717 **
Δ Defect Churn 0.4227 0.14489 2.917 0.01537 *
Δ Mean Modifications per Defect -0.14623 0.06175 -2.37 0.03939 *

54

5.7.1 Attributes of Modules Targeted for Refactor

5.7.1.1 H1 – VFI / VFO

While we find that modules targeted for refactoring shared an elevated level of VFI, their VFO

levels were not statistically different from the remainder of the system. While contrary to our

initial hypothesis this behavior is consistent with Kim et al’s [10] findings while studying

refactoring efforts at Microsoft – engineers targeted areas of the code base with high levels of

undesirable dependence and higher levels of test coverage and verifiable behavior. Sturtevant

[2] describes files in the Shared category as “relied upon by a large portion of the system” with

the “potential to be self-contained and stable,” and files in the Core category as “containing large

cycles in which components are directly or indirectly co-dependent.” The VFI / VFO levels of

modules targeted for refactor indicate that these files share markers identified in this research and

previously as predisposing them to targeted refactoring. To better understand this impact on the

selection of refactored modules, Table 7 compares the distribution of categories in the pre-

refactored system. We find that while files selected for refactoring do share elevated percentages

of files in the Shared and Core categories, the distribution of these files is the same as the

remainder of the system, eliminating Core-Periphery categorization as a leading indicator of

preference for this refactoring. This hypothesis is therefore rejected.

Table 7 Core-Periphery Distribution of Files

Area of Refactor Rest of System
Shared % 0.19 0.16
Periphery % 0.40 0.33
Control % 0.16 0.19
Core % 0.06 0.05
Singleton % 0.18 0.27
P-value 1

55

5.7.1.2 H2 – Defect Density

We find that while the area of refactor averages more than twice the number of defects present in

other areas of the software system, and accounts for 14% of overall defects, there is no

statistically significant difference in the distribution per module versus the rest of the system.

The great difference in these values is driven primarily by a high number of defects in a small

subsection of modules targeted for refactoring, which means that while distribution is lop-sided

the difference is primarily noise. While these data refute the hypothesis that defect density

within the area of refactor is statistically higher than other areas of the system, the question arises

of what caused the refactoring engineers to refactor the entire targeted subset instead of those

modules displaying the highest defect density. Dependence analysis between these modules and

interviews with participating engineers find strong first and second-degree coupling between the

modules with the highest defect density and the remainder of the modules selected for refactor.

These results indicate that while high defect density is one driving factor in selecting target

modules its value is impacted by strength of connectedness and defect density the target module

shares with the rest of the system.

While at first seemingly contradictory to our findings that on average fewer files were modified

to correct defects (1.36 vs. 2.44 average files), we find this is due to the increased density of the

files in general. Lines of executable code per file were found to be more than three times higher

in the area of refactor.

5.7.1.3 H3 – Cyclomatic Complexity

Results of pre-refactoring analysis find the levels of cyclomatic complexity in the area of refactor

is greater than 2.5 times levels in the remainder of the system under analysis. This value is

additionally p<0.05 significant when compared with the distribution of the remainder of

complexity metrics indicating not only a strong correlation with cyclomatic complexity and those

56

modules selected for refactor, but also indicating these modules reside in an entirely separate

classification of complexity (Moderate-High as opposed to Low-Medium). We find H3

confirmed by these results.

5.7.1.4 H4 – New Feature Development

The area of refactor accounted for fully 25% of total new feature development in the software

system while containing only 11% of the total size of the system in executable lines. Even so we

find the mean time required for full feature development in the area of refactor to be 43% longer

than the mean time elsewhere in the system, indicating that while feature demand was

significantly higher engineers encountered difficulty in implementation. We again find the

density of changes required to implement features to be statistically lower in the area of refactor,

which while at first leads us to believe the modules share decreased levels of coupling is actually

indicative of the increased number of executable lines of code. We find H4 confirmed by these

results.

