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Abstract 

This paper reports results of an empirical study that aimed to demonstrate 

the link between software product design structure and engineers‟ effort to 

perform a code modification in the context of a corrective maintenance task. 

First, this paper reviews the current state of the art in engineering economics 

of the maintenance phase of software lifecycle. Secondly, a measure of software 

product complexity suitable to assess maintainability of a software system is 

developed. This measure is used to analyze the design structure change that 

happened between two versions of a mature software product. The product 

selected for this study underwent a significant re-design between two studied 

versions. Thirdly, an experiment is designed to measure the effort engineers 

spend designing a code modification associated with a corrective change 

request. These effort measurements are used to demonstrate the effect of 

product design complexity on engineers‟ productivity. It is asserted in the paper 

that engineer‟s productivity improvements have a significant economic value 

and can be used to justify investments into re-design of an existing software 

product. 
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Title: Visiting Associate Professor, Sloan School of Management 
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1. Introduction 

1.1 Research Motivation 

On June 12, 2001, the online publication CNET News.com, published an 

article titled “Microsoft Exchange bug: Strike three?” which read that 

“Microsoft contritely acknowledged Wednesday that its second attempt to fix 

an Exchange security hole went awry. Rather than fix the problem – and the 

security hole – the company’s second attempt at a software patch included a 

catastrophic bug that caused many servers to hang. The company was not 

aware of the problem until alerted by CNET News.com.” (Lemos, Microsoft 

Exchange bug: Strike three?, 2001) 

A closer look at facts behind this article revealed the following story. It took 

three revisions and almost seven days to fix a code flaw that was later named 

“Exchange 2000 email spy bug”. We would never know if the first two attempts 

to patch the security hole were successful at fixing this flaw. However, it is now 

well known that code changes that went into the first two patches had 

disastrous side effects and had to be reverted. Several software engineers were 

involved in building the patch. However, only a small amount of code was 

added in its final version. The amount of effort that went into building the fix 

was vastly out of proportion if compared to the efforts necessary to write the 

same amount of code in a newly developed piece of software. (Leyden, 2001) 

(Microsoft Corporation, 2001) (Lemos, Security hole found in Exchange 2000, 

2001) (Lemos, Fix for MS Exchange causes mail problems, 2001) 

This and other similar incidents demonstrate typical challenges that 

software vendors face when their products are in the maintenance phase of 

software life cycle. Yet, despite inextricable difficulties of software maintenance, 

most research on software products economics has been focused on costs 

management during the development phase of software lifecycle, ignoring costs 

incurred during the maintenance phase. This disparity is quite surprising since 
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prior research suggests that software maintenance activities represent 

considerable economic costs. It has been estimated that for most software 

products cost of maintenance activities exceeds the initial cost of development 

and can reach up to 90% of total life cycle cost of software development. 

(Seacord, Plakosh, & Lewis, 2003) Even in practice, despite its importance, 

software maintenance remains a highly neglected activity: less-qualified 

personnel is generally assigned to maintenance tasks; commonly accepted 

measurements of success in the maintenance phase usually revolve around 

cost saving and minimization of effort required for maintenance tasks; and 

optimizing around development costs and schedule criteria often leads to 

compromises in documentation, testing and structuring. These practices result 

in increased software maintenance costs. 

Understanding drivers of software product maintenance costs should be 

useful to anyone who may be involved in post-release support of software 

products. This includes software engineers and designers who must consider 

trade-offs in the risk and uncertainty associated with various performance 

criteria of the change design activities. Specifically, they would likely be 

interested to understand tradeoffs between time to solution, amount of testing 

that may be required, and effects of code changes on maintainability of the 

product. This also includes system architects who may be involved in 

continuous evaluation of system architecture and leading redesign initiatives. 

Finally, managers need to be able to accurately estimate development effort 

required for maintenance activities. 

This study focuses on software complexity as one of the main drivers of 

maintenance costs and represents an empirical analysis of effects of software 

complexity on costs associated with maintenance tasks within a large-scale 

commercial software product organization. Using a previously developed model 

for measuring the degree of design modularity (MacCormack, Rusnak, & 

Baldwin, 2004), this research estimates the impact of software complexity on 
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maintenance costs incurred by a large software development organization. 

Further, by applying the same analysis to different versions of the same 

product we aimed to measure the economic benefit of redesign efforts that have 

taken place between consecutive versions of the same product. In our work we 

assumed that a considerable amount of redesign happens between versions of 

the product while most existing functionality is preserved for backward-

compatibility reasons. 

This paper proceeds as follows. The next section, section two, reviews prior 

works on the topic of software maintenance and its economical significance. 

This section also discusses factors influencing ease of maintenance and 

traditional approaches to measuring these factors. In conclusion, section two 

asserts existence of a link between system complexity and its maintainability. 

Section three describes axiomatic design and design structure matrix 

methodologies in the context of measuring systems design complexity. It is 

proposed that a measure of complexity suitable for controlling the aspects of 

maintainability pertaining to system complexity can be designed based on 

these methodologies. Section four introduces the research methodology used in 

the study. This methodology uses design structure matrices to analyze system 

complexity associated with dependencies that exist between its component 

elements. Section five formulates hypotheses that were tested in the study. 

Section six and seven report empirical results and test them against 

hypotheses. Section eight concludes the paper. 

  



9 
 

2. Software Maintenance 

2.1 Software Maintenance 

Software maintenance is a broad term that refers to any changes that must 

be made to software products after they have been released to customers. IEEE 

Standard for Software Maintenance defines maintenance as “modification of a 

software product after delivery to correct faults, to improve performance or 

other attributes, or to adapt the product to a modified environment.” (IEEE, 

1998) 

Another definition is offered by Seacord et al., who summarized that reasons 

for software change typically belong to one of the following four categories 

(Seacord, Plakosh, & Lewis, 2003) (IEEE, 1998): 

1. Corrective. These changes are made to repair defects in the system. 

Defects cause software to behave inconsistently with an agreed upon 

specification.  Defects are usually caused by design/logic mistakes or 

implementation errors. Corrective activity is usually associated with a 

documented “bug” report initiated by an end user who notices 

unexpected behavior of a software system. 

2. Adaptive. These changes are made to keep pace with changing 

environments, such as new operating systems, language compliers and 

tools, database management systems and other commercial components. 

3. Perfective. These changes are made to improve the product, such as 

adding new functional requirements, or to enhance performance, 

usability, or other system attributes. Perfective maintenance concerns 

functional enhancements to the product and improvements of system‟s 

operation from performance perspective or usability. Any change to 

specification should trigger a perfective change. Perfective changes are 

usually accompanied by a design change request. Such requests undergo 

reviews and need to gain approval before changes get implemented. 
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Approval for perfective change is contingent on feasibility of the 

improvement and on marketing/business justification for the change. 

4. Preventive. These changes are made to improve future maintainability 

and reliability of a system. Unlike the preceding three reactive reasons 

for change, preventive changes proactively seek to simplify future 

evolution of the software product. 

Some of the most recent studies of the distribution of changes between 

these four categories found that a majority of all changes are corrective or 

perfective. More than 90% of maintenance falls into one of these two categories. 

Depending on the type of software, corrective changes alone may represent up 

to 70% of all changes. (Schach, Jin, Yu, Heller, & Offutt, 2003) 

2.2 Cost of Software Maintenance to Software Development 

Organization 

Software maintenance accounts for more effort than any other software 

engineering activity. Multiple studies demonstrated that the cost of fixing a 

software defect grows in geometrical progression with the phase of software 

product life cycle where the defects have been discovered (Boehm, Software 

Engineering, 1976) (Pressman, 1982) (Rothman, 2000). 
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Figure 1: Increase in cost-to-fix or change software through life-cycle, based on industry data 

(adopted from Boehm, 1981) 

As Figure 1 above demonstrates, the majority of software costs are incurred 

during the maintenance phase with maintenance activities consuming as much 

as 75-90% of the total life-cycle dollar. Traditionally, maintenance costs are 

attributed to the maintainers‟ effort, since maintenance costs are most directly 

a function of the professional labor component of maintenance activities. 

Regardless of the type of maintenance, corrective or perfective or preventive, 

there are three main activities that take place (Boehm, Software Engineering, 

1976): 

 Understanding the existing software 

 Modifying the existing software 

 Revalidating the modified software. 

Studies of software maintainers have shown that approximately 50% of their 

time is spent in the process of understanding the code being modified. It is 

believed that a number of characteristics of existing software source code have 
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impact on the amount of maintenance effort required. Complexity of software 

was identified as one of these important characteristics that tend to have a 

direct effect on amount of effort required to perform a maintenance task 

(Banker, Datar, Kemerer, & Zweig, 1993). Complexity in the context of the 

mentioned studies referred to psychological complexity - a characteristic of 

software which makes it difficult for people to understand and work with. As 

defined by Curtis et al (Curtis, Sheppard, Milliman, Borst, & Love, 1979) 

psychological complexity assesses mental difficulty of working with source code 

through measuring human performance on programming tasks. 

2.3 Why modify software after release 

Case studies of multiple software systems performed by M.M. Lehman over 

a period of time that spans more than two decades resulted in the eight Laws of 

Software Evolution (Lehman, Ramil, Wernick, Perry, & Turski, 1997). Lehman‟s 

first, sixth and seventh laws of software evolution indicate the need for 

continuous process of software maintenance. 

 The first law – Continuing Change: a large program that is used 

undergoes continuing change or becomes progressively less useful; 

 The sixth law – Continuing Growth: functional content of a program 

must be continually increased to maintain user satisfaction over time; 

 The seventh law – Declining Quality: programs will be perceived as of 

declining quality unless rigorously maintained and adapted to a 

changing operational environment. 

