

The Impact of Software Design Structure on Product
Maintenance Costs and Measurement of Economic

Benefits of Product Redesign

By

Andrei Akaikine
B.S., Physics

Novosibirsk State University, 1997

SUBMITTED TO THE SYSTEM DESIGN AND MANAGEMENT PROGRAM IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN ENGINEERING AND MANAGEMENT
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2010

©2010 Andrei Akaikine. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute
publicly paper and electronic copies of this thesis document in whole

or in part in any medium now known or hereafter created.

Signature of Author: __

System Design and Management
May 7, 2010

Certified by: __
Alan D. MacCormack

Visiting Associate Professor, Sloan School of Management
Thesis Supervisor

Accepted by: __
Patrick Hale

Director, System Design and Management Program

2

3

The Impact of Software Design Structure on Product
Maintenance Costs and Measurement of Economic Benefits of

Product Redesign

By
Andrei Akaikine

Submitted to the System Design and Management Program on May 7th, 2010 in

Partial Fulfillment of the Requirements for the Degree of Master of Science in
Engineering and Management

Abstract

This paper reports results of an empirical study that aimed to demonstrate

the link between software product design structure and engineers‟ effort to

perform a code modification in the context of a corrective maintenance task.

First, this paper reviews the current state of the art in engineering economics

of the maintenance phase of software lifecycle. Secondly, a measure of software

product complexity suitable to assess maintainability of a software system is

developed. This measure is used to analyze the design structure change that

happened between two versions of a mature software product. The product

selected for this study underwent a significant re-design between two studied

versions. Thirdly, an experiment is designed to measure the effort engineers

spend designing a code modification associated with a corrective change

request. These effort measurements are used to demonstrate the effect of

product design complexity on engineers‟ productivity. It is asserted in the paper

that engineer‟s productivity improvements have a significant economic value

and can be used to justify investments into re-design of an existing software

product.

Thesis Advisor: Alan D. MacCormack

Title: Visiting Associate Professor, Sloan School of Management

4

Table of Contents

Abstract ... 3

1. Introduction .. 6

1.1 Research Motivation .. 6

2. Software Maintenance ... 9

2.1 Software Maintenance .. 9

2.2 Cost of Software Maintenance to Software Development

Organization .. 10

2.3 Why modify software after release .. 12

2.4 Maintainability .. 13

2.5 Measuring maintainability ... 15

Maturity metrics ... 15

Effort metrics ... 17

Syntactic complexity family of metrics .. 17

McCabe‟s Cyclomatic Complexity number ... 17

Halstead Volume .. 18

Maintainability Index .. 20

2.6 Maintainability and Complexity .. 22

3. Design Complexity Measure for Maintainability 25

3.1 Metrics specification .. 25

3.2 Axiomatic Design and Complexity .. 27

3.3 Design Structure Matrix... 30

3.4 DSM in application to analysis of system complexity 33

4. Research Methods ... 34

4.1 Applying DSM to software .. 34

4.2 Visibility Matrix ... 36

5

4.3 Design element visibility metrics .. 38

4.4 Core and Peripheral Components ... 40

5. Hypotheses .. 42

6. Data .. 43

6.1 Description of the data ... 43

Focus on corrective maintenance tasks ... 45

Measuring Resolution Time... 45

Accounting for Variability of Effort .. 46

7. Results .. 50

7.1 Comparison of Design Structures of Products 50

7.2 Comparison of Visibility Matrices ... 53

7.3 Effort Data ... 56

7.4 Hypothesis One: Link between complexity of the product and

maintenance effort ... 62

7.5 Hypothesis Two: „Core‟ source files are more susceptible to change

 62

7.6 Hypothesis Three: Measuring economic benefit of reduction of

product complexity ... 64

8. Conclusion .. 65

9. Works Cited ... 68

6

1. Introduction

1.1 Research Motivation

On June 12, 2001, the online publication CNET News.com, published an

article titled “Microsoft Exchange bug: Strike three?” which read that

“Microsoft contritely acknowledged Wednesday that its second attempt to fix

an Exchange security hole went awry. Rather than fix the problem – and the

security hole – the company’s second attempt at a software patch included a

catastrophic bug that caused many servers to hang. The company was not

aware of the problem until alerted by CNET News.com.” (Lemos, Microsoft

Exchange bug: Strike three?, 2001)

A closer look at facts behind this article revealed the following story. It took

three revisions and almost seven days to fix a code flaw that was later named

“Exchange 2000 email spy bug”. We would never know if the first two attempts

to patch the security hole were successful at fixing this flaw. However, it is now

well known that code changes that went into the first two patches had

disastrous side effects and had to be reverted. Several software engineers were

involved in building the patch. However, only a small amount of code was

added in its final version. The amount of effort that went into building the fix

was vastly out of proportion if compared to the efforts necessary to write the

same amount of code in a newly developed piece of software. (Leyden, 2001)

(Microsoft Corporation, 2001) (Lemos, Security hole found in Exchange 2000,

2001) (Lemos, Fix for MS Exchange causes mail problems, 2001)

This and other similar incidents demonstrate typical challenges that

software vendors face when their products are in the maintenance phase of

software life cycle. Yet, despite inextricable difficulties of software maintenance,

most research on software products economics has been focused on costs

management during the development phase of software lifecycle, ignoring costs

incurred during the maintenance phase. This disparity is quite surprising since

7

prior research suggests that software maintenance activities represent

considerable economic costs. It has been estimated that for most software

products cost of maintenance activities exceeds the initial cost of development

and can reach up to 90% of total life cycle cost of software development.

(Seacord, Plakosh, & Lewis, 2003) Even in practice, despite its importance,

software maintenance remains a highly neglected activity: less-qualified

personnel is generally assigned to maintenance tasks; commonly accepted

measurements of success in the maintenance phase usually revolve around

cost saving and minimization of effort required for maintenance tasks; and

optimizing around development costs and schedule criteria often leads to

compromises in documentation, testing and structuring. These practices result

in increased software maintenance costs.

Understanding drivers of software product maintenance costs should be

useful to anyone who may be involved in post-release support of software

products. This includes software engineers and designers who must consider

trade-offs in the risk and uncertainty associated with various performance

criteria of the change design activities. Specifically, they would likely be

interested to understand tradeoffs between time to solution, amount of testing

that may be required, and effects of code changes on maintainability of the

product. This also includes system architects who may be involved in

continuous evaluation of system architecture and leading redesign initiatives.

Finally, managers need to be able to accurately estimate development effort

required for maintenance activities.

This study focuses on software complexity as one of the main drivers of

maintenance costs and represents an empirical analysis of effects of software

complexity on costs associated with maintenance tasks within a large-scale

commercial software product organization. Using a previously developed model

for measuring the degree of design modularity (MacCormack, Rusnak, &

Baldwin, 2004), this research estimates the impact of software complexity on

8

maintenance costs incurred by a large software development organization.

Further, by applying the same analysis to different versions of the same

product we aimed to measure the economic benefit of redesign efforts that have

taken place between consecutive versions of the same product. In our work we

assumed that a considerable amount of redesign happens between versions of

the product while most existing functionality is preserved for backward-

compatibility reasons.

This paper proceeds as follows. The next section, section two, reviews prior

works on the topic of software maintenance and its economical significance.

This section also discusses factors influencing ease of maintenance and

traditional approaches to measuring these factors. In conclusion, section two

asserts existence of a link between system complexity and its maintainability.

Section three describes axiomatic design and design structure matrix

methodologies in the context of measuring systems design complexity. It is

proposed that a measure of complexity suitable for controlling the aspects of

maintainability pertaining to system complexity can be designed based on

these methodologies. Section four introduces the research methodology used in

the study. This methodology uses design structure matrices to analyze system

complexity associated with dependencies that exist between its component

elements. Section five formulates hypotheses that were tested in the study.

Section six and seven report empirical results and test them against

hypotheses. Section eight concludes the paper.

9

2. Software Maintenance

2.1 Software Maintenance

Software maintenance is a broad term that refers to any changes that must

be made to software products after they have been released to customers. IEEE

Standard for Software Maintenance defines maintenance as “modification of a

software product after delivery to correct faults, to improve performance or

other attributes, or to adapt the product to a modified environment.” (IEEE,

1998)

Another definition is offered by Seacord et al., who summarized that reasons

for software change typically belong to one of the following four categories

(Seacord, Plakosh, & Lewis, 2003) (IEEE, 1998):

1. Corrective. These changes are made to repair defects in the system.

Defects cause software to behave inconsistently with an agreed upon

specification. Defects are usually caused by design/logic mistakes or

implementation errors. Corrective activity is usually associated with a

documented “bug” report initiated by an end user who notices

unexpected behavior of a software system.

2. Adaptive. These changes are made to keep pace with changing

environments, such as new operating systems, language compliers and

tools, database management systems and other commercial components.

3. Perfective. These changes are made to improve the product, such as

adding new functional requirements, or to enhance performance,

usability, or other system attributes. Perfective maintenance concerns

functional enhancements to the product and improvements of system‟s

operation from performance perspective or usability. Any change to

specification should trigger a perfective change. Perfective changes are

usually accompanied by a design change request. Such requests undergo

reviews and need to gain approval before changes get implemented.

10

Approval for perfective change is contingent on feasibility of the

improvement and on marketing/business justification for the change.

4. Preventive. These changes are made to improve future maintainability

and reliability of a system. Unlike the preceding three reactive reasons

for change, preventive changes proactively seek to simplify future

evolution of the software product.

Some of the most recent studies of the distribution of changes between

these four categories found that a majority of all changes are corrective or

perfective. More than 90% of maintenance falls into one of these two categories.

Depending on the type of software, corrective changes alone may represent up

to 70% of all changes. (Schach, Jin, Yu, Heller, & Offutt, 2003)

2.2 Cost of Software Maintenance to Software Development

Organization

Software maintenance accounts for more effort than any other software

engineering activity. Multiple studies demonstrated that the cost of fixing a

software defect grows in geometrical progression with the phase of software

product life cycle where the defects have been discovered (Boehm, Software

Engineering, 1976) (Pressman, 1982) (Rothman, 2000).

11

Figure 1: Increase in cost-to-fix or change software through life-cycle, based on industry data

(adopted from Boehm, 1981)

As Figure 1 above demonstrates, the majority of software costs are incurred

during the maintenance phase with maintenance activities consuming as much

as 75-90% of the total life-cycle dollar. Traditionally, maintenance costs are

attributed to the maintainers‟ effort, since maintenance costs are most directly

a function of the professional labor component of maintenance activities.

Regardless of the type of maintenance, corrective or perfective or preventive,

there are three main activities that take place (Boehm, Software Engineering,

1976):

 Understanding the existing software

 Modifying the existing software

 Revalidating the modified software.