5.7.2 Impact of Refactoring on Software Metrics

5.7.2.1 H5 – VFI / VFO

Analysis of the VFI and VFO attributes indicate a general trend of reduced VFI following

refactoring, but an increased VFO across the system. No statistical difference was found

between the area of refactor and the remainder of the system, causing us to reject this hypothesis.

No evidence was found that refactoring alone was responsible for changes in inter-module

dependence.

5.7.2.2 H6 – Defect Density

While the results of analysis indicate a decrease more than twice the magnitude of the rest of the

system in defects per file along the area of refactor, it has been found to not be statistically

57

significant. This reduction was, again, driven by significant changes in a subset of modules

included in the refactoring effort, and was not indicative of improvement elsewhere.

Interestingly, while the number of files requiring modification to correct defects increased in the

area of refactor, the modifications necessary within those files decreased. We see this result

reflected in the decreased code density within the area of refactor shown by a decrease in the

lines of executable code accompanied by an increase to almost double the number of files within

these modules. As expected, these results are consistent with the regression analysis indicating a

strong correlation between defect density and total churn – a metric primarily driven by the

relationship of defects to number of files in the module. Despite the significant decrease in mean

defects per file, we must refute this hypothesis as a side-effect of improvements made elsewhere

in the system and not directly a result of the refactoring effort.

5.7.2.3 H7 – McCabe’s Cyclomatic Complexity

The findings indicate not only a strong relative decrease in the cyclomatic complexity of

modules along the area of refactor, but a strong relative increase in the same across the

remainder of the system, resulting in a statistically significant difference in the distributions of

this metric. Regression analysis of this metric finds the strongest correlation between total churn

and defects per file, with a secondary relationship with executable lines of code, and the length

of time required to correct defects within the module. These results confirm our notional

expectations of the behavior and impact of this value – increased complexity increases the

defects detected within a module, but itself decreases as the logic within those files is effectively

dispersed amongst other files. This presents as a negative relationship with total churn within the

analyzed modules. An unobvious result is the inverse correlation between mean time required to

correct defects and cyclomatic complexity, however upon further inspection this relationship is a

58

result of decreased levels of engineering time (increased velocity) negatively impacting the

maintainability of the code base through an increase in complexity.

Based on the statistical significance of the decrease in cyclomatic complexity as a result of this

refactoring, we confirm this hypothesis.

5.7.2.4 H8 – New Feature Development

We again see the majority of new feature development centered on the area of refactoring,

increasing from 25% of total features previously noted to just under 30% in the area of

refactoring – now representing 20% of the total system’s files. It is notable that mean files

necessary for new features, mean modifications per feature, and time required to implement

features all increased in the area of refactoring, with the remainder of the system performing

better in only one metric as compared to the pre-refactored system. Development time required

for new features increases across the system following the refactoring. We refute this hypothesis

based on these results.

Chapter 6 Conclusions and Future Work

As software systems age and legacy systems comprise larger portions of existing software it is

important for leading software development organizations to carefully consider strategies for

refactoring and modularization. In order to effectively refactor – maintain external function

while improving internal implementation - part of this strategy should incorporate an

understanding of the structure of interdependence within the system in addition to lines of code,

defect density, cyclomatic complexity, and other classic markers. Additionally, even when

refactoring is targeted effectively the measurable effects of refactoring should be closely

59

monitored, as this and previous research has shown that some perceived impacts may either not

align with realized improvement, or may become locked in a “worse before better” trend

requiring patience, monitoring, and cultivation until intended benefits become apparent.

This research examined a significant refactoring effort at a leading software development firm,

seeking to identify markers along the area of refactor indicating potential markers of

predisposition to a targeted refactoring effort. We then analyzed metrics measured in both the

pre- and post-refactored systems in order to identify realized systemic benefits, as well as isolate

those benefits which uniquely impacted the area of refactor. As part of this analysis we applied

the MacCormack-Baldwin Core-Periphery analysis in order to gain an understanding of the

underlying architecture of the system as it applied to both the area of refactor and the remaining

system. An improvement to this analysis intended to capture potentially missing dependencies

was proposed, implemented, and applied to provide the best architectural representation possible.