Commercial success of software vendors is the main driver behind the need 

to modify software products. Through the software‟s life cycle vendors are 

forced to maintain their products at “Good Enough” levels of quality. Good 

enough software must initially deliver high quality functions and features that 

end-users desire and may contain some known bugs in the implementation of 

more obscure or specialized functions. It is generally impractical and 

uneconomical to produce software, which does not need to be changed. Thus, 
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as end users‟ demand for high quality of specialized functions rises over time, 

software vendors need to modify their software to satisfy new demands of users 

in order to stay competitive. Hence, the system changes relate to changing 

needs of users of the system. The modification of software is not optional in 

maintaining software viability. From the life cycle planning aspect, this law 

combined with rising cost of software changes suggests that for each dollar 

spent on product development, a few more dollars need to be budgeted just to 

keep the software operational over its life cycle. 

Clearly, it is beneficial if a software system is „designed for change‟ during 

the design and implementation phases of product life cycle. Software vendors 

are utilizing multiple methods of developing their products that allow 

modifications to be applied at a low cost. This non-functional quality attribute 

of software that software vendors are trying to improve is called 

maintainability. 

2.4 Maintainability 

Maintainability – is the ease with which a software system or a component 

can be modified to correct faults, to improve performance, or other attributes, 

or to adapt to a changed environment. 

Factors that affect maintainability of software include: 

- Application age: aging software can have high support costs as it relies 

on old languages and requires increasingly rare expertise to maintain 

- Size: number of files/modules, lines of code which need to be maintained 

- Programming platform and languages 

- Design methodologies, including use of design patterns 

- Formatting and documentation: well written code is typically easier to 

read than automatically generated or ported code 

- Modularization: decoupled components are easier to analyze and modify 
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- Documentation: maintaining documentation is expensive, thus it is often 

ignored. Many developers believe that “code is the best documentation” 

- Management: attitudes of management toward maintenance tasks could 

be an additional hurdle. 

It has been suggested that software design variations should be monitored 

throughout the development of software products for their impact on 

maintainability. This monitoring should cover both quantitative and qualitative 

evaluations along various measures, including complexity to define and assess 

the quality of software. ISO and IEEE specifically suggest monitoring four 

maintainability sub-characteristics that address analyzability, changeability, 

stability and testability of software because of their effect on effort (not speed) 

and ease of software modifications. (ISO/IEC & IEEE, 2006) 

The ISO model of software quality provides the below definitions of these 

four characteristics of maintainability: 

1. Analyzability is an important quality that is related to code readability; 

use of easily recognizable design patterns; choice of programming 

language. Factors that affect analyzability the most include coupling 

between modules, lack of code comments, naming of functions and 

variables. This characteristic is related to the efficiency with which 

software developer can analyze the code to understand the impact of the 

code change. 

2. Changeability is a measure of impact of changes made to a module on 

the rest of the system. Design of a system is believed to play a 

determining role in the system‟s reaction to incoming changes. 

3. Stability means that most of the system‟s components remain stable over 

time and do not need changes. Stable components require less 

maintenance over the life cycle of the system. Stability is achieved when 

core components of the system are enduring over time with changes 

primarily applied only to periphery components. Thus, core components 
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remain completely stable both internally and externally. It is important to 

be able to identify those components. Periphery components on the other 

hand can be changed at will. If the system is designed correctly, 

changing periphery components should not ripple through the entire 

system. This constitutes a link between Changeability and Stability 

quality characteristics of software. (Fayad, 2002) 

4. Testability is related to the fact that hard-to-test programs are difficult to 

modify. Unit testing along with rigorous regression testing are main tasks 

during software maintenance and together may account for up to 25-

50% of efforts of modifying software. Testability positively impacts 

changeability. The easier it is to run regression tests - the more insight 

one can get into the impact of a change on the rest of the system. 

2.5 Measuring maintainability 

High software maintenance costs suggest that maintainability of a software 

system is a very critical attribute of software quality. Software engineering 

economics prompt software vendors to attempt to control maintainability of a 

software system over its life cycle. To that end, good measures of software 

maintainability can help software vendors better manage effort required for the 

maintenance phase of software lifecycle. Despite the importance of estimation 

and measurement of maintainability of software there is no universal measure 

of maintainability. This is partially caused by the fact that there is no direct 

way to measure maintainability. More general software quality metrics related 

to maturity, effort and complexity are used as indirect measurements of 

maintainability. 

Maturity metrics 

Software maturity metrics are designed explicitly as an attempt to measure 

stability of a software product. These metrics tend to track stability of a 

software product based on changes to the product that occur over the specified 

period of time or between two consecutive releases. Software maturity index 
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(SMI) proposed by IEEE Standard 982.1-1988 (IEEE, IEEE Std. 982.1-1988 

IEEE Standard Dictionary of Measures to Produce Reliable Software, 1988) is 

often used to measure current product stability. The SMI may be calculated 

using the following formula: 

SMI = (MT – (Fa + Fc + Fd))/MT 

where  

MT – is the number of software functions (modules) in the current release; 

Fa – is the number of software functions (modules) in the current release 

that are additions to the previous release; 

Fc – is the number of software functions (modules) in the current release 

that include internal changes from a previous release; 

Fd – is the number of software functions (modules) in the previous release 

that are deleted in the current release. 

As SMI approaches 1.0, the product begins to stabilize and may not need 

additional changes, which indicates improved maintainability. However, IEEE 

publications indicate that Software maturity index as specified above is not a 

good measure of maturity of a software product (IEEE, IEEE Std. 982.1-2005 

IEEE Standard Dictionary of Measures of the Software Aspects of 

Dependability, 2005). As defined above, SMI formula measures module change 

rate which may not be directly linked to stability of the entire software product. 

Another drawback of this measure is that negative values of SMI are difficult to 

interpret. 

Other maturity measures have been proposed to track changes in terms of 

lines of code per software source file. Code churn and other repository metrics 

track changes made to a software component over a period of time. The extent 

of changes made to a component of a software system can be indicative of that 

particular component‟s stability. 
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Effort metrics 

Common software metrics are attempting to estimate effort required to 

perform software maintenance tasks. Effort is one of those aspects of software 

maintenance that seem to directly affect costs. Hence, effort-based metrics are 

especially popular in the industry. Most obvious measure of effort is time. In 

his work, Roger Pressman introduced an effort-based metric, mean-time-to-

change (MTTC) (Pressman, 1982). MTTC includes the time it takes to analyze a 

change request, design an appropriate modification, implement the change, 

test it, and distribute it to all users. On average, programs that are more 

maintainable will have a lower MTTC for equivalent types of changes than 

programs that are less maintainable. Major drawbacks of MTTC include lack of 

predictive qualities, and dependence on maintainers‟ skill. 

Syntactic complexity family of metrics 

Syntactic complexity family of metrics attempts to derive the maintainability 

measure from the static analysis of software source code. These complexity 

measures are syntactic in nature. They frequently involve counting one or more 

textual properties of software. In most cases, as frequency of the selected 

feature increases, while everything else remains the same, so should the 

complexity of software. Probably the oldest and most intuitively obvious notion 

of complexity is the number of statements in a program. This metric is often 

referred to as lines of code (LOC). The primary advantage of this metric is its 

simplicity. Other metrics of complexity are not always as easy to compute. 

Syntactic complexity family of metrics also includes such metrics as McCabe‟s 

Cyclomatic Complexity (CC), Halstead Volume (HV), and their combination also 

known as Maintainability Index (MI). 

McCabe’s Cyclomatic Complexity number 

Cyclomatic Complexity number, also known as McCabe‟s V(G), is a graph-

theoretic measure of logical complexity of a software program. McCabe 

proposes that complexity is not closely related to program size, but rather to 



18 
 

the number of independent paths through the program. Since it is infeasible to 

enumerate the total number of unique paths in most programs, the complexity 

measure is defined in terms of the number of “basic paths” – paths that when 

taken in combination can generate all possible paths. This theory is based on 

direct-graph representation of program‟s control flow and uses graph theory to 

compute the number of paths. A node in the flow graph corresponds to a 

sequential block of code; an arc or edge corresponds to transfer of control 

between nodes. For any such graph G, the cyclomatic complexity number V(G) 

can be calculated using the following formula: 

V(G) = E – N + 2 * p 

where 

E - Number of edges in the flow graph of the program; 

N - Number of nodes in the flow graph of the program; 

p - Number of connected components, sets of nodes with mutual 

connectivity - where each node can be reached from all other nodes and vice 

versa. 

There are a number of advantages of McCabe Cyclomatic Complexity 

number that make it an attractive metric to be used for measuring 

maintainability. Obviously, there is a direct link between the number of unique 

paths through the program and testability sub characteristic of 

maintainability. Higher V(G) numbers translate in difficulty to reliably test 

software system that has negative effect on overall system‟s changeability. 

Additionally, it has been shown that programs with lower Cyclomatic 

Complexity are easier to understand and less risky to modify. The size-

independent nature of Cyclomatic Complexity also makes it a good measure of 

relative comparison of complexity of various designs. 

Halstead Volume 

Halstead Program Volume is one of the set of metrics called Halstead 

complexity measures. Computations of all metrics in the set are based on 
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several primitive measures of software source code. In his work “Elements of 

Software Science” (Halstead, 1977), Halstead proposed a number of syntactic 

measures of software to express such software product measures as the overall 

program length, potential minimum volume for an algorithm and actual 

program volume of information encoded with the program code, the program 

level as a measurement of software complexity, and even programming effort, 

development time, and projected number of faults in the software. 

In his theory of “software science”, Halstead shows that program volume V – 

the information contents of the program – can be estimated using listed above 

primitive measures. 

V = (N1 + N2) log2 (n1 + n2), where 

N1 – total number of operators in the program; 

N2 – total number of operands; 

n1 – number of distinct operators that appear in the program; 

n2 – number of distinct operands. 