Studies of software maintainers have shown that approximately 50% of their

time is spent in the process of understanding the code being modified. It is

believed that a number of characteristics of existing software source code have

12

impact on the amount of maintenance effort required. Complexity of software

was identified as one of these important characteristics that tend to have a

direct effect on amount of effort required to perform a maintenance task

(Banker, Datar, Kemerer, & Zweig, 1993). Complexity in the context of the

mentioned studies referred to psychological complexity - a characteristic of

software which makes it difficult for people to understand and work with. As

defined by Curtis et al (Curtis, Sheppard, Milliman, Borst, & Love, 1979)

psychological complexity assesses mental difficulty of working with source code

through measuring human performance on programming tasks.

2.3 Why modify software after release

Case studies of multiple software systems performed by M.M. Lehman over

a period of time that spans more than two decades resulted in the eight Laws of

Software Evolution (Lehman, Ramil, Wernick, Perry, & Turski, 1997). Lehman‟s

first, sixth and seventh laws of software evolution indicate the need for

continuous process of software maintenance.

 The first law – Continuing Change: a large program that is used

undergoes continuing change or becomes progressively less useful;

 The sixth law – Continuing Growth: functional content of a program

must be continually increased to maintain user satisfaction over time;

 The seventh law – Declining Quality: programs will be perceived as of

declining quality unless rigorously maintained and adapted to a

changing operational environment.

Commercial success of software vendors is the main driver behind the need

to modify software products. Through the software‟s life cycle vendors are

forced to maintain their products at “Good Enough” levels of quality. Good

enough software must initially deliver high quality functions and features that

end-users desire and may contain some known bugs in the implementation of

more obscure or specialized functions. It is generally impractical and

uneconomical to produce software, which does not need to be changed. Thus,

13

as end users‟ demand for high quality of specialized functions rises over time,

software vendors need to modify their software to satisfy new demands of users

in order to stay competitive. Hence, the system changes relate to changing

needs of users of the system. The modification of software is not optional in

maintaining software viability. From the life cycle planning aspect, this law

combined with rising cost of software changes suggests that for each dollar

spent on product development, a few more dollars need to be budgeted just to

keep the software operational over its life cycle.

Clearly, it is beneficial if a software system is „designed for change‟ during

the design and implementation phases of product life cycle. Software vendors

are utilizing multiple methods of developing their products that allow

modifications to be applied at a low cost. This non-functional quality attribute

of software that software vendors are trying to improve is called

maintainability.

2.4 Maintainability

Maintainability – is the ease with which a software system or a component

can be modified to correct faults, to improve performance, or other attributes,

or to adapt to a changed environment.

Factors that affect maintainability of software include:

- Application age: aging software can have high support costs as it relies

on old languages and requires increasingly rare expertise to maintain

- Size: number of files/modules, lines of code which need to be maintained

- Programming platform and languages

- Design methodologies, including use of design patterns

- Formatting and documentation: well written code is typically easier to

read than automatically generated or ported code

- Modularization: decoupled components are easier to analyze and modify

14

- Documentation: maintaining documentation is expensive, thus it is often

ignored. Many developers believe that “code is the best documentation”

- Management: attitudes of management toward maintenance tasks could

be an additional hurdle.

It has been suggested that software design variations should be monitored

throughout the development of software products for their impact on

maintainability. This monitoring should cover both quantitative and qualitative

evaluations along various measures, including complexity to define and assess

the quality of software. ISO and IEEE specifically suggest monitoring four

maintainability sub-characteristics that address analyzability, changeability,

stability and testability of software because of their effect on effort (not speed)

and ease of software modifications. (ISO/IEC & IEEE, 2006)

The ISO model of software quality provides the below definitions of these

four characteristics of maintainability:

1. Analyzability is an important quality that is related to code readability;

use of easily recognizable design patterns; choice of programming

language. Factors that affect analyzability the most include coupling

between modules, lack of code comments, naming of functions and

variables. This characteristic is related to the efficiency with which

software developer can analyze the code to understand the impact of the

code change.

2. Changeability is a measure of impact of changes made to a module on

the rest of the system. Design of a system is believed to play a

determining role in the system‟s reaction to incoming changes.

3. Stability means that most of the system‟s components remain stable over

time and do not need changes. Stable components require less

maintenance over the life cycle of the system. Stability is achieved when

core components of the system are enduring over time with changes

primarily applied only to periphery components. Thus, core components

15

remain completely stable both internally and externally. It is important to

be able to identify those components. Periphery components on the other

hand can be changed at will. If the system is designed correctly,

changing periphery components should not ripple through the entire

system. This constitutes a link between Changeability and Stability

quality characteristics of software. (Fayad, 2002)

4. Testability is related to the fact that hard-to-test programs are difficult to

modify. Unit testing along with rigorous regression testing are main tasks

during software maintenance and together may account for up to 25-

50% of efforts of modifying software. Testability positively impacts

changeability. The easier it is to run regression tests - the more insight

one can get into the impact of a change on the rest of the system.

2.5 Measuring maintainability

High software maintenance costs suggest that maintainability of a software

system is a very critical attribute of software quality. Software engineering

economics prompt software vendors to attempt to control maintainability of a

software system over its life cycle. To that end, good measures of software

maintainability can help software vendors better manage effort required for the

maintenance phase of software lifecycle. Despite the importance of estimation

and measurement of maintainability of software there is no universal measure

of maintainability. This is partially caused by the fact that there is no direct

way to measure maintainability. More general software quality metrics related

to maturity, effort and complexity are used as indirect measurements of

maintainability.

Maturity metrics

Software maturity metrics are designed explicitly as an attempt to measure

stability of a software product. These metrics tend to track stability of a

software product based on changes to the product that occur over the specified

period of time or between two consecutive releases. Software maturity index

16

(SMI) proposed by IEEE Standard 982.1-1988 (IEEE, IEEE Std. 982.1-1988

IEEE Standard Dictionary of Measures to Produce Reliable Software, 1988) is

often used to measure current product stability. The SMI may be calculated

using the following formula:

SMI = (MT – (Fa + Fc + Fd))/MT

where

MT – is the number of software functions (modules) in the current release;

Fa – is the number of software functions (modules) in the current release

that are additions to the previous release;

Fc – is the number of software functions (modules) in the current release

that include internal changes from a previous release;

Fd – is the number of software functions (modules) in the previous release

that are deleted in the current release.

As SMI approaches 1.0, the product begins to stabilize and may not need

additional changes, which indicates improved maintainability. However, IEEE

publications indicate that Software maturity index as specified above is not a

good measure of maturity of a software product (IEEE, IEEE Std. 982.1-2005

IEEE Standard Dictionary of Measures of the Software Aspects of

Dependability, 2005). As defined above, SMI formula measures module change

rate which may not be directly linked to stability of the entire software product.

Another drawback of this measure is that negative values of SMI are difficult to

interpret.

Other maturity measures have been proposed to track changes in terms of

lines of code per software source file. Code churn and other repository metrics

track changes made to a software component over a period of time. The extent

of changes made to a component of a software system can be indicative of that

particular component‟s stability.

17

Effort metrics

Common software metrics are attempting to estimate effort required to

perform software maintenance tasks. Effort is one of those aspects of software

maintenance that seem to directly affect costs. Hence, effort-based metrics are

especially popular in the industry. Most obvious measure of effort is time. In

his work, Roger Pressman introduced an effort-based metric, mean-time-to-

change (MTTC) (Pressman, 1982). MTTC includes the time it takes to analyze a

change request, design an appropriate modification, implement the change,

test it, and distribute it to all users. On average, programs that are more

maintainable will have a lower MTTC for equivalent types of changes than

programs that are less maintainable. Major drawbacks of MTTC include lack of

predictive qualities, and dependence on maintainers‟ skill.

Syntactic complexity family of metrics

Syntactic complexity family of metrics attempts to derive the maintainability

measure from the static analysis of software source code. These complexity

measures are syntactic in nature. They frequently involve counting one or more

textual properties of software. In most cases, as frequency of the selected

feature increases, while everything else remains the same, so should the

complexity of software. Probably the oldest and most intuitively obvious notion

of complexity is the number of statements in a program. This metric is often

referred to as lines of code (LOC). The primary advantage of this metric is its

simplicity. Other metrics of complexity are not always as easy to compute.

Syntactic complexity family of metrics also includes such metrics as McCabe‟s

Cyclomatic Complexity (CC), Halstead Volume (HV), and their combination also

known as Maintainability Index (MI).

McCabe’s Cyclomatic Complexity number

Cyclomatic Complexity number, also known as McCabe‟s V(G), is a graph-

theoretic measure of logical complexity of a software program. McCabe

proposes that complexity is not closely related to program size, but rather to

18

the number of independent paths through the program. Since it is infeasible to

enumerate the total number of unique paths in most programs, the complexity

measure is defined in terms of the number of “basic paths” – paths that when

taken in combination can generate all possible paths. This theory is based on

direct-graph representation of program‟s control flow and uses graph theory to

compute the number of paths. A node in the flow graph corresponds to a

sequential block of code; an arc or edge corresponds to transfer of control

between nodes. For any such graph G, the cyclomatic complexity number V(G)

can be calculated using the following formula:

V(G) = E – N + 2 * p

where

E - Number of edges in the flow graph of the program;

N - Number of nodes in the flow graph of the program;

p - Number of connected components, sets of nodes with mutual

connectivity - where each node can be reached from all other nodes and vice

versa.

There are a number of advantages of McCabe Cyclomatic Complexity

number that make it an attractive metric to be used for measuring

maintainability. Obviously, there is a direct link between the number of unique

paths through the program and testability sub characteristic of

maintainability. Higher V(G) numbers translate in difficulty to reliably test

software system that has negative effect on overall system‟s changeability.

Additionally, it has been shown that programs with lower Cyclomatic

Complexity are easier to understand and less risky to modify. The size-

independent nature of Cyclomatic Complexity also makes it a good measure of

relative comparison of complexity of various designs.

Halstead Volume

Halstead Program Volume is one of the set of metrics called Halstead

complexity measures. Computations of all metrics in the set are based on

19

several primitive measures of software source code. In his work “Elements of

Software Science” (Halstead, 1977), Halstead proposed a number of syntactic

measures of software to express such software product measures as the overall

program length, potential minimum volume for an algorithm and actual

program volume of information encoded with the program code, the program

level as a measurement of software complexity, and even programming effort,

development time, and projected number of faults in the software.

In his theory of “software science”, Halstead shows that program volume V –

the information contents of the program – can be estimated using listed above

primitive measures.

V = (N1 + N2) log2 (n1 + n2), where

N1 – total number of operators in the program;

N2 – total number of operands;

n1 – number of distinct operators that appear in the program;

n2 – number of distinct operands.