Table 8 Summary of Hypotheses and Findings

While the refactoring engineers involved in the software system’s development did not conduct a

robust analysis ahead of the refactoring effort we analyzed a common set of software metrics

including levels of architectural complexity, lines of code per file, levels of churn for both fixing

defects and implementing new features, and McCabe’s cyclomatic complexity. These values

were then tested for statistical significance when compared to the remainder of the software

Markers of Targeted Refactoring Confirmed? Comments
H1. Visibility Fan In / Visibility Fan Out No Refactored components displayed elevated VFI levels
H2. Defect Density No Refactored components displayed highly elevated code density per file
H3. McCabe's Cyclomatic Complexity Yes Refactored components displayed elevated MCC levels
H4. New Feature Development Yes Refactored components accounted for significantly more new features

Effects of Refactoring
H5. Visibility Fan In / Visibility Fan Out No Identical distribution of architectural categories
H6. Defect Density No Refactored components displayed significantly decreased code density per file
H7. McCabe's Cyclomatic Complexity Yes Displayed a negative correlation with time invested per defect corrected
H8. New Feature Development No Feature Development time increased system-wide following refactoring

60

system to determine any applicable trends. Several notable distinctions were found that, while

not formally taken into account at the time of refactor, demonstrate indicators of targeted

refactoring. These factors included increased levels of visibility fan in, high levels of defect

churn, significantly elevated levels of code density per file, and higher amounts of time

necessary for implementing new features and correcting defects. While no correlation could be

identified between the Core-Periphery architectural category of files identified for refactor versus

the remainder of the system, files in the “Shared” and “Core” area of the system appear to

display attributes indicated as key indicators of preferential refactoring in other research.

Table 9 Summary of Lead Indicators of Refactoring and Improvements Realized by Refactoring

Churn Indicator of Refactoring? Improved by Refactoring?
Total Churn No No
Defect Churn Yes No
Feature Churn No No

Size
Mean LOC Yes No

Complexity
Visibility Fan In Yes No
Visibility Fan Out No No
Mean Cyclomatic Yes Yes

Defects
Mean Defects per File No No
Mean Files Changed per Defect Yes No
Mean Modifications per Defect Yes No
Mean Number Developers per Defect No No
Mean Age of Defect (days) Yes No

New Development
Mean Files Changed per Feature Yes No
Mean Modifications per Feature Yes No
Mean Number Developers per Feature No No
Mean age of feature request Yes No

61

Interestingly the research found evidence of phenomena the refactoring engineers had

experienced but was not explicitly tested for. While performing regression analysis between

cyclomatic complexity and various other code metrics the research found a negative correlation

between time invested correcting a defect and increases in cyclomatic complexity within those

files. This finding displays indications of decreased code maintainability as a result of increased

code development velocity, a behavior notionally understood by the developers and system

maintainers to be true.

These findings also bear managerial implications when determining which indicators of code

health to monitor during a targeted refactoring effort. While it is likely to see incidental

improvement in the key code health metrics analyzed here as a result of architectural refactoring,

these metrics are intended to measure localized health of software systems and not system-level

improvement. In this case attention should instead shift to architectural structure and inter-

module dependencies to determine success. This is the case for the software system under

analysis – architectural improvements have been realized as a result of this targeted refactoring

as evidenced in Figure 13, however we see limited improvement in the selected set of traditional

software health metrics outside of those specifically targeted by engineering. Software architects

and development managers should therefore be careful to consider the locality and intent of

refactoring when determining both which metrics to measure and the tools used to measure them.