The computation of V is based on the total number of operations performed 

and operands handled in the program. Theoretically, a minimum volume V* 

must exist for a particular program. Since V* is not a purely syntactic notion it 

is obviously difficult to compute. Halstead uses a volume L = V* / V to 

demonstrate the difference of a particular implementation from the optimum. 

Halstead gives an approximation for the volume ratio: 

L = (2 / n1) * (n2 / N2) 

Volume ratio L must always be less than 1 and represents implementation 

compactness of the algorithms in a program. Difficulty of a program D is the 

inverse of L: 

D = 1 / L = n1 N2 / 2 n2 
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A simple formula for Halstead Effort calculation is 

E = D * V =n1 N2 (N1 + N2) log2 (n1 + n2) / 2 n2 

This formula attempts to quantify the mental effort required to develop and 

maintain a particular program. The lower the value of this measure, the 

simpler it was to develop and test the program, the simpler changes to the 

program will be. 

Halstead measures are not as widely accepted as Lines of Code metric or 

even McCabe Cyclomatic Complexity. The underlying theory has generated a 

massive controversy and has been criticized for a variety of reasons, among 

them the claim that there is a weak logical link between lexical complexities of 

code reflected in Halstead‟s measures and derived software metrics. However, 

numerous industry studies provide empirical support for using Halstead 

metrics in predicting effort and mean number of programming bugs. Range of 

metrics that can be computed using Halstead‟s theory and considerable 

simplicity of calculations make the proposed approach very attractive to 

practitioners of software engineering. 

Maintainability Index 

Maintainability Index (MI) is a composite metric based on a number of 

traditional metrics. Maintainability Index was originally proposed by Oman and 

Hagemeister (Oman & Hagemeister, 1992) to overcome drawbacks of any 

particular standalone metric and to combine many metrics into a single index 

of maintainability. MI is given as a polynomial equation comprised of weighted 

predictor variables. A series of polynomial regression models have been defined 

by the authors of the MI to determine the weights for predictor variables. 

Through a series of studies it was demonstrated that there is a strong 

correlation between such predictor variables as Halstead Volume, McCabe‟s 

Cyclomatic Complexity, lines of code, and number of comments to the 
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maintainability of the software system. The original polynomial equation for 

Maintainability Index was defined as follows: 

MI = 171 – 3.42 * ln(aveE) – 0.23 * aveV(g‟) – 16.2 * ln(aveLOC) + 0.99 * aveCM, 

where 

aveE – is the average Halstead Effort per module; 

aveV(g‟) – is the average extended cyclomatic complexity per module; 

aveLOC – is the average number of lines of code per module; 

aveCM – is the average number of lines of comments per module. 

Based on the proposed equation, two quality cutoffs were identified to help 

analyze systems. Values above 85 indicate the software that is highly 

maintainable, values between 85 and 65 suggest moderate maintainability, and 

values below 65 indicate the system that is difficult to maintain. (Coleman, 

Assessing Maintainability, 1992) 

Over time, the equation for MI has been fine-tuned by practitioners so that 

MI better represents system maintainability (Coleman, Ash, Lowther, & Oman, 

1994). In particular, Halstead predictor variable has been modified to 

incorporate volume instead of effort. The comment predictor has been modified 

to include a comments-to-code ratio, which was identified to have a maximum 

additive value to the overall Maintainability Index of industrial size software 

systems. Modified definition for Maintainability Index is: 

MI = 171 – 5.2 * ln(aveV) – 0.23 * aveV(g‟) – 16.2 * ln(aveLOC) + 50 * 

sin(sqrt(2.4 * perCM)), 

where 

aveV – is the average Halstead Volume per module; 

perCM – is the average percent of lines of comments per module. 

In the current form, Maintainability Index is fully derived from the source 

code of the software system. MI is very effective when used to analyze and 

evaluate different systems by comparing their MI values. High risk modules of 
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the source code can be identified with the use of MI. It gives an excellent 

insight into the source code of a system for direct manual analysis to highlight 

areas of code which require human attention. 

2.6 Maintainability and Complexity 

A large number of studies suggest the existence of a direct link between 

maintainability of a software system and its complexity (Banker, Datar, 

Kemerer, & Zweig, 1993) (Woodward, Hennell, & Hedley, 1979) (Curtis, 

Sheppard, Milliman, Borst, & Love, 1979) (Agresti, 1982) (Harrison, Magel, 

Kluczny, & DeKock, 1982). Many of these studies propose that software 

complexity is the primary driver behind software maintainability. Such metrics 

as Lines of Code, McCabe‟s Cyclomatic Complexity, and Halstead‟s Volume 

claim to measure complexity of a software system in one way or another. Many 

successful attempts were made to demonstrate correlation between metrics 

mentioned above and maintainability as measured by maintainers‟ effort to 

understand, modify and test the software. However, no single best approach to 

measure software complexity has emerged. 

There is an ongoing debate about applicability of metrics developed prior to 

wide acceptance of structured programming to software systems developed 

using modern approaches. It was asserted that use of structured programming 

methodologies such as reduced branching and increased modularity has a 

significant impact on changeability of software (Stevens, Myers, & Constantine, 

1974). Gibson and Senn (Gibson & Senn, 1989) in their experiments 

demonstrated that more structured versions of the same software required less 

time for completion of maintenance tasks. They also confirmed that such 

metrics as McCabe‟s Cyclomatic Complexity and Halstead‟s Effort correlate 

with improvements caused by using structured programming approach. 

However, the effects of re-structuring software on traditional complexity 

metrics were not linear. Hence, to reliably measure complexity of newly 

developed systems traditional metrics need to be recalibrated for each language 
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and programming approach used in each particular instance of software 

system development. 

Critics of software complexity measures point out that currently used 

metrics provide only a crude index of software complexity. (Kearney, Sedlmeyer, 

Thompson, Gray, & Adler, 1986) The essential properties of good measures 

such as robustness, normativeness, specificity, and prescriptiveness are not 

uniformly addressed with traditional metrics. The following properties of 

measures should help practitioners to determine the way in which measures 

can be used: 

 Robustness – a measure which should reliably predict complexity of 

software. Decrease of the measure is consistent with improved 

complexity of the program; 

 Normativeness – a metric which should provide a norm against which 

programs‟ measurements can be compared; 

 Specificity – a measure which should be able to find deficiencies of a 

software system that can be used as a guide to testing and 

maintenance; 

 Prescriptiveness – a measure which should prescribe techniques and 

direct their application to reduce complexity. 

Traditional software metrics do not always meet the needs of their users 

whether it is a software engineer or a system architect. Also, lack of influence 

of traditional metrics on programming behaviors limits metrics‟ managerial 

use. 

Kearney et al. propose an approach to the creation of complexity measures: 

“Before a measure can be developed, a clear specification of what is being 

measured and why it is to be measured must be formulated. This description 

should be supported by a theory of programming behavior. The developer must 

anticipate the potential uses of the measure, which should be tested in the 

intended arena of usage.” 
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What would be the best metric to use in the context of software 

maintenance? The following chapter attempts to make a case for a use of 

complexity metrics family from the field of technology management and 

systems design. Proposed metrics family is based on product architecture 

rather than syntactic measures of source code. Subsequent chapters discuss 

an empirical study of the proposed metrics family based on data from the 

industry. 
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3. Design Complexity Measure for Maintainability 

3.1 Metrics specification 

As discussed above, a good complexity measure to be used in the context of 

maintenance should address four sub-characteristics of maintainability: 

analyzability, changeability, stability and testability. Expanding on the 

definitions from the ISO software model: 

 Analyzability is related to readability of the code and how easy it is to 

discern an underlying algorithm. Factors that affect analyzability include 

coupling between modules and discoverability of functions in the 

modules. This characteristic is related to the efficiency with which a 

software developer can analyze code to understand the impact of code 

changes. 

 Changeability measures the impact of changes made to a module on the 

rest of the system. Design of a system is believed to play a determining 

role in the system‟s reaction to incoming changes. 

 Stability is achieved when core components of the system are enduring 

over time and changes primarily apply to periphery components. 

Designing for stability relies on ability of a software engineer to identify 

those components. If the system is designed correctly, changing 

periphery components should not ripple through the entire system. At 

the same time changes to core components should be avoided. 

 Testability measures how easy it is to test components in isolation (unit 

testing) and along with other components (regression testing). Regression 

testing one of the main tasks during software maintenance. Its primary 

purpose is to ensure that code modifications did not have a „ripple effect‟ 

on the rest of the system. 

A critical aspect of a good complexity measure for maintainability is that it 

should help reduce cost of maintenance tasks through reduction of effort spent 
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on such tasks as understanding the program, devising the modification, and 

accounting for the „ripple effect‟. A good measure should also focus on 

engineers‟ behaviors reinforcing good practices without hindering development 

processes. 

Decomposing the above specifications shows that a good maintainability 

complexity measure has the following specific purposes: 

- Demonstrate how effort of a software maintenance practitioner relates to 

coupling between modules and positional cohesion of functions within a 

module or closely related modules; 

- Help identify system components and explore whether the components 

are in the core or on the periphery of the system; 

- Bring out existing dependencies between modules and reduce potential 

for a „ripple effect‟. 

It is apparent that the modular structure of a software product is the 

underlying product characteristic that one needs to focus on to measure 

software complexity aspects that have the greatest effect on maintainability and 

costs associated with maintenance tasks. This structure typically emerges from 

mapping product functions onto physical components – creating the product 

architecture (Ulrich, 1995). Hence, complexity of products can be managed 

through appropriate application of design principles and methods to product 

architecture. 