The computation of V is based on the total number of operations performed

and operands handled in the program. Theoretically, a minimum volume V*

must exist for a particular program. Since V* is not a purely syntactic notion it

is obviously difficult to compute. Halstead uses a volume L = V* / V to

demonstrate the difference of a particular implementation from the optimum.

Halstead gives an approximation for the volume ratio:

L = (2 / n1) * (n2 / N2)

Volume ratio L must always be less than 1 and represents implementation

compactness of the algorithms in a program. Difficulty of a program D is the

inverse of L:

D = 1 / L = n1 N2 / 2 n2

20

A simple formula for Halstead Effort calculation is

E = D * V =n1 N2 (N1 + N2) log2 (n1 + n2) / 2 n2

This formula attempts to quantify the mental effort required to develop and

maintain a particular program. The lower the value of this measure, the

simpler it was to develop and test the program, the simpler changes to the

program will be.

Halstead measures are not as widely accepted as Lines of Code metric or

even McCabe Cyclomatic Complexity. The underlying theory has generated a

massive controversy and has been criticized for a variety of reasons, among

them the claim that there is a weak logical link between lexical complexities of

code reflected in Halstead‟s measures and derived software metrics. However,

numerous industry studies provide empirical support for using Halstead

metrics in predicting effort and mean number of programming bugs. Range of

metrics that can be computed using Halstead‟s theory and considerable

simplicity of calculations make the proposed approach very attractive to

practitioners of software engineering.

Maintainability Index

Maintainability Index (MI) is a composite metric based on a number of

traditional metrics. Maintainability Index was originally proposed by Oman and

Hagemeister (Oman & Hagemeister, 1992) to overcome drawbacks of any

particular standalone metric and to combine many metrics into a single index

of maintainability. MI is given as a polynomial equation comprised of weighted

predictor variables. A series of polynomial regression models have been defined

by the authors of the MI to determine the weights for predictor variables.

Through a series of studies it was demonstrated that there is a strong

correlation between such predictor variables as Halstead Volume, McCabe‟s

Cyclomatic Complexity, lines of code, and number of comments to the

21

maintainability of the software system. The original polynomial equation for

Maintainability Index was defined as follows:

MI = 171 – 3.42 * ln(aveE) – 0.23 * aveV(g‟) – 16.2 * ln(aveLOC) + 0.99 * aveCM,

where

aveE – is the average Halstead Effort per module;

aveV(g‟) – is the average extended cyclomatic complexity per module;

aveLOC – is the average number of lines of code per module;

aveCM – is the average number of lines of comments per module.

Based on the proposed equation, two quality cutoffs were identified to help

analyze systems. Values above 85 indicate the software that is highly

maintainable, values between 85 and 65 suggest moderate maintainability, and

values below 65 indicate the system that is difficult to maintain. (Coleman,

Assessing Maintainability, 1992)

Over time, the equation for MI has been fine-tuned by practitioners so that

MI better represents system maintainability (Coleman, Ash, Lowther, & Oman,

1994). In particular, Halstead predictor variable has been modified to

incorporate volume instead of effort. The comment predictor has been modified

to include a comments-to-code ratio, which was identified to have a maximum

additive value to the overall Maintainability Index of industrial size software

systems. Modified definition for Maintainability Index is:

MI = 171 – 5.2 * ln(aveV) – 0.23 * aveV(g‟) – 16.2 * ln(aveLOC) + 50 *

sin(sqrt(2.4 * perCM)),

where

aveV – is the average Halstead Volume per module;

perCM – is the average percent of lines of comments per module.

In the current form, Maintainability Index is fully derived from the source

code of the software system. MI is very effective when used to analyze and

evaluate different systems by comparing their MI values. High risk modules of

22

the source code can be identified with the use of MI. It gives an excellent

insight into the source code of a system for direct manual analysis to highlight

areas of code which require human attention.

2.6 Maintainability and Complexity

A large number of studies suggest the existence of a direct link between

maintainability of a software system and its complexity (Banker, Datar,

Kemerer, & Zweig, 1993) (Woodward, Hennell, & Hedley, 1979) (Curtis,

Sheppard, Milliman, Borst, & Love, 1979) (Agresti, 1982) (Harrison, Magel,

Kluczny, & DeKock, 1982). Many of these studies propose that software

complexity is the primary driver behind software maintainability. Such metrics

as Lines of Code, McCabe‟s Cyclomatic Complexity, and Halstead‟s Volume

claim to measure complexity of a software system in one way or another. Many

successful attempts were made to demonstrate correlation between metrics

mentioned above and maintainability as measured by maintainers‟ effort to

understand, modify and test the software. However, no single best approach to

measure software complexity has emerged.

There is an ongoing debate about applicability of metrics developed prior to

wide acceptance of structured programming to software systems developed

using modern approaches. It was asserted that use of structured programming

methodologies such as reduced branching and increased modularity has a

significant impact on changeability of software (Stevens, Myers, & Constantine,

1974). Gibson and Senn (Gibson & Senn, 1989) in their experiments

demonstrated that more structured versions of the same software required less

time for completion of maintenance tasks. They also confirmed that such

metrics as McCabe‟s Cyclomatic Complexity and Halstead‟s Effort correlate

with improvements caused by using structured programming approach.

However, the effects of re-structuring software on traditional complexity

metrics were not linear. Hence, to reliably measure complexity of newly

developed systems traditional metrics need to be recalibrated for each language

23

and programming approach used in each particular instance of software

system development.

Critics of software complexity measures point out that currently used

metrics provide only a crude index of software complexity. (Kearney, Sedlmeyer,

Thompson, Gray, & Adler, 1986) The essential properties of good measures

such as robustness, normativeness, specificity, and prescriptiveness are not

uniformly addressed with traditional metrics. The following properties of

measures should help practitioners to determine the way in which measures

can be used:

 Robustness – a measure which should reliably predict complexity of

software. Decrease of the measure is consistent with improved

complexity of the program;

 Normativeness – a metric which should provide a norm against which

programs‟ measurements can be compared;

 Specificity – a measure which should be able to find deficiencies of a

software system that can be used as a guide to testing and

maintenance;

 Prescriptiveness – a measure which should prescribe techniques and

direct their application to reduce complexity.

Traditional software metrics do not always meet the needs of their users

whether it is a software engineer or a system architect. Also, lack of influence

of traditional metrics on programming behaviors limits metrics‟ managerial

use.

Kearney et al. propose an approach to the creation of complexity measures:

“Before a measure can be developed, a clear specification of what is being

measured and why it is to be measured must be formulated. This description

should be supported by a theory of programming behavior. The developer must

anticipate the potential uses of the measure, which should be tested in the

intended arena of usage.”

24

What would be the best metric to use in the context of software

maintenance? The following chapter attempts to make a case for a use of

complexity metrics family from the field of technology management and

systems design. Proposed metrics family is based on product architecture

rather than syntactic measures of source code. Subsequent chapters discuss

an empirical study of the proposed metrics family based on data from the

industry.

25

3. Design Complexity Measure for Maintainability

3.1 Metrics specification

As discussed above, a good complexity measure to be used in the context of

maintenance should address four sub-characteristics of maintainability:

analyzability, changeability, stability and testability. Expanding on the

definitions from the ISO software model:

 Analyzability is related to readability of the code and how easy it is to

discern an underlying algorithm. Factors that affect analyzability include

coupling between modules and discoverability of functions in the

modules. This characteristic is related to the efficiency with which a

software developer can analyze code to understand the impact of code

changes.

 Changeability measures the impact of changes made to a module on the

rest of the system. Design of a system is believed to play a determining

role in the system‟s reaction to incoming changes.

 Stability is achieved when core components of the system are enduring

over time and changes primarily apply to periphery components.

Designing for stability relies on ability of a software engineer to identify

those components. If the system is designed correctly, changing

periphery components should not ripple through the entire system. At

the same time changes to core components should be avoided.

 Testability measures how easy it is to test components in isolation (unit

testing) and along with other components (regression testing). Regression

testing one of the main tasks during software maintenance. Its primary

purpose is to ensure that code modifications did not have a „ripple effect‟

on the rest of the system.

A critical aspect of a good complexity measure for maintainability is that it

should help reduce cost of maintenance tasks through reduction of effort spent

26

on such tasks as understanding the program, devising the modification, and

accounting for the „ripple effect‟. A good measure should also focus on

engineers‟ behaviors reinforcing good practices without hindering development

processes.

Decomposing the above specifications shows that a good maintainability

complexity measure has the following specific purposes:

- Demonstrate how effort of a software maintenance practitioner relates to

coupling between modules and positional cohesion of functions within a

module or closely related modules;

- Help identify system components and explore whether the components

are in the core or on the periphery of the system;

- Bring out existing dependencies between modules and reduce potential

for a „ripple effect‟.

It is apparent that the modular structure of a software product is the

underlying product characteristic that one needs to focus on to measure

software complexity aspects that have the greatest effect on maintainability and

costs associated with maintenance tasks. This structure typically emerges from

mapping product functions onto physical components – creating the product

architecture (Ulrich, 1995). Hence, complexity of products can be managed

through appropriate application of design principles and methods to product

architecture.

There is a large body of knowledge in the field of systems design that

suggests that large-scale systems are often complex. Complex systems are

characterized by dependencies between their numerous components. Axiomatic

Design is a methodology that systemizes complexity analysis and prescribes

steps towards complexity reduction through removal of dependencies of

functional requirements (Suh, The Principles of Design, 1990). Axiomatic

Design methodology was developed further into Complexity Theory (Suh,

27

Complexity: Theory and Applications, 2005). Complexity Theory uses Axiomatic

Design to analyze systems. It focuses on non-deterministic nature of complex

systems and aims to reduce inherent uncertainty in achieving specified

functional requirements through proper mapping of functional requirements

onto physical design attributes. Approaches and methods of Axiomatic Design

(AD) and Complexity Theory (CT) can be applied to the reduction of software

systems complexity.

Complementary to Axiomatic Design method is the Design Structure Matrix

(DSM) approach to managing dependencies by manipulating design system

components into modular architecture (Baldwin & Clark, 2000) (Eppinger,

Whitney, Smith, & Gebala, 1989). DSM approach provides a basis for

measuring software system complexity in such a way that specifications listed

above are satisfied.

3.2 Axiomatic Design and Complexity

The Axiomatic Design framework can be summarized as follows (Suh,

Complexity: Theory and Applications, 2005):

- The design world consists of four domains: customer domain, functional

domain, physical domain and process domain. Each domain is

characterized by domain specific attributes (Figure 2)Figure 2.

Figure 2: Four domains of the design world (adopted from Suh, 2005)

28

- Decomposition and zigzagging are used to construct the attributes in

each domain (Figure 3). Through the design decomposition process, the

designer is transforming design intent into realizable design details.