6.1 Future Work

This research presents the realized effects of refactoring and attributes found to be common

amongst refactored components of a complex software system, and while this analysis is

performed at a leading software development organization these results may not apply

elsewhere. It is important to understand not just the metrics measured as lead indicators of

62

refactoring, but the underlying architecture and structure of the software that leads to these

metrics. In the case of the system under analysis we find that the area of refactor is comprised

primarily of files many times larger than the remainder of the system, with fewer files in each

module. This means that measurements of file-based churn will skew lower for these modules,

while interconnectedness metrics will skew much higher as a higher percentage of these files will

likely require modification per defect or feature. This skewness is compounded by the majority

of refactoring research and analysis being performed after the change has already taken place,

analyzing what has already happened. Future work should focus not only on expanding

indicators of refactoring and the benefits and risks of the activity, but should begin to collate the

various studies that have been performed to prescriptively identify areas of ideal refactor.

Elevated levels of VFI in refactored components of this study, and results of related existing

research, suggest it is likely that a targeted refactoring effort within “Shared” architectural

components with high levels of code density and cyclomatic complexity would meet with a great

deal of success. The results of such a targeted refactoring experiment would go far in untangling

the contradictory reports of refactoring benefit and cost.

A secondary direction includes the exploration of hidden dependencies within software systems

as discussed in Chapter 4. While this research extracted message passing dependencies in order

to augment existing analyses, the approach utilized here is highly specialized. A generalized

approach to such analysis would be much preferred to the by-hand modeling required currently.

Additionally, the problem statement should be expanded from “identifying dependence between

software modules” to “identifying paths of information exchange through software.” With this

extension other forms of information transfer become open for inclusion, such as disparate files

modifying external non-compiled configuration files, or processes utilizing shared memory to

facilitate communication. As evidenced by the significant number of files identified as

63

“Singleton” during this research there still remains a significant amount of inter-module

dependence and communication not captured by today’s tools.

6.2 Concluding Remarks

At the outset of this research we expected to find a high level of correlation between architectural

complexity and components identified intuitively by engineers for facilitating modularity and

communication within their software. While the refactored modules did in fact share a great deal

of statistically significant differences between this area and the remainder of the system, the

distribution of architectural complexity of the individual pieces of the refactored modules

matched the overall distribution of complexity almost identically. While it is not surprising that

these modules should span multiple areas of architecture that they would match so well was an

interesting finding. It is possible this is a side-effect of the nature of the system under analysis,

or that the intuition of the developers simply did not match our expectations. Regardless, a

targeted formalized refactoring effort utilizing the findings of this and other research to identify

ideal refactoring components would be a natural extension of this work.

Finally, while this research set out to formally measure the decisions of engineers responsible for

some of the most complex software developed by this firm the sheer amount of data available for

analysis threw into stark contrast the data that was not available – the internal complexity of the

software system is understood by its developers at a high level, however the actualization of the

architecture and its shifts over time have had significant impact on both the organization and the

product. With the interplay between staff, management, product direction, and architectural

shift, answering the deceptively simple question, “What do I refactor for the most benefit?”

becomes at once both intimidating and compelling.

64

Chapter 7 Bibliography

[1] Lehman, Manny M. "Laws of software evolution revisited." Software process
technology. Springer Berlin Heidelberg, 1996. 108-124.

[2] Sturtevant, D. (2013). System Design and the Cost of Architectural Complexity.

Massachusetts Institute of Technology.

[3] C. Y. Baldwin and K. B. Clark, Design rules: The power of modularity, Volume 1 vol.

1: The MIT Press, 1999.

[4] Sanchez, R., & Mahoney, J. T. (1996a). Modularity, flexibility, and knowledge

management in product and organization design. Strategic Management Journal, 17,
63-76.

[5] Gauthier, R. L., & Ponto, S. D. (1970). Designing systems programs.

[6] MacCormack, A., Rusnak, J., & Baldwin, C. Y. (2006). Exploring the structure of

complex software designs: An empirical study of open source and proprietary
code. Management Science, 52(7), 1015-1030. doi: 10.1287/mnsc.1060.0552

[7] Mens, T., & Tourwe, T. (2004). A survey of software refactoring. Ieee Transactions on

Software Engineering, 30(2), 126-139. doi: 10.1109/tse.2004.1265817

[8] W. Opdyke, Refactoring, Reuse & Reality, Lucent Technologies, Murray Hill, NJ,

USA, 1999.