There is a large body of knowledge in the field of systems design that 

suggests that large-scale systems are often complex. Complex systems are 

characterized by dependencies between their numerous components. Axiomatic 

Design is a methodology that systemizes complexity analysis and prescribes 

steps towards complexity reduction through removal of dependencies of 

functional requirements (Suh, The Principles of Design, 1990). Axiomatic 

Design methodology was developed further into Complexity Theory (Suh, 
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Complexity: Theory and Applications, 2005). Complexity Theory uses Axiomatic 

Design to analyze systems. It focuses on non-deterministic nature of complex 

systems and aims to reduce inherent uncertainty in achieving specified 

functional requirements through proper mapping of functional requirements 

onto physical design attributes. Approaches and methods of Axiomatic Design 

(AD) and Complexity Theory (CT) can be applied to the reduction of software 

systems complexity. 

Complementary to Axiomatic Design method is the Design Structure Matrix 

(DSM) approach to managing dependencies by manipulating design system 

components into modular architecture (Baldwin & Clark, 2000) (Eppinger, 

Whitney, Smith, & Gebala, 1989). DSM approach provides a basis for 

measuring software system complexity in such a way that specifications listed 

above are satisfied. 

3.2 Axiomatic Design and Complexity 

The Axiomatic Design framework can be summarized as follows (Suh, 

Complexity: Theory and Applications, 2005): 

- The design world consists of four domains: customer domain, functional 

domain, physical domain and process domain. Each domain is 

characterized by domain specific attributes (Figure 2)Figure 2. 

 

Figure 2: Four domains of the design world (adopted from Suh, 2005) 
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- Decomposition and zigzagging are used to construct the attributes in 

each domain (Figure 3). Through the design decomposition process, the 

designer is transforming design intent into realizable design details. 

 

Figure 3: Zigzagging to decompose FRs and DPs (adopted from Suh, 2005) 

- Mappings are translations of characteristics vectors from one domain to 

another. For example, once Functional Requirements (FRs) in the 

functional domain are chosen, designer maps them to the physical 

domain to conceive a design with specific Design Parameters (DPs) that 

can satisfy FRs. Design equations are used to represent the mappings. 

For example, mapping between FRs and DPs can be represented by: {FR} 

= [A] {DP}, where {FR} is a vector of all FRs, {DP} is a vector containing all 

DPs of the design, and [A] is the “design matrix” that defines the 

relationships between the design parameters and the functional 

parameters. If the number of FRs equals the number of DPs, equals 

number n, [A] is a square matrix of size n x n. 

For n = 3, the equation will take the following form: 

 
𝐹𝑅₁
𝐹𝑅₂
𝐹𝑅₃

 =   
𝐴₁₁ 𝐴₁₂ 𝐴₁₃
𝐴₂₁ 𝐴₂₂ 𝐴₂₃
𝐴₃₁ 𝐴₃₂ 𝐴₃₃

  
𝐷𝑃₁
𝐷𝑃₂
𝐷𝑃₃

  

- Two fundamental axioms were identified to govern the design process: 

The Independence Axiom and The Information Axiom. The Independence 

Axiom states that the independence of Functional Requirements must be 
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maintained for robustness, simplicity, and reliability of systems. The 

Information Axiom states that the system must be designed to minimize 

uncertainty in achieving the FRs defined in the functional domain. 

In a simplified form, the values of the “design matrix” elements will either be 

„X‟ or „0‟. „X‟ represents a mapping between the corresponding components of a 

vector {FR} and vector {DP}. „0‟ signifies no mapping between components of 

vectors being mapped. Examination of the structure of the “design matrix” 

provides for design characterization: 

 Coupled design – is a design that does not maintain the independence of 

functional requirements. The design matrix is a full matrix. 

 
𝐹𝑅₁
𝐹𝑅₂
𝐹𝑅₃

 =   
𝑋 0 𝑋
𝑋 𝑋 𝑋
0 𝑋 𝑋

  
𝐷𝑃₁
𝐷𝑃₂
𝐷𝑃₃

  

 Decoupled design – is a design that maintains the independence of 

functional requirements if and only if the design parameters are 

determined in a proper order. One Functional Requirement may be 

satisfied by more than one Design Parameter. This kind of design 

maintains the independence of Functional Requirements, provided that 

the design parameters are specified in a sequence so that for each 

Functional Requirement there is one unique Design Parameter that 

ultimately controls that Functional Requirement. The design matrix is 

triangular. 

 
𝐹𝑅₁
𝐹𝑅₂
𝐹𝑅₃

 =   
𝑋 0 0
𝑋 𝑋 0
𝑋 𝑋 𝑋

  
𝐷𝑃₁
𝐷𝑃₂
𝐷𝑃₃

  

 Uncoupled design – is a design that has all of its functional requirements 

independent from other functional requirements. There is a one-to-one 

mapping between functional and physical domain attributes. The design 

matrix is diagonal. 
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𝐹𝑅₁
𝐹𝑅₂
𝐹𝑅₃

 =   
𝑋 0 0
0 𝑋 0
0 0 𝑋

  
𝐷𝑃₁
𝐷𝑃₂
𝐷𝑃₃

  

 Ideal design – is a design that has the same number of Functional 

Requirements and Design Parameters and satisfies Independence Axiom 

with zero information content. 

 Redundant design – is a design that has more design parameters than 

the number of functional requirements. The design matrix is not square. 

 
𝐹𝑅₁
𝐹𝑅₂
𝐹𝑅₃

 =   
𝑋 0 𝑋 𝑋 𝑋
0 𝑋 𝑋 0 𝑋
0 𝑋 0 𝑋 𝑋

 

 
 
 

 
 
𝐷𝑃₁
𝐷𝑃₂
𝐷𝑃₃
𝐷𝑃₄
𝐷𝑃₅ 

 
 

 
 

 

It has been demonstrated that analysis techniques of Axiomatic Design are 

effective when applied to reduction of complexity of both mechanical and 

software systems (Suh, The Principles of Design, 1990) (Suh, Axiomatic Design: 

Advances and Applications, 2001). Use of Axiomatic Design facilitates 

characterization of software system architecture in the functional domain and 

Axiomatic Design decomposition approach is a good foundation for redesign 

efforts. However, since Axiomatic Design is dependent on the existence of 

system specifications its methods may not be readily applicable to the 

maintenance phase of software lifecycle. 

Design Structure Matrix is a promising tool for measuring structural 

systems complexity that may be able to address the requirements of the 

maintenance phase of software lifecycle in dealing with software product 

complexity. 

3.3 Design Structure Matrix 

Hierarchical relationships and interdependencies among design parameters 

can be formally mapped using a tool called the Design Structure Matrix 

(Baldwin & Clark, 2000). The DSM characterizes the “topography” of a design 
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domain by displaying hierarchical relationships and interdependencies among 

design elements in a matrix form. To construct a DSM, one assigns all 

individual design elements to the rows and columns of a square matrix. A 

dependency link between two elements is indicated by a mark in the 

corresponding element of the matrix. For example if a design element B is an 

input to a design element A, this relationship may be depicted by a mark (an 

„X‟) in the column of B and the row of A. It is said that the element A depends 

on the element B, or in other words modification to the element B may have an 

effect on the element A. (Figure 4: A Design Structure Matrix with 6 design 

elements). Hence, the resulting matrix captures both hierarchical dependencies 

among design elements (an element B calls into elements C and D) and their 

interdependencies (a change in D makes a change in B, C and E desirable). 

 

Figure 4: A Design Structure Matrix with 6 design elements 

DSMs are a powerful tool in assessing modularity of products. By reordering 

rows and columns of a DSM designers can achieve clustering of components so 

that underlying modular structure of a product becomes apparent. Clustering 

of design elements in the DSM is also known as partitioning. In his work “The 

Design Structure System”, D.V. Steward discussed partitioning methods 

(Steward, 1981). The goal of DSM partitioning is to achieve a “block triangular” 

matrix structure by applying same re-ordering transformation to the rows and 

the columns of the DSM. “Block diagonal” matrix structure emerges when 

dependency marks are confined to appear either below the main diagonal or 
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within square blocks on the diagonal. For example the following two DSMs 

represent identical components dependency (Figure 5: Clustering of design 

elements into modules). After reordering of columns and rows a potential 

modular structure emerges. By definition developed by Baldwin and Clark 

(Baldwin & Clark, 2000), modules are units of a larger system whose structural 

elements are powerfully connected among themselves and weakly connected to 

elements in other units. In the presented DSM, modules are marked by two 

bold-lined boxes. Modules contain strong dependencies within themselves. 

Weak interdependence between modules is indicated by the fact that there are 

only a few „X‟ marks outside the bounded boxes.  

 

Figure 5: Clustering of design elements into modules 

Understanding system design modularity helps reduce complexity of 

modification and system maintenance tasks. Ideas of abstraction, information 

hiding and interface when applied in the context of modular systems reduce 

complexity. This is achieved through the process of hiding information into 

separate abstractions that have simple interfaces.  Abstraction hides the 

complexity of design elements and their interactions within a module, while the 

interface defines the interaction of the module with other components in the 

system. 
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3.4 DSM in application to analysis of system complexity 

DSM methodology provides a foundation for designing a software system 

complexity measure suitable for use during the maintenance phase of the 

software lifecycle. It was demonstrated in many studies that DSM methodology 

can be used in the assessment of system modularity (Baldwin & Clark, 2000) 

(Eppinger, Whitney, Smith, & Gebala, 1989). Understanding of the modular 

structure of a system provides basis for analysis of cohesion of elements within 

each module and measure of coupling between modules. MacCormack et al. 