Figure 3: Zigzagging to decompose FRs and DPs (adopted from Suh, 2005)

- Mappings are translations of characteristics vectors from one domain to

another. For example, once Functional Requirements (FRs) in the

functional domain are chosen, designer maps them to the physical

domain to conceive a design with specific Design Parameters (DPs) that

can satisfy FRs. Design equations are used to represent the mappings.

For example, mapping between FRs and DPs can be represented by: {FR}

= [A] {DP}, where {FR} is a vector of all FRs, {DP} is a vector containing all

DPs of the design, and [A] is the “design matrix” that defines the

relationships between the design parameters and the functional

parameters. If the number of FRs equals the number of DPs, equals

number n, [A] is a square matrix of size n x n.

For n = 3, the equation will take the following form:

𝐹𝑅₁
𝐹𝑅₂
𝐹𝑅₃

 =
𝐴₁₁ 𝐴₁₂ 𝐴₁₃
𝐴₂₁ 𝐴₂₂ 𝐴₂₃
𝐴₃₁ 𝐴₃₂ 𝐴₃₃

𝐷𝑃₁
𝐷𝑃₂
𝐷𝑃₃

- Two fundamental axioms were identified to govern the design process:

The Independence Axiom and The Information Axiom. The Independence

Axiom states that the independence of Functional Requirements must be

29

maintained for robustness, simplicity, and reliability of systems. The

Information Axiom states that the system must be designed to minimize

uncertainty in achieving the FRs defined in the functional domain.

In a simplified form, the values of the “design matrix” elements will either be

„X‟ or „0‟. „X‟ represents a mapping between the corresponding components of a

vector {FR} and vector {DP}. „0‟ signifies no mapping between components of

vectors being mapped. Examination of the structure of the “design matrix”

provides for design characterization:

 Coupled design – is a design that does not maintain the independence of

functional requirements. The design matrix is a full matrix.

𝐹𝑅₁
𝐹𝑅₂
𝐹𝑅₃

 =
𝑋 0 𝑋
𝑋 𝑋 𝑋
0 𝑋 𝑋

𝐷𝑃₁
𝐷𝑃₂
𝐷𝑃₃

 Decoupled design – is a design that maintains the independence of

functional requirements if and only if the design parameters are

determined in a proper order. One Functional Requirement may be

satisfied by more than one Design Parameter. This kind of design

maintains the independence of Functional Requirements, provided that

the design parameters are specified in a sequence so that for each

Functional Requirement there is one unique Design Parameter that

ultimately controls that Functional Requirement. The design matrix is

triangular.

𝐹𝑅₁
𝐹𝑅₂
𝐹𝑅₃

 =
𝑋 0 0
𝑋 𝑋 0
𝑋 𝑋 𝑋

𝐷𝑃₁
𝐷𝑃₂
𝐷𝑃₃

 Uncoupled design – is a design that has all of its functional requirements

independent from other functional requirements. There is a one-to-one

mapping between functional and physical domain attributes. The design

matrix is diagonal.

30

𝐹𝑅₁
𝐹𝑅₂
𝐹𝑅₃

 =
𝑋 0 0
0 𝑋 0
0 0 𝑋

𝐷𝑃₁
𝐷𝑃₂
𝐷𝑃₃

 Ideal design – is a design that has the same number of Functional

Requirements and Design Parameters and satisfies Independence Axiom

with zero information content.

 Redundant design – is a design that has more design parameters than

the number of functional requirements. The design matrix is not square.

𝐹𝑅₁
𝐹𝑅₂
𝐹𝑅₃

 =
𝑋 0 𝑋 𝑋 𝑋
0 𝑋 𝑋 0 𝑋
0 𝑋 0 𝑋 𝑋

𝐷𝑃₁
𝐷𝑃₂
𝐷𝑃₃
𝐷𝑃₄
𝐷𝑃₅

It has been demonstrated that analysis techniques of Axiomatic Design are

effective when applied to reduction of complexity of both mechanical and

software systems (Suh, The Principles of Design, 1990) (Suh, Axiomatic Design:

Advances and Applications, 2001). Use of Axiomatic Design facilitates

characterization of software system architecture in the functional domain and

Axiomatic Design decomposition approach is a good foundation for redesign

efforts. However, since Axiomatic Design is dependent on the existence of

system specifications its methods may not be readily applicable to the

maintenance phase of software lifecycle.

Design Structure Matrix is a promising tool for measuring structural

systems complexity that may be able to address the requirements of the

maintenance phase of software lifecycle in dealing with software product

complexity.

3.3 Design Structure Matrix

Hierarchical relationships and interdependencies among design parameters

can be formally mapped using a tool called the Design Structure Matrix

(Baldwin & Clark, 2000). The DSM characterizes the “topography” of a design

31

domain by displaying hierarchical relationships and interdependencies among

design elements in a matrix form. To construct a DSM, one assigns all

individual design elements to the rows and columns of a square matrix. A

dependency link between two elements is indicated by a mark in the

corresponding element of the matrix. For example if a design element B is an

input to a design element A, this relationship may be depicted by a mark (an

„X‟) in the column of B and the row of A. It is said that the element A depends

on the element B, or in other words modification to the element B may have an

effect on the element A. (Figure 4: A Design Structure Matrix with 6 design

elements). Hence, the resulting matrix captures both hierarchical dependencies

among design elements (an element B calls into elements C and D) and their

interdependencies (a change in D makes a change in B, C and E desirable).

Figure 4: A Design Structure Matrix with 6 design elements

DSMs are a powerful tool in assessing modularity of products. By reordering

rows and columns of a DSM designers can achieve clustering of components so

that underlying modular structure of a product becomes apparent. Clustering

of design elements in the DSM is also known as partitioning. In his work “The

Design Structure System”, D.V. Steward discussed partitioning methods

(Steward, 1981). The goal of DSM partitioning is to achieve a “block triangular”

matrix structure by applying same re-ordering transformation to the rows and

the columns of the DSM. “Block diagonal” matrix structure emerges when

dependency marks are confined to appear either below the main diagonal or

32

within square blocks on the diagonal. For example the following two DSMs

represent identical components dependency (Figure 5: Clustering of design

elements into modules). After reordering of columns and rows a potential

modular structure emerges. By definition developed by Baldwin and Clark

(Baldwin & Clark, 2000), modules are units of a larger system whose structural

elements are powerfully connected among themselves and weakly connected to

elements in other units. In the presented DSM, modules are marked by two

bold-lined boxes. Modules contain strong dependencies within themselves.

Weak interdependence between modules is indicated by the fact that there are

only a few „X‟ marks outside the bounded boxes.

Figure 5: Clustering of design elements into modules

Understanding system design modularity helps reduce complexity of

modification and system maintenance tasks. Ideas of abstraction, information

hiding and interface when applied in the context of modular systems reduce

complexity. This is achieved through the process of hiding information into

separate abstractions that have simple interfaces. Abstraction hides the

complexity of design elements and their interactions within a module, while the

interface defines the interaction of the module with other components in the

system.

33

3.4 DSM in application to analysis of system complexity

DSM methodology provides a foundation for designing a software system

complexity measure suitable for use during the maintenance phase of the

software lifecycle. It was demonstrated in many studies that DSM methodology

can be used in the assessment of system modularity (Baldwin & Clark, 2000)

(Eppinger, Whitney, Smith, & Gebala, 1989). Understanding of the modular

structure of a system provides basis for analysis of cohesion of elements within

each module and measure of coupling between modules. MacCormack et al.

(MacCormack, Rusnak, & Baldwin, WP# 08-038, 2008) (MacCormack, Baldwin,

& Rusnak, WP# 4770-10, 2010) demonstrated a method of discerning core-

periphery structure of a software system using DSMs. Using the suggested

approach one can measure the relative stability of different modules of the

system and predict the „ripple effect‟ of code modifications. Thus, DSMs provide

a robust and repeatable way to analyze and measure the characteristics of a

design complexity of a system as a whole and at the component level.

34

4. Research Methods

This study applies DSM methodology to analyze the structural complexity of

a software system. Chosen approach draws extensively on methodology

developed by MacCormack, Baldwing and Rusnack (MacCormack, Baldwin, &

Rusnak, WP# 4770-10, 2010) (MacCormack, Rusnak, & Baldwin, Exploring the

Structure of Complex Software Designs: An Emperical Study of Open Source

and Proprietary Code, 2004) (MacCormack, Rusnak, & Baldwin, WP# 08-038,

2008). Subsections below provide a description of the approach used to

measure important complexity attributes of the software system architecture

and how these measures relate to the maintainability measure developed in

this study.

4.1 Applying DSM to software

Traditionally, DSM is used to discern the modular organization of any

system. In contrast to traditional usage, this study employed DSMs in

calculation of metrics that measure a degree of structural complexity of a

system. In software development, modules are usually easy to identify.

Software design engineers tend to group source files of related nature into

directories (Figure 6: Source code directory structure). This results in

clustering of files into groups that are defined by a project directory structure.

This clustering closely resembles product‟s modularization and represents

engineer‟s view of the system. This overt architecture of the product often

dictates managerial decisions in regards to feasibility evaluation of a proposed

maintenance task, assignment of engineers to tasks, and estimation of effort

that may be required.

35

Figure 6: Source code directory structure

In building DSMs, this study uses a source file as a unit of analysis. Prior

research in the field suggests that such level of analysis is suitable for a

number of reasons (MacCormack, Rusnak, & Baldwin, WP# 08-038, 2008):

1. Source files tend to contain functions and data structures associated

with the same functional requirement;

2. A source file, as a unit of analysis, reflects how programmers perceive

and shape the product structure;

3. Traditionally, software development tools operate with source files as

units to organize the software code;

4. Other empirical studies that focus on analysis of software structure

typically use source file as the unit of analysis.

Thus, DSMs that were built and analyzed have rows and columns

corresponding to source files. The order of files was preserved as it was found

in the project‟s directory structure.

 “Function Call” was used to identify dependencies between source files.

“Function Call” is one of several important types and one of the most universal

types of dependencies between source files in a software system. It is applicable

36

when working with almost all modern programming languages and

technologies. A “Function Call” is an instruction that uses a function name to

request a specific task to be executed. Called function may or may not be

located within the source file originating the request. When the function is not

located in the same file, this creates a directional dependency between two

source files. For example, if FunctionA() in SourceFile1 calls FunctionB() in

SourceFile2, then we note that SourceFile1 depends upon SourceFile2. This

dependency can be indicated in the DSM by placing a mark in the matrix

element located at (row: SourveFile1, column: SourceFile2). This dependency

does not imply that SourceFile2 depends upon SourceFile1; the dependency is

not symmetric unless SourceFile2 also calls a function defined in SourceFile1.

To record the dependencies between files a binary matrix was used such

that dependency between two files is indicated by „1‟ situated in a

corresponding element of the matrix. In absence of the corresponding

dependency, elements of the matrix hold the „0‟ value. In this approach, only

the presence of dependencies between two files was recorded, not nature of this

dependency or strength of coupling between two files.

