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A typical application of
principal component analysis
in sensory evaluation
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Data from a trained sensory panel
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Panel data

Attributes

Raw Data

Products



Aggregated panel data
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Principal component analysis
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Dimension Reduction to A PCs
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PCA results
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Uncertainty in PCA results
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Uncertainty in PCA results
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Uncertainty in PCA results

e

A Db



Castura, J.C., Varela, P., & Naes, T. (2023). Investigating paired comparisons after
principal component analysis. Food Quality and Preference, 106, 104814.
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“Crossdiff-unfolding”

X X is a column-centered (JxM) matrix

Every row is subtracted
from every row

YOX X6X is a column-centered (J2xM) matrix




“Crossdiff-unfolding”

X The covariance matrix of X and the
covariance matrix of X&X are
identical except for a multiplier.

XOX Next, we consider PCA of X and
PCA of X&X.




Key relationships

PCA of X PCA of X&X
i

X6X




Key relationships

PCA of X PCA of X&X
X —
o\ H1:
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o) Loading matrices
X )
obtained from these two
PCA solutions are
identical.




Key relationships

PCA of X PCA of X&X
X —
\t #2:
&5“ X6X | =

N7 If we crossdiff-unfold scores
from PCA of X, we get scores
from PCA of XEX.




Paired comparisons

Row objects in X and all paired comparisons
have the same PCs
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The uncertainty cloud of each paired difference
accounts for mutual dependencies
and can be used to obtain...
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Principal component analysis

PCA is a statistical method that maximizes the variance
in the standardized linear projection of a matrix.

PCA is a method for data compression
via dimension reduction.




PCA of a Photograph
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Lossy compression — example 1
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1.0 74 1.4 16 18 2.0 1.0 12 1.4 16 1.8

Original image Compression to 1 PC
has 3 components (RGB) 93% of RGB variance
extracted

1.2 1.4 16 18

Compression to 2 PCs
97% of RGB variance
extracted
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Lossy compression — example 2

1.0 12 1.4 16 1.8 2.0 1.0 12 1.4 16 1.8

Original image Compression to 1 PC
has 3 components (RGB) 57% of RGB variance
extracted

1.2 1.4 16 1.8

Compression to 2 PCs
92% of RGB variance
extracted




InvStlgatlng a Subset of
Paired Comparlsons after PCA
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comparisons after principal component analysis. Food Quality and Preference, 110,
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When are only a subset of paired comparisons relevant?

Examples:

1. Many Test Products vs One Control

Focus on Test-Control pairs,
not Test-Test pairs

2. Temporal sensory data
Focus on Within-timepoint pairs,
not Across-timepoint pairs



Investigating only a subset of paired comparisons

“...the interrelationships between the variables might
be different for the subset of paired comparisons than
it is for all paired comparisons. So the covariance
matrix for a matrix of all paired comparisons and the
covariance matrix of selected paired comparisons will
differ depending on the data.”

Castura, J.C., Varela, P.,, & Naes, T. (2023). Investigating only
a subset of paired comparisons after principal component
analysis. Food Quality and Preference, 110, 104941.



Crossdiff-unfolding

X X is a column-centered (JxM) matrix

Every row is subtracted
from every row

YOX X6X is a column-centered (J2xM) matrix




Rows of X&X contain all paired comparisons

XoX

(J2xM) matrix




Matrix A* contains only C relevant paired comparisons

XoX

(J2xM) matrix

A*

(2CxM) matrix

A* contains a subset of
the rows in X&X




PCs of X&X and PCs of A* are usually different
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Calculate the relevant sum-of-squares extracted

Sum of -~ Sum of

squares of —— squares of all
relevant - rows in A *
rows in A ToT PCs

PCs E—




Gain of focusing on A PCs of A* instead of A PCs of X&X

Sum of -~ Sum of

squares of —— squares of all
relevant - rows in A |
rows in A ToT PCs !
PCs —

Gain=100( /  -1)%




Example 1. QDA of multiple products vs a control

All Paired Comparisons

XE6X has /2=100 rows

suosliedwod padied Gy=)

Relevant Paired Comparisons

C=9 paired comparisons
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A* has 2C=18 rows
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Example 1. QDA of multiple products vs a control
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Gain:

1 PC:
15%
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Example 2. Temporal check-all-that-apply
All Paired Comparisons Relevant Paired Comparisons

e 8yogurts x 56 timepoints ¢ 28 within-timepoint pairs

448 combinations * 56 timepoints

e All pairs =100,028 e C=28x56 =1568

e 10 attributes e 10 attributes

XS X has dimension A* matrix has dimension

100028 x 10 3136 x 10
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Example 2. Temporal check-all-that apply

tFI-Tfl based on PCA of all paired comparisons 0:03
PC1vs. PC2 PC1vs. PC3 PC2vs. PC3
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Gain:

1 PC:
>3500%

2 PCs:
52%

3 PCs:
1%



When only a subset of paired comparison are relevant

Advantages of PCA of A* over PCA of X&X
* A* contains only relevant variance
...s0 all variance extracted by PCA of A* is relevant
* Important PCs will tend to have large %VAF
* More natural to focus interpretation on PCs with large %VAF
e Recommended only if a subset of paired comparison are relevant

Advantages of PCA of X&X over PCA of A*

* Interpretations identical to interpretations of PCA of X
 Conventional so easier to communicate

 Row objects in X are well represented in PCs of X&X
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For further information, please contact jcastura@compusense.com