(MacCormack, Rusnak, & Baldwin, WP# 08-038, 2008) (MacCormack, Baldwin, 

& Rusnak, WP# 4770-10, 2010) demonstrated a method of discerning core-

periphery structure of a software system using DSMs. Using the suggested 

approach one can measure the relative stability of different modules of the 

system and predict the „ripple effect‟ of code modifications. Thus, DSMs provide 

a robust and repeatable way to analyze and measure the characteristics of a 

design complexity of a system as a whole and at the component level.  
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4. Research Methods 

This study applies DSM methodology to analyze the structural complexity of 

a software system. Chosen approach draws extensively on methodology 

developed by MacCormack, Baldwing and Rusnack (MacCormack, Baldwin, & 

Rusnak, WP# 4770-10, 2010) (MacCormack, Rusnak, & Baldwin, Exploring the 

Structure of Complex Software Designs: An Emperical Study of Open Source 

and Proprietary Code, 2004) (MacCormack, Rusnak, & Baldwin, WP# 08-038, 

2008). Subsections below provide a description of the approach used to 

measure important complexity attributes of the software system architecture 

and how these measures relate to the maintainability measure developed in 

this study. 

4.1 Applying DSM to software 

Traditionally, DSM is used to discern the modular organization of any 

system. In contrast to traditional usage, this study employed DSMs in 

calculation of metrics that measure a degree of structural complexity of a 

system. In software development, modules are usually easy to identify. 

Software design engineers tend to group source files of related nature into 

directories (Figure 6: Source code directory structure). This results in 

clustering of files into groups that are defined by a project directory structure. 

This clustering closely resembles product‟s modularization and represents 

engineer‟s view of the system. This overt architecture of the product often 

dictates managerial decisions in regards to feasibility evaluation of a proposed 

maintenance task, assignment of engineers to tasks, and estimation of effort 

that may be required.  
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Figure 6: Source code directory structure 

In building DSMs, this study uses a source file as a unit of analysis. Prior 

research in the field suggests that such level of analysis is suitable for a 

number of reasons (MacCormack, Rusnak, & Baldwin, WP# 08-038, 2008): 

1. Source files tend to contain functions and data structures associated 

with the same functional requirement; 

2. A source file, as a unit of analysis, reflects how programmers perceive 

and shape the product structure; 

3. Traditionally, software development tools operate with source files as 

units to organize the software code; 

4. Other empirical studies that focus on analysis of software structure 

typically use source file as the unit of analysis. 

Thus, DSMs that were built and analyzed have rows and columns 

corresponding to source files. The order of files was preserved as it was found 

in the project‟s directory structure. 

 “Function Call” was used to identify dependencies between source files. 

“Function Call” is one of several important types and one of the most universal 

types of dependencies between source files in a software system. It is applicable 
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when working with almost all modern programming languages and 

technologies. A “Function Call” is an instruction that uses a function name to 

request a specific task to be executed. Called function may or may not be 

located within the source file originating the request. When the function is not 

located in the same file, this creates a directional dependency between two 

source files. For example, if FunctionA() in SourceFile1 calls FunctionB() in 

SourceFile2, then we note that SourceFile1 depends upon SourceFile2. This 

dependency can be indicated in the DSM by placing a mark in the matrix 

element located at (row: SourveFile1, column: SourceFile2). This dependency 

does not imply that SourceFile2 depends upon SourceFile1; the dependency is 

not symmetric unless SourceFile2 also calls a function defined in SourceFile1. 

To record the dependencies between files a binary matrix was used such 

that dependency between two files is indicated by „1‟ situated in a 

corresponding element of the matrix. In absence of the corresponding 

dependency, elements of the matrix hold the „0‟ value. In this approach, only 

the presence of dependencies between two files was recorded, not nature of this 

dependency or strength of coupling between two files. 

To capture function calls, a product called Understand 2.5 was employed. It 

is distributed by Scientific Toolworks, Inc. (www.scitools.com). This product is 

capable of extracting function calls and other types of dependencies from the 

source code tree provided to the tool as an input. It uses static code analysis to 

extract dependencies. Use of a static call extractor is justified as the resultant 

data represents the structure of the product from the programmer‟s 

perspective. Data captured by the Understand is output in a format that can 

easily be converted into a DSM. 

4.2 Visibility Matrix 

First metric of software system complexity measures the degree of „ripple 

effect‟ propagation through the system directly – through an existing 
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dependency, or indirectly – through a chain of dependencies that exist across 

elements. Propagation cost predicts the percentage of system elements that can 

be affected, on average, when a change is made to a randomly selected design 

element (MacCormack, Rusnak, & Baldwin, Exploring the Structure of 

Complex Software Designs: An Emperical Study of Open Source and 

Proprietary Code, 2004). Measured in percentage points this metric is 

independent of size of the project, which lends this metric to be useful for 

projects of different sizes. 

In computing propagation cost, first the “visibility” (Sharman & Yassine, 

2004) of design elements is identified. To compute visibility of any given 

element for any given path, a reachability matrix is built using a technique that 

employs matrix multiplication and summation (Warfield, 1973). A simple 

example below illustrates the chosen approach. 

Consider the system with the following element relationships, given as a 

dependency graph and in a DSM form: 

 

Figure 7: Example system dependency graph and DSM 

Design element A depends upon elements B and C, so a change to element 

B may have a direct impact on element A. Element B depends upon element D, 

so a change to element D may have a direct impact on element B and an 

indirect impact on element A. The path through which change impact – ripple 
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effect – propagates from the element D to the element A has a length of two. 

Similarly, change to the element F may have indirect impact on the element A 

with a propagation path length of three. Note that there are no indirect 

dependencies between elements for path lengths of four or more. 

To build a visibility matrix in addition to direct dependencies it is necessary 

to identify all indirect dependencies between elements. By raising a binary 

DSM to successive powers of n, one can find all indirect dependencies that 

exist for the dependency propagation path lengths of n. The visibility matrix V 

is derived by summing all resulting matrices together and with diagonal matrix 

(to demonstrate that design elements of the system depend upon themselves). 

Computed this way visibility matrix shows the dependencies that exist between 

all system design elements. 

 

Figure 8: Computation of the visibility matrix 

4.3 Design element visibility metrics 

Design elements visibility measures can be derived from the visibility 

matrix. A measure of dependencies that flow into an element – Fan-In Visibility 

(FIV) – can be computed by summing down the column of visibility matrix 
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which corresponds to the element, and dividing by the total number of 

elements. An element with high Fan-In Visibility has many other elements that 

depend on it. Fan-Out Visibility (FOV) – the measure of dependencies that flow 

out from the element – can be obtained by summing along the row of the 

visibility matrix which corresponds to the element, and dividing by the total 

number of elements. An element with high Fan-Out Visibility depends upon 

many other elements. In our example, element A has a Fan-Out Visibility of 

100% meaning that it depends upon all elements in the system. The same 

element has Fan-In Visibility of 17% (1/6th) meaning that it is visible only to 

itself.1 

 

Figure 9: Computation of Fan-In Visibility and Fan-Out Visibility  

An average of Fan-In Visibility values across all elements of the system 

provides a system wide measure of visibility. This metric is referred to as 

“Propagation Cost”. Please note that due to the symmetry between aggregate of 

Fan-In Visibility and Fan-Out Visibility measures – every dependency 

contributes to both aggregate Fan-In and aggregate Fan-Out – propagation cost 

can also be computed as an average of Fan-Out Visibility values across all 

elements of the system. 

                                       
1 This and following paragraphs draw extensively from MacCormack, Rusnack and Baldwin 

(MacCormack, Baldwin, & Rusnak, WP# 4770-10, 2010) 
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4.4 Core and Peripheral Components 

In modular system architecture not all modules are created equal. Some 

components are more favorable to modifications than others. Modifiability of a 

component depends on the nature of its interactions with other components. 

As noted before, stability of the system is achieved when core components of 

the system are enduring over time and changes primarily apply to periphery 

components. If the system is designed correctly, changing periphery 

components should not ripple through the entire system. Stability of core 

modules should improve system maintainability. 

As defined in literature (MacCormack, Baldwin, & Rusnak, WP# 4770-10, 

2010), core components are those that are tightly coupled to other components 

in the system. Peripheral components are characterized by weak coupling to 

other components. As noted in the previous section coupling between 

components can be characterized by the direction of dependency propagation. 

Due to this duality it is appropriate to define two more component types: 

shared components and control components (Figure 10: Characterization of 

components by visibility measures). 

 

Figure 10: Characterization of components by visibility measures 

 Core Components (High FIV, High FOV) – are components with high 

visibility on both measures. “Core” modules are “seen by” many modules 
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and “see” many other modules as they are implementing core system 

functionality. 

 Periphery Components (Low FIV, Low FOV) – are components with low 

visibility in both directions. They typically implement auxiliary functions. 

 Shared Components (High FIV, Low FOV) – are components that depend 

on few components while many other components depend on them. They 

usually provide shared functionality to many different parts of the 

system. Shared libraries of basic functions are a good example of shared 

components. 

 Control Components (Low FIV, High FOV) – are components that usually 

are responsible for directing the flow of program execution. They depend 

on many different parts of the system, while only a few other components 

demonstrate dependency on control components.2 

To evaluate whether a component meets a high or low criteria for visibility 

measures this study uses an approach proposed by MacCormack at al. 

(MacCormack, Baldwin, & Rusnak, WP# 4770-10, 2010). Components that 

exceed 50% of the maximum level of a visibility measure across all components 

are valued as “High” while components that don‟t meet this threshold are 

valued as “Low” for the corresponding visibility measure. 

Grouping components in these four types can be used in several ways. 

Obviously maintainability of components differs depending on their types. 

Potential system stability can be evaluated by measuring relative size of the 

“core”. The smaller the core, the more stable a system is likely to be. 