To capture function calls, a product called Understand 2.5 was employed. It

is distributed by Scientific Toolworks, Inc. (www.scitools.com). This product is

capable of extracting function calls and other types of dependencies from the

source code tree provided to the tool as an input. It uses static code analysis to

extract dependencies. Use of a static call extractor is justified as the resultant

data represents the structure of the product from the programmer‟s

perspective. Data captured by the Understand is output in a format that can

easily be converted into a DSM.

4.2 Visibility Matrix

First metric of software system complexity measures the degree of „ripple

effect‟ propagation through the system directly – through an existing

37

dependency, or indirectly – through a chain of dependencies that exist across

elements. Propagation cost predicts the percentage of system elements that can

be affected, on average, when a change is made to a randomly selected design

element (MacCormack, Rusnak, & Baldwin, Exploring the Structure of

Complex Software Designs: An Emperical Study of Open Source and

Proprietary Code, 2004). Measured in percentage points this metric is

independent of size of the project, which lends this metric to be useful for

projects of different sizes.

In computing propagation cost, first the “visibility” (Sharman & Yassine,

2004) of design elements is identified. To compute visibility of any given

element for any given path, a reachability matrix is built using a technique that

employs matrix multiplication and summation (Warfield, 1973). A simple

example below illustrates the chosen approach.

Consider the system with the following element relationships, given as a

dependency graph and in a DSM form:

Figure 7: Example system dependency graph and DSM

Design element A depends upon elements B and C, so a change to element

B may have a direct impact on element A. Element B depends upon element D,

so a change to element D may have a direct impact on element B and an

indirect impact on element A. The path through which change impact – ripple

38

effect – propagates from the element D to the element A has a length of two.

Similarly, change to the element F may have indirect impact on the element A

with a propagation path length of three. Note that there are no indirect

dependencies between elements for path lengths of four or more.

To build a visibility matrix in addition to direct dependencies it is necessary

to identify all indirect dependencies between elements. By raising a binary

DSM to successive powers of n, one can find all indirect dependencies that

exist for the dependency propagation path lengths of n. The visibility matrix V

is derived by summing all resulting matrices together and with diagonal matrix

(to demonstrate that design elements of the system depend upon themselves).

Computed this way visibility matrix shows the dependencies that exist between

all system design elements.

Figure 8: Computation of the visibility matrix

4.3 Design element visibility metrics

Design elements visibility measures can be derived from the visibility

matrix. A measure of dependencies that flow into an element – Fan-In Visibility

(FIV) – can be computed by summing down the column of visibility matrix

39

which corresponds to the element, and dividing by the total number of

elements. An element with high Fan-In Visibility has many other elements that

depend on it. Fan-Out Visibility (FOV) – the measure of dependencies that flow

out from the element – can be obtained by summing along the row of the

visibility matrix which corresponds to the element, and dividing by the total

number of elements. An element with high Fan-Out Visibility depends upon

many other elements. In our example, element A has a Fan-Out Visibility of

100% meaning that it depends upon all elements in the system. The same

element has Fan-In Visibility of 17% (1/6th) meaning that it is visible only to

itself.1

Figure 9: Computation of Fan-In Visibility and Fan-Out Visibility

An average of Fan-In Visibility values across all elements of the system

provides a system wide measure of visibility. This metric is referred to as

“Propagation Cost”. Please note that due to the symmetry between aggregate of

Fan-In Visibility and Fan-Out Visibility measures – every dependency

contributes to both aggregate Fan-In and aggregate Fan-Out – propagation cost

can also be computed as an average of Fan-Out Visibility values across all

elements of the system.

1 This and following paragraphs draw extensively from MacCormack, Rusnack and Baldwin

(MacCormack, Baldwin, & Rusnak, WP# 4770-10, 2010)

40

4.4 Core and Peripheral Components

In modular system architecture not all modules are created equal. Some

components are more favorable to modifications than others. Modifiability of a

component depends on the nature of its interactions with other components.

As noted before, stability of the system is achieved when core components of

the system are enduring over time and changes primarily apply to periphery

components. If the system is designed correctly, changing periphery

components should not ripple through the entire system. Stability of core

modules should improve system maintainability.

As defined in literature (MacCormack, Baldwin, & Rusnak, WP# 4770-10,

2010), core components are those that are tightly coupled to other components

in the system. Peripheral components are characterized by weak coupling to

other components. As noted in the previous section coupling between

components can be characterized by the direction of dependency propagation.

Due to this duality it is appropriate to define two more component types:

shared components and control components (Figure 10: Characterization of

components by visibility measures).

Figure 10: Characterization of components by visibility measures

 Core Components (High FIV, High FOV) – are components with high

visibility on both measures. “Core” modules are “seen by” many modules

41

and “see” many other modules as they are implementing core system

functionality.

 Periphery Components (Low FIV, Low FOV) – are components with low

visibility in both directions. They typically implement auxiliary functions.

 Shared Components (High FIV, Low FOV) – are components that depend

on few components while many other components depend on them. They

usually provide shared functionality to many different parts of the

system. Shared libraries of basic functions are a good example of shared

components.

 Control Components (Low FIV, High FOV) – are components that usually

are responsible for directing the flow of program execution. They depend

on many different parts of the system, while only a few other components

demonstrate dependency on control components.2

To evaluate whether a component meets a high or low criteria for visibility

measures this study uses an approach proposed by MacCormack at al.

(MacCormack, Baldwin, & Rusnak, WP# 4770-10, 2010). Components that

exceed 50% of the maximum level of a visibility measure across all components

are valued as “High” while components that don‟t meet this threshold are

valued as “Low” for the corresponding visibility measure.

Grouping components in these four types can be used in several ways.

Obviously maintainability of components differs depending on their types.

Potential system stability can be evaluated by measuring relative size of the

“core”. The smaller the core, the more stable a system is likely to be.

Studies of many software systems demonstrated that modules (source files)

of the core type are not located in only a small number of distinct directories

(MacCormack, Baldwin, & Rusnak, WP# 4770-10, 2010). Core modules are

distributed throughout the system. For many systems it is not always clear

2 These definitions of four canonical types of components were first introduced by

MacCormack, Rusnack and Baldwin (MacCormack, Rusnak, & Baldwin, WP# 08-038, 2008)

42

from the directory structure which components are core and which are

peripheral. This finding denotes the challenge facing a system maintainer in

evaluating maintainability of individual components. Core components are

difficult to identify due to effort that may be required to trace all indirect

dependencies contributing to high FIV and high FOV measures. Metrics

evaluated in this study can assist system maintainers in evaluating how

system complexity affects maintenance tasks.

5. Hypotheses

This study utilizes the outlined methodology to explore the link between

complexity of software products and maintenance costs. The study focuses

specifically on the effort software developers spend implementing corrective

modifications to software. The following three hypotheses were tested in the

course of the study.

Hypothesis 1: The amount of effort to implement a corrective code change is

positively related to the overall system complexity as measured by the level of

interconnectedness of source files comprising the system.

Hypothesis 2: The likelihood of next modification going in a particular

source file is higher for core components of the system. Core components have

higher potential for causing additional rework cycles and as a consequence

higher maintenance costs.

Hypothesis 3: Product redesign has quantifiable economic benefits when

applied to source files and components that are measured to be contributing to

the overall complexity of the product.

43

6. Data

6.1 Description of the data

For this study, two consecutive versions of a mature software system were

analyzed. In this case maturity of the software system is defined by a wide

market acceptance of the product, and stability of its features. For ease of

description first version of the product will be referred to as “old product”, while

the newer version will be referred to as “new product”. As it will be

demonstrated later the architecture of the product changed significantly, so it

is quite reasonable to treat the two versions of the studied system as two

different products.

A major redesign effort was undertaken in-between studied versions of the

product. Most of the source code was rewritten using new languages. In the old

product the majority of source files (17570 out of 18512) were written in C/C++

languages. In the new product, the share of C/C++ files is much lower: 4949

out of 13139. The majority of files in the new product were written in C#

programming language (8149 out of 13139, a large increase from 605 in the old

product). The redesign effort was justified by the need to improve some system

quality attributes. Most of the system‟s functional requirements were

transferred from one version of the product to another without much change.

Two specific system quality attributes that the development team focused on

during the redesign effort were scalability and performance. Increase in both

targeted system quality attributes was achieved through increased modularity

and better mapping of functional requirements onto components of the system.

With new system architecture, it became possible to increase system

throughput by sharing load between several similar components performing

the same function. Better defined interfaces between components allowed the

system to be distributed between many computer systems. More targeted

mapping of functional requirements onto components permitted removal of

44

unused components from the system at the time of system deployment into

production.

Three types of data were collected for this study. For each version of the

product we collected:

- Snapshots of the whole source code tree at the time each version of the

product was released to customers;

- Source code change logs for the period of approximately 30 months after

each product release;

- Data from the bug tracking system that corresponds to source code

changes.

The snapshots of the source code tree were analyzed using Understand 2.5

(www.scitools.com) to derive dependency structure between source code files.

MATLAB (MathWorks, 2010) was used for matrix manipulation and graphing of

design structure matrices (DSMs).

Source code change logs were analyzed using custom scripts. Information

about files that were modified with each submitted change and related bug

identifiers were extracted from the change logs.

Based on the bug data, corrective changes were identified. Records

pertaining to corrective work items were analyzed to measure the effort a

software design engineer spent to devise the corresponding code changes.

Resulting dataset contains about 400 corrective changes for each version of

the product. This number is not a total number of known defects, but rather

the number of defects that have been fixed in the studied period of time. The

number of corrective code changes submitted to the code base depends

primarily on the development organization throughput, and by no means

should be used as a measure of overall product quality. Increase in

productivity associated with the product redesign may lead to a larger number

45

of issues getting fixed, however this does not imply that the quality of the

product code decreased with a redesign. The measurement of number of

defects and overall product quality is outside of scope for this study.

Focus on corrective maintenance tasks

This study specifically focused on corrective code changes made to the

software system in its maintenance phase of the life-cycle. The choice to

analyze only corrective modifications was made for a number of reasons,

primarily related to the high quality of data related to corrective modifications.

In the development organization used for the study, corrective changes are

always associated with a bug reported by a customer. Customers‟ change

requests are handled with increased urgency. Because of this urgency

associated with corrective change requests, solutions are delivered as soon as

possible. This results in the absence of idle time when issues are waiting for

developer resources to become available. Importance of corrective change

requests exhorts the development organization to apply more control to the

process of tracking open issues, hence each transaction with source code

related to the issue gets documented. This allows for more precise

measurement of time software engineers spend working with code.