[9] Coleman, D., Ash, D., Lowther, B., & Oman, P. (1994). Using metrics to evaluate

software system maintainability. Computer, 27(8), 44-49.

[10] Kim, M., Zimmermann, T., & Nagappan, N. (2014). An Empirical Study of

RefactoringChallenges and Benefits at Microsoft. Ieee Transactions on Software
Engineering, 40(7), 633-649. doi: 10.1109/tse.2014.2318734

[11] P. Weissgerber and S. Diehl, “Are refactorings less error-prone than other changes?” in

Proc. ACM Int. Workshop Mining Softw. Repositories, 2006, pp. 112–118.

[12] J. Ratzinger, T. Sigmund, and H. C. Gall, “On the relation of refactorings and software

defect prediction,” in Proc. ACM Int. Working Conf. Mining Softw. Repositories,
2008, pp. 35–38

[13] Steward, D. V. (1981). The design structure system- A method for managing the design

of complex systems. IEEE transactions on Engineering Management, 28(3), 71-74.

[14] K. T. Ulrich and S. D. Eppinger, Product design and development, first ed.: McGraw-

Hill, 1995.

65

[15] Eppinger, S. D., Whitney, D. E., Smith, R. P., & Gebala, D. A. (1994). A MODEL-

BASED METHOD FOR ORGANIZING TASKS IN PRODUCT
DEVELOPMENT. Research in Engineering Design-Theory Applications and
Concurrent Engineering, 6(1), 1-13. doi: 10.1007/bf01588087

[16] Sosa, M. E., Eppinger, S. D., & Rowles, C. M. (2007). A network approach to define

modularity of components in complex products. Journal of Mechanical Design,
129(11), 1118-1129. doi: 10.1115/1.2771182

[17] Rusnak Jr, J. J., & Advisor-MacCormack, A. (2005). The design structure analysis

system: a tool to analyze software architecture. Harvard University.

[18] Conway, M. E. (1968). How do committees invent. Datamation, 14(4), 28-31.

[19] Bailey, S. E., Godbole, S. S., Knutson, C. D., & Krein, J. L. (2013, October). A decade

of Conway's Law: A literature review from 2003-2012. In Replication in Empirical
Software Engineering Research (RESER), 2013 3rd International Workshop on (pp. 1-
14). IEEE.

[20] MacCormack, A., Baldwin, C., & Rusnak, J. (2012). Exploring the duality between

product and organizational architectures: A test of the "mirroring" hypothesis. Research
Policy, 41(8), 1309-1324. doi: 10.1016/j.respol.2012.04.011

[21] Siegel, S. F., & Gopalakrishnan, G. (2011). Formal Analysis of Message Passing

(Invited Talk). Verification, Model Checking, and Abstract Interpretation, 6538, 2-18.

[22] T. J. McCabe, "A complexity measure," Software Engineering IEEE Transactions on,

pp. 308-320, 1976.

66

Appendix A

Before Refactoring

Figure 15 presents a pre-refactoring view of both the system module (upper left) and game

module (lower right) sorted and split into distinct networks. In comparison to the original

diagram (Figure 10) this DSM shows a smaller number of files identified as Singleton and a

relatively larger Core. The undesirable cross-module dependencies remain clearly visible.

Figure 15 Extended Core-Periphery Analysis of Before-Refactoring System and Game

67

After Refactoring

Figure 16 presents a post-refactoring view of both the system module (upper left) and game

module (lower right) sorted and split into distinct networks. In comparison to the original

diagrams (Figures 11 and 13) this DSM shows a much larger Core present in the system, and a

reduced Singleton count. The undesirable cross-module dependencies have now been

eliminated.

Figure 16 Extended Core-Periphery Analysis of After-Refactoring System and Game