Studies of many software systems demonstrated that modules (source files) 

of the core type are not located in only a small number of distinct directories 

(MacCormack, Baldwin, & Rusnak, WP# 4770-10, 2010). Core modules are 

distributed throughout the system. For many systems it is not always clear 

                                       
2  These definitions of four canonical types of components were first introduced by 

MacCormack, Rusnack and Baldwin (MacCormack, Rusnak, & Baldwin, WP# 08-038, 2008) 
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from the directory structure which components are core and which are 

peripheral. This finding denotes the challenge facing a system maintainer in 

evaluating maintainability of individual components. Core components are 

difficult to identify due to effort that may be required to trace all indirect 

dependencies contributing to high FIV and high FOV measures. Metrics 

evaluated in this study can assist system maintainers in evaluating how 

system complexity affects maintenance tasks. 

5. Hypotheses 

This study utilizes the outlined methodology to explore the link between 

complexity of software products and maintenance costs. The study focuses 

specifically on the effort software developers spend implementing corrective 

modifications to software. The following three hypotheses were tested in the 

course of the study. 

Hypothesis 1: The amount of effort to implement a corrective code change is 

positively related to the overall system complexity as measured by the level of 

interconnectedness of source files comprising the system. 

Hypothesis 2: The likelihood of next modification going in a particular 

source file is higher for core components of the system. Core components have 

higher potential for causing additional rework cycles and as a consequence 

higher maintenance costs. 

Hypothesis 3: Product redesign has quantifiable economic benefits when 

applied to source files and components that are measured to be contributing to 

the overall complexity of the product. 
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6. Data 

6.1 Description of the data 

For this study, two consecutive versions of a mature software system were 

analyzed. In this case maturity of the software system is defined by a wide 

market acceptance of the product, and stability of its features. For ease of 

description first version of the product will be referred to as “old product”, while 

the newer version will be referred to as “new product”. As it will be 

demonstrated later the architecture of the product changed significantly, so it 

is quite reasonable to treat the two versions of the studied system as two 

different products.  

A major redesign effort was undertaken in-between studied versions of the 

product. Most of the source code was rewritten using new languages. In the old 

product the majority of source files (17570 out of 18512) were written in C/C++ 

languages. In the new product, the share of C/C++ files is much lower: 4949 

out of 13139. The majority of files in the new product were written in C# 

programming language (8149 out of 13139, a large increase from 605 in the old 

product). The redesign effort was justified by the need to improve some system 

quality attributes. Most of the system‟s functional requirements were 

transferred from one version of the product to another without much change. 

Two specific system quality attributes that the development team focused on 

during the redesign effort were scalability and performance. Increase in both 

targeted system quality attributes was achieved through increased modularity 

and better mapping of functional requirements onto components of the system. 

With new system architecture, it became possible to increase system 

throughput by sharing load between several similar components performing 

the same function. Better defined interfaces between components allowed the 

system to be distributed between many computer systems. More targeted 

mapping of functional requirements onto components permitted removal of 
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unused components from the system at the time of system deployment into 

production. 

Three types of data were collected for this study. For each version of the 

product we collected:  

- Snapshots of the whole source code tree at the time each version of the 

product was released to customers; 

- Source code change logs for the period of approximately 30 months after 

each product release; 

- Data from the bug tracking system that corresponds to source code 

changes. 

The snapshots of the source code tree were analyzed using Understand 2.5 

(www.scitools.com) to derive dependency structure between source code files. 

MATLAB (MathWorks, 2010) was used for matrix manipulation and graphing of 

design structure matrices (DSMs). 

Source code change logs were analyzed using custom scripts. Information 

about files that were modified with each submitted change and related bug 

identifiers were extracted from the change logs. 

Based on the bug data, corrective changes were identified. Records 

pertaining to corrective work items were analyzed to measure the effort a 

software design engineer spent to devise the corresponding code changes. 

Resulting dataset contains about 400 corrective changes for each version of 

the product. This number is not a total number of known defects, but rather 

the number of defects that have been fixed in the studied period of time. The 

number of corrective code changes submitted to the code base depends 

primarily on the development organization throughput, and by no means 

should be used as a measure of overall product quality. Increase in 

productivity associated with the product redesign may lead to a larger number 
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of issues getting fixed, however this does not imply that the quality of the 

product code decreased with a redesign. The measurement of number of 

defects and overall product quality is outside of scope for this study.  

Focus on corrective maintenance tasks 

This study specifically focused on corrective code changes made to the 

software system in its maintenance phase of the life-cycle. The choice to 

analyze only corrective modifications was made for a number of reasons, 

primarily related to the high quality of data related to corrective modifications. 

In the development organization used for the study, corrective changes are 

always associated with a bug reported by a customer. Customers‟ change 

requests are handled with increased urgency. Because of this urgency 

associated with corrective change requests, solutions are delivered as soon as 

possible. This results in the absence of idle time when issues are waiting for 

developer resources to become available. Importance of corrective change 

requests exhorts the development organization to apply more control to the 

process of tracking open issues, hence each transaction with source code 

related to the issue gets documented. This allows for more precise 

measurement of time software engineers spend working with code. 

Measuring Resolution Time 

In the targeted organization software engineers record in the bug tracking 

system the time when they start working on a code modification and the time 

when the code modification is done. This provides two data points that can be 

used in assessing the time spent by an engineer working with code. This 

measure accounts only for one component of mean-time-to-change metric 

(MTTC)(Pressman, 1982). MTTC includes the time it takes to analyze a change 

request, design an appropriate modification, implement the change, test it, and 

distribute it to all users. This study only focuses on the time engineers spend 

designing an appropriate code modification. This precludes any influence from 

ingredients of MTTC that may not be affected by complexity of the product 
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structure, the target of this study. Other components of MTTC, such as time to 

investigate of a problem, testing time, and time to distribute the modification to 

users may not have as strong of a relationship with product complexity. 

In this study, a simplified approach is used to calculate the time engineers 

spend designing code modifications. Eight-hour work days are assumed. 

Weekends and nights are excluded from the computation of developer‟s effort. 

If the code modification undergoes multiple rework cycles, time is computed 

separately for each rework cycle that has been reported in the bug tracking 

database. Total time for a particular code modification is a sum of all individual 

rework cycle time measures. 

The following formula was used for resolution time computation: 

RT = (TEND – TBEG) – 16*Days(TEND – TBEG) – 16*Weekends(TEND – TBEG), where 

TBEG is the time when the engineer reported to start designing the 

code modification, 

TEND is the time when the engineer reported to finish working on the 

code modification. 

Most studied code modifications took a software engineer more than one day 

to develop. The formula above is justified by the fact that only a few issues out 

of the studied set were worked on continually day and night. In most cases, 

engineers took time off from working on the fix. Resolution time computed this 

way does not account for variability of engineer‟s effort over time. This study 

addresses uneven distribution of engineer‟s effort with an adjusted effort 

measurement discussed in the next section. 

Accounting for Variability of Effort 

Based on the experience with the targeted organization and the insight into 

the work practices of software engineers the following scheme for accounting 
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for variability of engineer‟s effort was developed for this study. The following 

scheme attempts to capture the following dynamic. 

Urgent nature of corrective code changes that this study focuses on requires 

that software engineers spend effort to get to a solution as soon as possible; 

thus, most changes should be coded within 1-2 weeks due to time pressure. 

This goal is supported by the change request acceptance process employed in 

the targeted organization. Change request acceptance process prevents code 

and design modifications of larger scope from being treated the same way as 

corrective changes. During the code change request assessment, incoming code 

change requests are evaluated and classified based on the effort and urgency 

that may be required to implement the change. Changes that are not as urgent, 

require a significant design and test efforts, or may require more than a month 

of work are designated to the Design Change Requests (DCRs) category. 

Change requests of an urgent nature are designated to the Corrective Changes 

category. The focus of this study was exclusively on Corrective Changes. Design 

change requests were excluded from this study. 

It is assumed, that if an engineer reports more than 10 work days for 

designing a code modification, it is due to some extraneous circumstance, not 

because of difficulties of working with the source code. For an example of such 

extraneous circumstance consider the situation when an engineer needs to 

consult a subject matter expert on a particular product feature. Operational 

aspects of such consultation should not be counted as developer‟s effort coding 

the solution. It is assumed that in the first 5 days of working on the issue 

developers dedicate at least 75% of their working time to that issue. This 

translates into 6 hours of work out of 8 work day hours. After 5 days of 

working on the issue almost exclusively, focus of the developer may be shifted 

to other issues that may seem more urgent. In the next 5 days of working on a 

fix developer may be spending 25-40% of his/her time in the office working on 

an issue from the last week. If an engineer reports more than 10 days working 
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on a particular code change, it is assumed that the engineer was working on 

something else, so we should not count any time for that change that goes 

beyond 10 working days. The following graph (Figure 11: Cumulative effort 

spent as a function of number of days reported by an engineer) depicts the 

accumulation of effort spent as a function of reported number of days. 