Measuring Resolution Time

In the targeted organization software engineers record in the bug tracking

system the time when they start working on a code modification and the time

when the code modification is done. This provides two data points that can be

used in assessing the time spent by an engineer working with code. This

measure accounts only for one component of mean-time-to-change metric

(MTTC)(Pressman, 1982). MTTC includes the time it takes to analyze a change

request, design an appropriate modification, implement the change, test it, and

distribute it to all users. This study only focuses on the time engineers spend

designing an appropriate code modification. This precludes any influence from

ingredients of MTTC that may not be affected by complexity of the product

46

structure, the target of this study. Other components of MTTC, such as time to

investigate of a problem, testing time, and time to distribute the modification to

users may not have as strong of a relationship with product complexity.

In this study, a simplified approach is used to calculate the time engineers

spend designing code modifications. Eight-hour work days are assumed.

Weekends and nights are excluded from the computation of developer‟s effort.

If the code modification undergoes multiple rework cycles, time is computed

separately for each rework cycle that has been reported in the bug tracking

database. Total time for a particular code modification is a sum of all individual

rework cycle time measures.

The following formula was used for resolution time computation:

RT = (TEND – TBEG) – 16*Days(TEND – TBEG) – 16*Weekends(TEND – TBEG), where

TBEG is the time when the engineer reported to start designing the

code modification,

TEND is the time when the engineer reported to finish working on the

code modification.

Most studied code modifications took a software engineer more than one day

to develop. The formula above is justified by the fact that only a few issues out

of the studied set were worked on continually day and night. In most cases,

engineers took time off from working on the fix. Resolution time computed this

way does not account for variability of engineer‟s effort over time. This study

addresses uneven distribution of engineer‟s effort with an adjusted effort

measurement discussed in the next section.

Accounting for Variability of Effort

Based on the experience with the targeted organization and the insight into

the work practices of software engineers the following scheme for accounting

47

for variability of engineer‟s effort was developed for this study. The following

scheme attempts to capture the following dynamic.

Urgent nature of corrective code changes that this study focuses on requires

that software engineers spend effort to get to a solution as soon as possible;

thus, most changes should be coded within 1-2 weeks due to time pressure.

This goal is supported by the change request acceptance process employed in

the targeted organization. Change request acceptance process prevents code

and design modifications of larger scope from being treated the same way as

corrective changes. During the code change request assessment, incoming code

change requests are evaluated and classified based on the effort and urgency

that may be required to implement the change. Changes that are not as urgent,

require a significant design and test efforts, or may require more than a month

of work are designated to the Design Change Requests (DCRs) category.

Change requests of an urgent nature are designated to the Corrective Changes

category. The focus of this study was exclusively on Corrective Changes. Design

change requests were excluded from this study.

It is assumed, that if an engineer reports more than 10 work days for

designing a code modification, it is due to some extraneous circumstance, not

because of difficulties of working with the source code. For an example of such

extraneous circumstance consider the situation when an engineer needs to

consult a subject matter expert on a particular product feature. Operational

aspects of such consultation should not be counted as developer‟s effort coding

the solution. It is assumed that in the first 5 days of working on the issue

developers dedicate at least 75% of their working time to that issue. This

translates into 6 hours of work out of 8 work day hours. After 5 days of

working on the issue almost exclusively, focus of the developer may be shifted

to other issues that may seem more urgent. In the next 5 days of working on a

fix developer may be spending 25-40% of his/her time in the office working on

an issue from the last week. If an engineer reports more than 10 days working

48

on a particular code change, it is assumed that the engineer was working on

something else, so we should not count any time for that change that goes

beyond 10 working days. The following graph (Figure 11: Cumulative effort

spent as a function of number of days reported by an engineer) depicts the

accumulation of effort spent as a function of reported number of days.

Figure 11: Cumulative effort spent as a function of number of days reported by an engineer

The following scheme was used to account for productivity variability of an

individual software engineer working on a corrective change for a period of

multiple days:

If the engineer reported to begin and finish working on the fix on the same

day, the effort is computed using this formula:

E = (TEND – TBEG), where

TBEG is the time when the engineer reported to start working on the

code modification,

TEND is the time when the engineer reported to finish working on the

code modification.

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Effort (hr)

Days reported

49

If the software engineer reports TBEG and TEND on two consecutive work

days, the effort is computed using this formula:

E = (TEND – TBOD) + (TEOD – TBEG), where

TEOD is the time of the end of a work day. TEOD = 20:00 in this study

TBOD is the time of the beginning of a work day. TBOD = 08:00

If the software engineer reports TBEG and TEND, so that there are n working

days between the first and last days of work on the fix an additional element is

used to measure the effort spent by the engineer on those days. Effort will be

computed using this formula:

E = (TEND – TBOD) + (TEOD – TBEG) + EDAYS(n), where

EDAYS(n) is the effort an engineer spends on a long-running issue. In

this study the following table function was used:

Days reported, n EDAYS(n) Effort on day n

1 6 6

2 12 6

3 18 6

4 21 3

5 24 3

6 26 2

7 28 2

8 30 2

9 30 0

… 30 0

Table 1: Effort spent on an additional day

Computed this way, any code change should not take more than 46 hours

of engineer‟s effort. However, because of rework cycles total effort for some code

modifications surpassed this threshold. Effort spent by engineers in rework

cycles was included in the mean engineer‟s effort calculations.

50

7. Results

7.1 Comparison of Design Structures of Products

It is always a challenge to characterize the architecture of a software

product. Intuitively, engineers characterize architecture of products through

descriptions of patterns of interactions between parts of the product. The

challenge of a holistic characterization of a product design structure comes

from the fact that patterns of interactions between modules take many different

forms and shapes, from independent or sequential to bus architecture or a full

mesh. Most software products have a design structure that can only be

characterized as a hybrid including elements of modularity, independent

structures and bus design structure.

Design Structure Matrices aid analysis of architectures of products. In this

study DSMs for both versions of the product under review were built to

facilitate comparison of their design structures (Figure 12: DSMs of the product

before and after redesign).

Table 2 shows quantitative data comparing the product before and after the

re-design.

 Old Product New Product

Source Files 18,612 13,139

Entities (macros, types, variables, functions, files, ...) 1,793,627 1,108,423

Dependencies 182,235 112,634

Density of DSM 0.053% 0.065%

Table 2: Products comparison

Looking at the DSMs presented in Figure 12 one can notice evidence of

significant structural changes between the two studied versions of the product.

The following differences between representations of design structures of

studied products are now observable:

51

 DSM for the new product is smaller due to the smaller number of files

comprising the system.

 Perceived prevalence of vertical lines in the DSM for the old product

denotes the existence of modules that are called into from many parts of

the system. These “widely used” interfaces are evenly distributed across

the components of the product indicating a mesh like architecture of the

system.

 Perceived prevalence of white space away from the main diagonal in the

DSM for the new product combined with the increased measure of DSM

density indicates a greater cohesion of modules (source files) within

components.

 Few components in the DSM for the new product have close to diagonal

matrix representation pointing to sequential call relationship between

source files in those components.

52

Figure 12: DSMs of the product before and after redesign

53

7.2 Comparison of Visibility Matrices

Complexity of the product manifested through indirect dependencies

between source files can be studied using visibility matrices. In both cases, to

arrive at the matrices reviewed below, DSMs were multiplied to the power 6.

Further multiplication did not introduce any new dependencies. This means

that the files that appear on the visibility matrix as dependent on each other

have at most six degrees of separation. This means that the chain of

dependencies connecting these two files has no more than 5 intermediaries.

Table 3 continues the quantitative data comparison of the product before

and after the re-design. Qualitatively, it is obvious that product structure was

significantly improved with the redesign. Smaller share of files demonstrating

“core” and “control” qualities is a sign of good system architecture. Increased

portion of “shared” modules is indicative of a modular design and higher code

reuse.

 Old Product New Product

Source Files 18,612 13,139

Entities (macros, types, variables, functions, files, ...) 1,793,627 1,108,423

Dependencies 182,235 112,634

Density of DSM 0.053% 0.065%

Direct and Indirect Dependencies 131,045,503 18,971,910

Propagation Cost 38% 11%

Source files classified by type (fraction of total)

“Core” - Visibility: High Fan-In, High Fan-Out 7245 (39%) 0 (0%)

“Periphery” - Visibility: Low Fan-In, Low Fan-Out 1889 (10%) 8445 (64%)

“Shared” - Visibility: High Fan-In, Low Fan-Out 1180 (6%) 3328 (25%)

“Control” - Visibility: Low Fan-In, High Fan-Out 8298 (45%) 1366 (10%)

Table 3: Quantitative comparison of products complexity

Figure 13 shows the difference between visibility matrices for the studied

products. Visibility matrix for the old product is obviously much denser. This is

54

an indication of the high propagation cost. Propagation cost measured

numerically for the old product is at 38%. This means that a change to a

source file in the old product has a potential to ripple through average of 38%

other files in the system. In other words, when making a code change an

engineer should consider how this change may affect other 7,072 source files

in the system (7,072 = 18,612 * 38%). In contrast, new product‟s propagation

cost is only 11%. From engineer‟s perspective, this means that on average there

are 1,445 source files that a random code change can ripple through.

Obviously, the new product is 4 to 7 times more stable than the old product.

 Visibility matrices provide a managerial tool for estimation of the risk of

ripple effect depending on which source files are modified. By finding the

visibility matrix column corresponding to a source file that is being modified,

decision makers can assess the risk of the change causing the ripple effect.

More importantly source files that may be affected can be identified by walking

down the column and listing all the source files that directly and indirectly

depend on the modified code.

A very important difference between the two studied products is that they

have very different structures from the “core-periphery” perspective

(MacCormack, Baldwin, & Rusnak, WP# 4770-10, 2010). In the old product,

files exhibiting “core” (39%) characteristic prevail over “periphery” (10%) files.

“Control” (45%) files represent the largest share of files in the old product,

while “Shared” (6%) source files represent the smallest share. In contrast, the

majority of files in the new product are represented by “periphery” (64%) and

“shared” (25%) modules. More important, new product does not have any “core”

files, files with High Fan-In and High Fan Out visibility. These changes in the

design structure may be attributed to the scalability requirement that provoked

the re-design effort between the studied versions of the product. It can be

hypothesized that the “periphery” structure of software products is more

suitable to satisfy high scalability demands for large-scale software systems.

55

Figure 13: Visibility matrices of the product before and after redesign

56

7.3 Effort Data

There has not been much research done in the area of measurement of

engineering effort spent performing maintenance tasks. An obvious reason for

this gap is that research in this area can be quite challenging. On one hand,

validity of data collected from artificial experiments can be criticized as non-

representative of industry practices. On the other hand, data collected in the

industry setting is difficult to obtain for a number of reasons, including lack of

discipline in companies to collect relevant data and their unwillingness to

share any information with researchers.