 

Figure 11: Cumulative effort spent as a function of number of days reported by an engineer 

The following scheme was used to account for productivity variability of an 

individual software engineer working on a corrective change for a period of 

multiple days: 

If the engineer reported to begin and finish working on the fix on the same 

day, the effort is computed using this formula: 

E = (TEND – TBEG), where 

TBEG is the time when the engineer reported to start working on the 

code modification, 

TEND is the time when the engineer reported to finish working on the 

code modification. 
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If the software engineer reports TBEG and TEND on two consecutive work 

days, the effort is computed using this formula: 

E = (TEND – TBOD) + (TEOD – TBEG), where  

TEOD is the time of the end of a work day. TEOD = 20:00 in this study 

TBOD is the time of the beginning of a work day. TBOD = 08:00 

If the software engineer reports TBEG and TEND, so that there are n working 

days between the first and last days of work on the fix an additional element is 

used to measure the effort spent by the engineer on those days. Effort will be 

computed using this formula: 

E = (TEND – TBOD) + (TEOD – TBEG) + EDAYS(n), where  

EDAYS(n) is the effort an engineer spends on a long-running issue.  In 

this study the following table function was used: 

Days reported, n EDAYS(n) Effort on day n 

1 6 6 

2 12 6 

3 18 6 

4 21 3 

5 24 3 

6 26 2 

7 28 2 

8 30 2 

9 30 0 

… 30 0 

Table 1: Effort spent on an additional day 

Computed this way, any code change should not take more than 46 hours 

of engineer‟s effort. However, because of rework cycles total effort for some code 

modifications surpassed this threshold. Effort spent by engineers in rework 

cycles was included in the mean engineer‟s effort calculations.  
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7. Results 

7.1 Comparison of Design Structures of Products 

It is always a challenge to characterize the architecture of a software 

product. Intuitively, engineers characterize architecture of products through 

descriptions of patterns of interactions between parts of the product. The 

challenge of a holistic characterization of a product design structure comes 

from the fact that patterns of interactions between modules take many different 

forms and shapes, from independent or sequential to bus architecture or a full 

mesh. Most software products have a design structure that can only be 

characterized as a hybrid including elements of modularity, independent 

structures and bus design structure. 

Design Structure Matrices aid analysis of architectures of products. In this 

study DSMs for both versions of the product under review were built to 

facilitate comparison of their design structures (Figure 12: DSMs of the product 

before and after redesign). 

Table 2 shows quantitative data comparing the product before and after the 

re-design. 

 Old Product New Product 

Source Files 18,612 13,139 

Entities (macros, types, variables, functions, files, ...) 1,793,627 1,108,423 

Dependencies 182,235 112,634 

Density of DSM 0.053% 0.065% 

Table 2: Products comparison 

Looking at the DSMs presented in Figure 12 one can notice evidence of 

significant structural changes between the two studied versions of the product. 

The following differences between representations of design structures of 

studied products are now observable: 
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 DSM for the new product is smaller due to the smaller number of files 

comprising the system. 

 Perceived prevalence of vertical lines in the DSM for the old product 

denotes the existence of modules that are called into from many parts of 

the system. These “widely used” interfaces are evenly distributed across 

the components of the product indicating a mesh like architecture of the 

system. 

 Perceived prevalence of white space away from the main diagonal in the 

DSM for the new product combined with the increased measure of DSM 

density indicates a greater cohesion of modules (source files) within 

components. 

 Few components in the DSM for the new product have close to diagonal 

matrix representation pointing to sequential call relationship between 

source files in those components.   
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Figure 12: DSMs of the product before and after redesign 

 



53 
 

7.2 Comparison of Visibility Matrices 

Complexity of the product manifested through indirect dependencies 

between source files can be studied using visibility matrices. In both cases, to 

arrive at the matrices reviewed below, DSMs were multiplied to the power 6. 

Further multiplication did not introduce any new dependencies. This means 

that the files that appear on the visibility matrix as dependent on each other 

have at most six degrees of separation. This means that the chain of 

dependencies connecting these two files has no more than 5 intermediaries. 

Table 3 continues the quantitative data comparison of the product before 

and after the re-design. Qualitatively, it is obvious that product structure was 

significantly improved with the redesign. Smaller share of files demonstrating 

“core” and “control” qualities is a sign of good system architecture. Increased 

portion of “shared” modules is indicative of a modular design and higher code 

reuse. 

 Old Product New Product 

Source Files 18,612 13,139 

Entities (macros, types, variables, functions, files, ...) 1,793,627 1,108,423 

Dependencies 182,235 112,634 

Density of DSM 0.053% 0.065% 

Direct and Indirect Dependencies 131,045,503 18,971,910 

Propagation Cost 38% 11% 

Source files classified by type (fraction of total)   

“Core” - Visibility: High Fan-In, High Fan-Out 7245 (39%) 0 (0%) 

“Periphery” - Visibility: Low Fan-In, Low Fan-Out 1889 (10%) 8445 (64%) 

“Shared” - Visibility: High Fan-In, Low Fan-Out 1180 (6%) 3328 (25%) 

“Control” - Visibility: Low Fan-In, High Fan-Out 8298 (45%) 1366 (10%) 

Table 3: Quantitative comparison of products complexity 

Figure 13 shows the difference between visibility matrices for the studied 

products. Visibility matrix for the old product is obviously much denser. This is 
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an indication of the high propagation cost. Propagation cost measured 

numerically for the old product is at 38%. This means that a change to a 

source file in the old product has a potential to ripple through average of 38% 

other files in the system. In other words, when making a code change an 

engineer should consider how this change may affect other 7,072 source files 

in the system (7,072 = 18,612 * 38%). In contrast, new product‟s propagation 

cost is only 11%. From engineer‟s perspective, this means that on average there 

are 1,445 source files that a random code change can ripple through. 

Obviously, the new product is 4 to 7 times more stable than the old product. 

 Visibility matrices provide a managerial tool for estimation of the risk of 

ripple effect depending on which source files are modified. By finding the 

visibility matrix column corresponding to a source file that is being modified, 

decision makers can assess the risk of the change causing the ripple effect. 

More importantly source files that may be affected can be identified by walking 

down the column and listing all the source files that directly and indirectly 

depend on the modified code. 

A very important difference between the two studied products is that they 

have very different structures from the “core-periphery” perspective 

(MacCormack, Baldwin, & Rusnak, WP# 4770-10, 2010). In the old product, 

files exhibiting “core” (39%) characteristic prevail over “periphery” (10%) files. 

“Control” (45%) files represent the largest share of files in the old product, 

while “Shared” (6%) source files represent the smallest share. In contrast, the 

majority of files in the new product are represented by “periphery” (64%) and 

“shared” (25%) modules. More important, new product does not have any “core” 

files, files with High Fan-In and High Fan Out visibility. These changes in the 

design structure may be attributed to the scalability requirement that provoked 

the re-design effort between the studied versions of the product. It can be 

hypothesized that the “periphery” structure of software products is more 

suitable to satisfy high scalability demands for large-scale software systems. 
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Figure 13: Visibility matrices of the product before and after redesign 
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7.3 Effort Data 

There has not been much research done in the area of measurement of 

engineering effort spent performing maintenance tasks. An obvious reason for 

this gap is that research in this area can be quite challenging. On one hand, 

validity of data collected from artificial experiments can be criticized as non-

representative of industry practices. On the other hand, data collected in the 

industry setting is difficult to obtain for a number of reasons, including lack of 

discipline in companies to collect relevant data and their unwillingness to 

share any information with researchers. 

Data obtained for this study holds a promise of being both representative of 

the industry practice and valid from the experiment design perspective. 

Analyzed data set was selected based on the assumption that corrective code 

changes were urgent enough, so that the productivity of software engineers 

working on corresponding code modifications was consistently high and the 

need for precise tracking of issues demanded by customers prompted engineers 

to track their progress with utmost rigor. Finally, collected data represents the 

work of the same development team where the average experience level of 

engineers working with the products was maintained the same between the 

studied products. 

Figure 14 shows distributions of observed code changes by the time 

software engineers spent designing a change. Cumulative distribution of 

empirical measures of resolution time is presented in the Figure 15 to facilitate 

results comparison. Table 4 has a quantitative description of the same set of 

the data except for outliers found beyond 120 hours threshold. The decision 

was made to not include outliers in the mean value calculation. These outliers 

represent misdiagnosed issues that required significantly greater effort than 

can be justified by a change request of corrective maintenance nature. Removal 

of the outliers from the statistical analysis adds a slight bias to the results 

against the proposed theses because of a longer tail for the old product.  
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Figure 14: Side-by-side comparison of products. Distribution of change requests by time spent developing a code modification and 
polynomial trend lines. 

 
Figure 15: Cumulative distribution of empirical measures of resolution time 
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Old Product New Product 

Mean 38.2 32.8 

Standard Error 1.3 1.3 

Median 33 26 

Standard Deviation 26.4 25.4 

Sample Variance 697.4 644.7 

Range 119 120 

Cumulative Effort 14,964 12,333 

Modifications Count (number) 392 376 

Table 4: Resolution time statistics (hours per corrective code change, unless noted otherwise) 

Analysis of the data shows that on average implementation of a corrective 

code modification took engineers working with new product code base 14% less 

time than engineers working with the old product. 14% performance 

improvement resulted in more expeditious delivery of solutions. As can be seen 

from the cumulative distribution of resolution time measures graph (Figure 15: 

Cumulative distribution of empirical measures of resolution time), a corrective 

code modification targeted at new product code base has 70% probability of 

being finished in less than 40 hours of reported time, which amounts to 

approximately one person work week. In comparison, code modifications 

against the old product codebase have only 60% probability of being finished 

after a similar amount of time spent by an engineer designing the change. 

Figures 16 and 17 show distributions of observed code changes by the total 

effort, adjusted to reflect its variability over time, that software engineers spent 

designing the change. Table 5 (Table 5: Productivity adjusted effort statistics 

(hours per code change, unless noted otherwise)) has a quantitative description 

of the same data. A few outliers were not included in the mean value 

calculation. In the presented figures, issues that required more than 76 hours 

of productivity adjusted effort were excluded from the quantitative analysis. 

These outliers represent misdiagnosed issues that required significantly greater 

effort than can be justified by a change request of corrective maintenance 

nature. 
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Figure 16: Distribution of corrective code changes by effort, adjusted to productivity 

variability, spent developing a code modification (Old Product) 

 

 

Figure 17: Distribution of corrective code changes by effort, adjusted to productivity 

variability, spent developing a code modification (New Product) 

Analysis of the data shows that on average performance of engineers 

working on corrective code modifications improved by 10% after the re-design 

of the product. While working on code changes for the old product developers 

reported on average 27.5 hours per single change, with the new product 

average effort dropped to 25 hours. For a side by side comparison of 
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normalized distributions of changes by effort spent developing a corresponding 

code modification see figure 18 (Figure 18: Side-by-side comparison of 

products. Distribution of change requests by productivity adjusted effort spent 

developing a code modification and polynomial trend lines.). 