Data obtained for this study holds a promise of being both representative of

the industry practice and valid from the experiment design perspective.

Analyzed data set was selected based on the assumption that corrective code

changes were urgent enough, so that the productivity of software engineers

working on corresponding code modifications was consistently high and the

need for precise tracking of issues demanded by customers prompted engineers

to track their progress with utmost rigor. Finally, collected data represents the

work of the same development team where the average experience level of

engineers working with the products was maintained the same between the

studied products.

Figure 14 shows distributions of observed code changes by the time

software engineers spent designing a change. Cumulative distribution of

empirical measures of resolution time is presented in the Figure 15 to facilitate

results comparison. Table 4 has a quantitative description of the same set of

the data except for outliers found beyond 120 hours threshold. The decision

was made to not include outliers in the mean value calculation. These outliers

represent misdiagnosed issues that required significantly greater effort than

can be justified by a change request of corrective maintenance nature. Removal

of the outliers from the statistical analysis adds a slight bias to the results

against the proposed theses because of a longer tail for the old product.

57

Figure 14: Side-by-side comparison of products. Distribution of change requests by time spent developing a code modification and
polynomial trend lines.

Figure 15: Cumulative distribution of empirical measures of resolution time

4.1%
(17/418)

2.5%
(10/399)

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%
4 8

1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

6
4

6
8

7
2

7
6

8
0

8
4

8
8

9
2

9
6

10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

M
o

re

Frequency

Resolution time (Hours)

Old Product

New Product

Poly. (Old Product)

Poly. (New Product)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 8 1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

6
4

6
8

7
2

7
6

8
0

8
4

8
8

9
2

9
6

10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

M
o

re

Resolution time (Hours)

Old Product

New Product

58

Old Product New Product

Mean 38.2 32.8

Standard Error 1.3 1.3

Median 33 26

Standard Deviation 26.4 25.4

Sample Variance 697.4 644.7

Range 119 120

Cumulative Effort 14,964 12,333

Modifications Count (number) 392 376

Table 4: Resolution time statistics (hours per corrective code change, unless noted otherwise)

Analysis of the data shows that on average implementation of a corrective

code modification took engineers working with new product code base 14% less

time than engineers working with the old product. 14% performance

improvement resulted in more expeditious delivery of solutions. As can be seen

from the cumulative distribution of resolution time measures graph (Figure 15:

Cumulative distribution of empirical measures of resolution time), a corrective

code modification targeted at new product code base has 70% probability of

being finished in less than 40 hours of reported time, which amounts to

approximately one person work week. In comparison, code modifications

against the old product codebase have only 60% probability of being finished

after a similar amount of time spent by an engineer designing the change.

Figures 16 and 17 show distributions of observed code changes by the total

effort, adjusted to reflect its variability over time, that software engineers spent

designing the change. Table 5 (Table 5: Productivity adjusted effort statistics

(hours per code change, unless noted otherwise)) has a quantitative description

of the same data. A few outliers were not included in the mean value

calculation. In the presented figures, issues that required more than 76 hours

of productivity adjusted effort were excluded from the quantitative analysis.

These outliers represent misdiagnosed issues that required significantly greater

effort than can be justified by a change request of corrective maintenance

nature.

59

Figure 16: Distribution of corrective code changes by effort, adjusted to productivity

variability, spent developing a code modification (Old Product)

Figure 17: Distribution of corrective code changes by effort, adjusted to productivity

variability, spent developing a code modification (New Product)

Analysis of the data shows that on average performance of engineers

working on corrective code modifications improved by 10% after the re-design

of the product. While working on code changes for the old product developers

reported on average 27.5 hours per single change, with the new product

average effort dropped to 25 hours. For a side by side comparison of

0

10

20

30

40

50

60

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84

Number of
modificatoins

Developer
Effort(Hours)

0

10

20

30

40

50

60 Number of
modifications

Developer
Effort(Hours)

60

normalized distributions of changes by effort spent developing a corresponding

code modification see figure 18 (Figure 18: Side-by-side comparison of

products. Distribution of change requests by productivity adjusted effort spent

developing a code modification and polynomial trend lines.).

The share of change requests that had at least one cycle of rework

decreased significantly with re-design. In the studied context rework cycles

may be caused by a new defect or incompleteness of a proposed code

modification found during peer code review or the testing phase of the

corrective maintenance work process. Once a defect is identified, the developer

responsible for the modification is pulled back to work on the code change, so

that resulting code is bug free. Fraction of issues that had at least one rework

cycle dropped from 12% to 9% after the product redesign. 25% reduction in the

number of modifications that undergo additional rework cycles is a significant

improvement. Rework cycles are usually a result of hidden dependencies that

were not discovered by an engineer designing the initial code modification.

Undiscovered hidden dependencies often lead to functional regressions getting

submitted as a part of corrective code modifications. Engineer‟s ability to

identify all dependencies while designing the code modification is crucial to

maintaining existing functionality of the product through the maintenance

phase of the product lifecycle.

It is noteworthy that the average number of source files “touched” per

corrective change increased from 2.6 to 2.8. It may be due to a higher

cohesiveness of code in source files within a single component. However, the

average time spent working with a source file decreased from 10.6 hours to 8.9

hours, which translates into a 16% improvement.

61

Figure 18: Side-by-side comparison of products. Distribution of change requests by

productivity adjusted effort spent developing a code modification and polynomial trend lines.

Old Product New Product

Mean 27.5 25.0

Standard Error 0.7 0.7

Median 26 24

Standard Deviation 14.7 13.9

Sample Variance 215.4 194.5

Range 71 71

Cumulative Effort 11332 9582

Modifications Count 412 383

Avg. number of files touched per change 2.6 2.8

Avg. effort per source file 10.6 8.9

Re-work data

Number of issues with rework cycles 50 35

Rework issues as a fraction of all issues 12% 9%

Table 5: Productivity adjusted effort statistics (hours per code change, unless noted otherwise)

0%

2%

4%

6%

8%

10%

12%

14%

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

Old Product

New Product

Poly. (Old Product)

Poly. (New Product)

62

7.4 Hypothesis One: Link between complexity of the product and

maintenance effort

The results discussed above strongly support the first hypothesis proposed

for this study. Decrease in product‟s propagation cost from 38% to 11% can be

linked to the 10-14% improvement in developer productivity. Besides engineer

productivity such metrics as amount of rework and effort needed for a single

file modification improved by 16-25%.

7.5 Hypothesis Two: ‘Core’ source files are more susceptible to change

The second proposed hypothesis was that core modules - files that

demonstrate High Fan-In and High Fan-Out visibility measures - get modified

more often than any other type of components. In this study only the old

product had a distinct “core-periphery architecture (MacCormack, Baldwin, &

Rusnak, WP# 4770-10, 2010). Hence, the measurements below are based on

the data collected for the old product. Analysis of all source files that were

touched during the first 30 months of maintenance from the old product

release date shows that core files are significantly more likely to be modified

(Figure 19: Distribution of individual source files changed by module type). Out

of 542 unique files that were touched in the old product code base 404 were of

the “core” type. Frequency with which “core” files were modified is

disproportionate to their share of the whole system. As described in table 3

(Table 3: Quantitative comparison of products complexity) “core” files amount

to only 39% of all modules comprising the old product.

63

Figure 19: Distribution of individual source files changed by module type for the old product

Structural analysis of all changes showed that most changes contained at

least one “core” file. Only 8% of corrective maintenance code change

submissions did not contain a “core” file. It is notable that most non-„core

touching‟ fixes touched only one source file. This indicates that developers were

able to localize code modification to a single source file in order to implement a

required corrective change when non-„core‟ file contained the implementation

for the affected functional requirement. In other words ripple effect of non-„core‟

modules was low.

Analysis of how frequently isolated source files were touched showed that

most frequently modified files are of a “core” type. 85% of files that were

modified more than once were “core” files (115 out of 135). Some of “core”

source files were modified 10-12 times in the studied time period.

Second most frequently modified type of files was “control” – files that have

High Fan-Out and Low Fan-In visibility measures. In the old product 24% of

files that were changed in the first 30 months of maintenance were “control”

files. Even for the new product, 19% of modified files were “control” files, which

is disproportionate with 10% share that “control” files occupy in the new

product code base (Figure 20: Distribution of individual source files changed by

module type for the new product).

75%

0% 1%

24%

0%

20%

40%

60%

80%

"core"
(39% of all files)

"periphery"
(10% of all files)

"shared"
(6% of all files)

"control"
(45% of all files)

64

Figure 20: Distribution of individual source files changed by module type for the new product

Across both products the probability of modification of a “Periphery” file is

lowest. In the old product codebase, probability of a code change going into a

“periphery” file was close to 0%. In the new product the absolute probability

value increased to 47%. This is mostly due to the fact that the vast majority of

the files in the new product code base are “periphery” files (64% of all files).

7.6 Hypothesis Three: Measuring economic benefit of reduction of

product complexity

As a software product goes through its lifecycle, the focus of a software

development organization shifts from functional product improvements to cost

reduction. As mentioned earlier in this paper costs of maintenance overshadow

costs of initial software development by a large margin. Maintenance costs may

reach up to 90% of the total product lifecycle cost. In such setting, 10%

productivity improvement during the maintenance phase may result in savings

almost as large as the cost of the initial product development. As the pressure

for lowering costs of the maintenance phase increases, redesign that reduces

structural complexity of the product becomes more economically viable and

desirable.

Of course, any redesign may have downsides that need to be considered by

management before the decision to invest resources into redesign of an existing

0%

47%

34%

19%

0%

10%

20%

30%

40%

50%

"core"
(0% of all files)

"periphery"
(64% of all files)

"shared"
(25% of all files)

"control"
(10% of all files)

65

product can be made. Redesigns often introduce a lot of new code that will

have new defects. Fixing of these new defects will have a cost to the

organization. If existing software system reached a superior level of stability –

very few corrective change requests are made over the prolonged period of time

– redesign may not be as beneficial. Redesigned products have marginal new

value for existing customers - if functionality is the same there is no reason to

switch to the new product. From the marketing perspective redesigns are not

as desirable as new product features. There are also deployment costs that any

development organization needs to account for before committing resources

and time to product redesign effort. It is essential for a development

organization to perform a comprehensive Net Present Value (NPV) analysis

before a decision to redesign an existing product can be made. Obviously, NPV-

negative initiatives should be avoided.

8. Conclusion

This study aimed to demonstrate the link between design structure

complexity of a software system and the maintenance costs. Empirical data

analysis presented in this paper supports formulated hypotheses and

complements the wealth of public knowledge on the topics of complexity and

software engineering economics.