The share of change requests that had at least one cycle of rework 

decreased significantly with re-design. In the studied context rework cycles 

may be caused by a new defect or incompleteness of a proposed code 

modification found during peer code review or the testing phase of the 

corrective maintenance work process. Once a defect is identified, the developer 

responsible for the modification is pulled back to work on the code change, so 

that resulting code is bug free. Fraction of issues that had at least one rework 

cycle dropped from 12% to 9% after the product redesign. 25% reduction in the 

number of modifications that undergo additional rework cycles is a significant 

improvement. Rework cycles are usually a result of hidden dependencies that 

were not discovered by an engineer designing the initial code modification. 

Undiscovered hidden dependencies often lead to functional regressions getting 

submitted as a part of corrective code modifications. Engineer‟s ability to 

identify all dependencies while designing the code modification is crucial to 

maintaining existing functionality of the product through the maintenance 

phase of the product lifecycle. 

It is noteworthy that the average number of source files “touched” per 

corrective change increased from 2.6 to 2.8.  It may be due to a higher 

cohesiveness of code in source files within a single component. However, the 

average time spent working with a source file decreased from 10.6 hours to 8.9 

hours, which translates into a 16% improvement. 
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Figure 18: Side-by-side comparison of products. Distribution of change requests by 

productivity adjusted effort spent developing a code modification and polynomial trend lines. 

 
Old Product New Product 

Mean 27.5 25.0 

Standard Error 0.7 0.7 

Median 26 24 

Standard Deviation 14.7 13.9 

Sample Variance 215.4 194.5 

Range 71 71 

Cumulative Effort 11332 9582 

Modifications Count 412 383 

Avg. number of files touched per change 2.6 2.8 

Avg. effort per source file 10.6 8.9 

Re-work data 
 

 

Number of issues with rework cycles 50 35 

Rework issues as a fraction of all issues 12% 9% 

Table 5: Productivity adjusted effort statistics (hours per code change, unless noted otherwise) 
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7.4 Hypothesis One: Link between complexity of the product and 

maintenance effort 

The results discussed above strongly support the first hypothesis proposed 

for this study. Decrease in product‟s propagation cost from 38% to 11% can be 

linked to the 10-14% improvement in developer productivity. Besides engineer 

productivity such metrics as amount of rework and effort needed for a single 

file modification improved by 16-25%. 

7.5 Hypothesis Two: ‘Core’ source files are more susceptible to change 

The second proposed hypothesis was that core modules - files that 

demonstrate High Fan-In and High Fan-Out visibility measures - get modified 

more often than any other type of components. In this study only the old 

product had a distinct “core-periphery architecture (MacCormack, Baldwin, & 

Rusnak, WP# 4770-10, 2010). Hence, the measurements below are based on 

the data collected for the old product. Analysis of all source files that were 

touched during the first 30 months of maintenance from the old product 

release date shows that core files are significantly more likely to be modified 

(Figure 19: Distribution of individual source files changed by module type). Out 

of 542 unique files that were touched in the old product code base 404 were of 

the “core” type. Frequency with which “core” files were modified is 

disproportionate to their share of the whole system. As described in table 3 

(Table 3: Quantitative comparison of products complexity) “core” files amount 

to only 39% of all modules comprising the old product. 
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Figure 19: Distribution of individual source files changed by module type for the old product 

Structural analysis of all changes showed that most changes contained at 

least one “core” file. Only 8% of corrective maintenance code change 

submissions did not contain a “core” file. It is notable that most non-„core 

touching‟ fixes touched only one source file. This indicates that developers were 

able to localize code modification to a single source file in order to implement a 

required corrective change when non-„core‟ file contained the implementation 

for the affected functional requirement. In other words ripple effect of non-„core‟ 

modules was low. 

Analysis of how frequently isolated source files were touched showed that 

most frequently modified files are of a “core” type. 85% of files that were 

modified more than once were “core” files (115 out of 135). Some of “core” 

source files were modified 10-12 times in the studied time period. 

Second most frequently modified type of files was “control” – files that have 

High Fan-Out and Low Fan-In visibility measures. In the old product 24% of 

files that were changed in the first 30 months of maintenance were “control” 

files. Even for the new product, 19% of modified files were “control” files, which 

is disproportionate with 10% share that “control” files occupy in the new 

product code base (Figure 20: Distribution of individual source files changed by 

module type for the new product).  
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Figure 20: Distribution of individual source files changed by module type for the new product 

Across both products the probability of modification of a “Periphery” file is 

lowest. In the old product codebase, probability of a code change going into a 

“periphery” file was close to 0%. In the new product the absolute probability 

value increased to 47%. This is mostly due to the fact that the vast majority of 

the files in the new product code base are “periphery” files (64% of all files). 

7.6 Hypothesis Three: Measuring economic benefit of reduction of 

product complexity 

As a software product goes through its lifecycle, the focus of a software 

development organization shifts from functional product improvements to cost 

reduction. As mentioned earlier in this paper costs of maintenance overshadow 

costs of initial software development by a large margin. Maintenance costs may 

reach up to 90% of the total product lifecycle cost. In such setting, 10% 

productivity improvement during the maintenance phase may result in savings 

almost as large as the cost of the initial product development. As the pressure 

for lowering costs of the maintenance phase increases, redesign that reduces 

structural complexity of the product becomes more economically viable and 

desirable. 

Of course, any redesign may have downsides that need to be considered by 

management before the decision to invest resources into redesign of an existing 
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product can be made. Redesigns often introduce a lot of new code that will 

have new defects. Fixing of these new defects will have a cost to the 

organization. If existing software system reached a superior level of stability – 

very few corrective change requests are made over the prolonged period of time 

– redesign may not be as beneficial. Redesigned products have marginal new 

value for existing customers - if functionality is the same there is no reason to 

switch to the new product. From the marketing perspective redesigns are not 

as desirable as new product features. There are also deployment costs that any 

development organization needs to account for before committing resources 

and time to product redesign effort. It is essential for a development 

organization to perform a comprehensive Net Present Value (NPV) analysis 

before a decision to redesign an existing product can be made. Obviously, NPV-

negative initiatives should be avoided. 

8. Conclusion 

This study aimed to demonstrate the link between design structure 

complexity of a software system and the maintenance costs. Empirical data 

analysis presented in this paper supports formulated hypotheses and 

complements the wealth of public knowledge on the topics of complexity and 

software engineering economics. 

The scientific contribution of this work is in development of an industry 

based experiment to reliably measure software engineer‟s effort of working with 

sourced code. Resulting data was used to estimate the effect of design 

structure complexity on software developer‟s productivity. By measuring both, 

software complexity and engineers‟ effort required to perform similar 

maintenance tasks for two distinct versions of the software product it was 

possible to demonstrate the link between product design structure and 

maintenance costs. 
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Design of code changes is only one of the steps of the whole corrective 

change process. However this step is affected the most by the design structure 

complexity of the product. Traditionally, corrective code change process 

includes such steps as problem investigation, design of the code change, 

regression testing and fix distribution. Out of these four major steps problem 

investigation is the most difficult to control. The effort spent by engineers 

performing this step varies tremendously depending on the skill and experience 

of an engineer, data availability, and criticality of the problem. Regression 

testing and fix distribution steps can be improved greatly through more 

efficient operations and automation. These steps depend on product 

complexity, however the dependency is weak. Designing corrective code 

changes step depends on productivity of highly skilled engineers and 

represents a significant portion of costs of the maintenance phase of software 

lifecycle. As demonstrated in this paper, re-design of a product can improve 

productivity of engineers by more than 10%. This improvement can translate in 

a substantial cost reduction.  

The software complexity measures presented in this paper are based on 

module visibility measures developed by a group of researchers that includes 

Alan MacCormack, John Rusnak and Carliss Baldwin (MacCormack, Rusnak, 

& Baldwin, Exploring the Structure of Complex Software Designs: An 

Emperical Study of Open Source and Proprietary Code, 2004) (MacCormack, 

Rusnak, & Baldwin, WP# 08-038, 2008) (MacCormack, Baldwin, & Rusnak, 

WP# 4770-10, 2010). These complexity measures are well suited for measuring 

maintainability of software and can be used in the industry setting. As was 

demonstrated in the paper, by measuring propagation cost, Fan-In/Fan-Out 

Visibility of modules, and the “core-periphery” structure of a software system 

one can create a universal metric that satisfies robustness, normativeness, 

specifity and prescriptiveness requirements of a good maintainability measure. 

This metric can be used for measuring complexity of software products found 
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in different phases of product lifecycle and can be effectively employed in the 

process of controlling complexity of new and legacy software products. 

Economic benefits of controlling complexity of products have significant 

managerial implications. Development organizations should use a combination 

of metrics to measure the complexity of new and legacy software products to 

control their lifecycle costs. Module interconnectedness and overall product 

complexity metrics introduced in this paper is one of the approaches that can 

be used. Measurable economic benefit of redesign may prompt managers of 

development organizations to dedicate time and resources to more frequent 

redesigns of both individual components and the product as a whole. Role of 

technical architects involved in new product development should be extended 

to include the evaluation of current product design complexity and finding 

ways to reduce complexity and improve maintainability of the final product 

while software system is being developed for the first time. As this study 

indicated, “core-periphery” product architecture has an inherent cost to it. 

Unless there is a functional requirement for having a large amount of modules 

of the “core” type - “core-periphery” design structure should be avoided. 
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