The scientific contribution of this work is in development of an industry

based experiment to reliably measure software engineer‟s effort of working with

sourced code. Resulting data was used to estimate the effect of design

structure complexity on software developer‟s productivity. By measuring both,

software complexity and engineers‟ effort required to perform similar

maintenance tasks for two distinct versions of the software product it was

possible to demonstrate the link between product design structure and

maintenance costs.

66

Design of code changes is only one of the steps of the whole corrective

change process. However this step is affected the most by the design structure

complexity of the product. Traditionally, corrective code change process

includes such steps as problem investigation, design of the code change,

regression testing and fix distribution. Out of these four major steps problem

investigation is the most difficult to control. The effort spent by engineers

performing this step varies tremendously depending on the skill and experience

of an engineer, data availability, and criticality of the problem. Regression

testing and fix distribution steps can be improved greatly through more

efficient operations and automation. These steps depend on product

complexity, however the dependency is weak. Designing corrective code

changes step depends on productivity of highly skilled engineers and

represents a significant portion of costs of the maintenance phase of software

lifecycle. As demonstrated in this paper, re-design of a product can improve

productivity of engineers by more than 10%. This improvement can translate in

a substantial cost reduction.

The software complexity measures presented in this paper are based on

module visibility measures developed by a group of researchers that includes

Alan MacCormack, John Rusnak and Carliss Baldwin (MacCormack, Rusnak,

& Baldwin, Exploring the Structure of Complex Software Designs: An

Emperical Study of Open Source and Proprietary Code, 2004) (MacCormack,

Rusnak, & Baldwin, WP# 08-038, 2008) (MacCormack, Baldwin, & Rusnak,

WP# 4770-10, 2010). These complexity measures are well suited for measuring

maintainability of software and can be used in the industry setting. As was

demonstrated in the paper, by measuring propagation cost, Fan-In/Fan-Out

Visibility of modules, and the “core-periphery” structure of a software system

one can create a universal metric that satisfies robustness, normativeness,

specifity and prescriptiveness requirements of a good maintainability measure.

This metric can be used for measuring complexity of software products found

67

in different phases of product lifecycle and can be effectively employed in the

process of controlling complexity of new and legacy software products.

Economic benefits of controlling complexity of products have significant

managerial implications. Development organizations should use a combination

of metrics to measure the complexity of new and legacy software products to

control their lifecycle costs. Module interconnectedness and overall product

complexity metrics introduced in this paper is one of the approaches that can

be used. Measurable economic benefit of redesign may prompt managers of

development organizations to dedicate time and resources to more frequent

redesigns of both individual components and the product as a whole. Role of

technical architects involved in new product development should be extended

to include the evaluation of current product design complexity and finding

ways to reduce complexity and improve maintainability of the final product

while software system is being developed for the first time. As this study

indicated, “core-periphery” product architecture has an inherent cost to it.

Unless there is a functional requirement for having a large amount of modules

of the “core” type - “core-periphery” design structure should be avoided.

68

9. Works Cited

Abernathy, W. J., & Utterback, J. M. (1978). Patterns of Industrial

Innovation. Technology Review , 80 (7), 40-46.

Agresti, W. W. (1982). Measuring Program Maintainability. Journal of

Systems Management , 33 (3), 26-29.

Baldwin, C. Y., & Clark, K. B. (2000). Design Rules. Cambridge, MA: The

MIT Press.

Banker, R. D., Datar, S. M., Kemerer, C. F., & Zweig, D. (1993). Software

Complexity and Maintenance Costs. Communications of the ACM , 36 (11), 81-

94.

Boehm, B. W. (1976, December). Software Engineering. IEEE Transactions

on Computers , 1226-1241.

Boehm, B. W. (1981). Software Engineering Economics. Englewood Cliffs,

N.J.: Prentice-Hall, Inc.

Coleman, D. (1992). Assessing Maintainability. Software Engineering

Productivity Conference (pp. 525-532). Palo Alto, CA: Hewlett-Packard.

Coleman, D., Ash, D., Lowther, B., & Oman, P. (1994). Using Metrics to

Evaluate Software System Maintainability. IEEE Computer , 27 (8), 44-49.

Curtis, B., Sheppard, S. B., Milliman, P., Borst, M. A., & Love, T. (1979).

Measuring the Psychological Complexity of Software Maintenance Tasks with

the Halstead and McCabe Metrics. IEEE Transactions on Software Engineering ,

SE-5 (2), 96-104.

Eppinger, S. D., Whitney, D. E., Smith, R. P., & Gebala, D. A. (1989).

Organizing the Tasks in Complex Design Projects. Massachusetts Institute of

Technology. Cambridge, MA: Massachusetts Institute of Technology.

69

Fayad, M. (2002). Accomplishing Software Stability. Communications Of The

ACM (Vol. 45. No. 1), 111-115.

Gibson, V. R., & Senn, J. A. (1989). System Structure and Software

Maintenance Performance. Communications of the ACM , 32 (3), 347-358.

Halstead, M. H. (1977). Elements of software science. New York: Elsevier.

Harrison, W., Magel, K., Kluczny, R., & DeKock, A. (1982). Applying

Software Complexity Metrics to Program Maintenance. IEEE Computer , 15 (9),

65-79.

IEEE. (1998). IEEE Standard for Software Maintenance. New York, NY:

Institute of Electrical and Electronics Engineers, inc.

IEEE. (1988). IEEE Std. 982.1-1988 IEEE Standard Dictionary of Measures to

Produce Reliable Software. New York, NY: The Institute of Electrical and

Electronics Engineers, Inc.

IEEE. (2005). IEEE Std. 982.1-2005 IEEE Standard Dictionary of Measures of

the Software Aspects of Dependability. New York, NY: The Institute of Electrical

and Electronics Engineers, Inc.

ISO/IEC, & IEEE. (2006). Software Engineering - Software Life Cycle

Processes - Maintenance. Geneva: ISO/IEEE.

Kearney, J. K., Sedlmeyer, R. L., Thompson, W. B., Gray, M. A., & Adler, M.

A. (1986). Software Complexity Measurement. Communications of the ACM , 29

(11), 1044-1050.

Krishnan, M. S. Cost, Quality and User Satisfaction of Software Products: An

Empirical Analysis. Graduate School of Industrial Administration, Carnegie

Mellon University.

70

Lehman, M. M. (1980, September). Programs, Life Cycles, and Laws of

Software Evolution. Proceedings of the IEEE , 1060-1076.

Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E., & Turski, W. M.

(1997). Metrics and laws of software evolution - the nineties view. Software

Metrics Symposium (pp. 20-32). Albuquerque, NM: IEEE.

Lemos, R. (2001, June 8). Fix for MS Exchange causes mail problems.

Retrieved March 7, 2010, from CNET News.com: http://news.cnet.com/Fix-for-

MS-Exchange-causes-mail-problems/2100-1001_3-268133.html

Lemos, R. (2001, June 12). Microsoft Exchange bug: Strike three? Retrieved

March 7, 2010, from CNET News.com: http://news.cnet.com/2100-1001-

268296.html

Lemos, R. (2001, June 7). Security hole found in Exchange 2000. Retrieved

March 7, 2010, from CNET News.com: http://news.cnet.com/Security-hole-

found-in-Exchange-2000/2100-1001_3-268022.html

Leyden, J. (2001, June 30). MS patches Exchange 2000 email spy bug.

Retrieved March 7, 2010, from The Register:

http://www.theregister.co.uk/2001/06/30/ms_patches_exchange_2000_email

/

MacCormack, A., Baldwin, C., & Rusnak, J. (2010). The Architecture of

Complex Systems: Do Core-periphery Structures Dominate? Cambridge, MA: MIT

Sloan School of Management.

MacCormack, A., Rusnak, J., & Baldwin, C. (2004). Exploring the Structure

of Complex Software Designs: An Emperical Study of Open Source and

Proprietary Code. Boston: Harvard Business School.

71

MacCormack, A., Rusnak, J., & Baldwin, C. (2008). The Impact of

Component Modularity on Design Evolution: Evidence from the Software

Industry. Cambridge, MA: Harvard Business School.

MathWorks, T. (2010, April 20). MATLAB - The Language Of Technical

Computing. Retrieved April 20, 2010, from MathWorks:

http://www.mathworks.com/products/matlab/

Microsoft Corporation. (2001, June 06). Microsoft Security Bulletin MS01-

030: Incorrect Attachment Handling in Exchange OWA Can Execute Script.

Retrieved March 7, 2010, from Microsoft TechNet:

http://www.microsoft.com/technet/security/Bulletin/MS01-030.mspx

Oman, P. W., & Hagemeister, J. (1992). Metrics for Assessing a Software

System's Maintainability. Conference on Software Maintenance (pp. 337-344).

Los Alamitos, CA: IEEE Computer Society Press.

Pressman, R. S. (1982). Software engineering: a practitioner's approach. New

York: McGraw-Hill.

Rothman, J. (2000, October). What Does It Cost You To Fix A Defect? And

Why Should You Care? Retrieved March 13, 2010, from Rothman Consulting

Group, Inc.: http://www.jrothman.com/Papers/Costtofixdefect.html

Schach, S. R., Jin, B., Yu, L., Heller, G. Z., & Offutt, J. (2003). Determining

the Distribution of Maintenance Categories: Survey versus Measurment. The

Netherlands: Kluwer Academic Publishers.

Seacord, R. C., Plakosh, D., & Lewis, G. A. (2003). Modernizing Legacy

Systems: Software Technologies, Engineering Processes, and Business Practices.

Boston: Addison-Wesley.

Sharman, D. M., & Yassine, A. A. (2004). Characterizing Complex Product

Architectures. Systems Engineering , 7 (1), 35-60.

72

Stevens, W. P., Myers, G. J., & Constantine, L. L. (1974). Structured Design.

IBM Systems Journal , 13 (2), 115-139.

Steward, D. V. (1981). The Design Structure System: A Method for

Managing the Design of Complex Systems. IEEE Transactions on Engineering

Management , EM-28 (3), 71-74.

Suh, N. P. (2001). Axiomatic Design: Advances and Applications. New York:

Oxford University Press.

Suh, N. P. (2005). Complexity: Theory and Applications. New York, New York:

Oxford University Press.

Suh, N. P. (1990). The Principles of Design. New York, New York: Oxford

University Press, Inc.

Ulrich, K. (1995). The role of product architecture in the manufacturing

firm. Research Policy (24), 419-440.

Warfield, J. N. (1973). Binary Matrices in System Modeling. IEEE

Transactions on Systems, Man, and Cybernetics , SMC-3 (5), 441-449.

Woodward, M. R., Hennell, M. A., & Hedley, D. (1979). A Measure of Control

Flow Complexity in Program Text. IEEE Transactions on Software Engineering ,

SE-5 (No. 1), 45-50.

www.scitools.com. (n.d.). Retrieved March 12, 2010, from Understand:

Source Code Analytics & Metrics: http://www.scitools.com

