

Investigating paired differences for data sets with special structures after PCA

John Castura

Compusense Inc.

Canada

Paula Varela
Tormod Næs

Nofima AS

Norway

Pangborn 2023

15th Pangborn Sensory Science Symposium

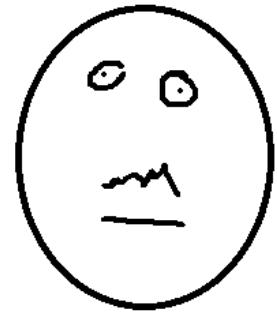
Meeting new challenges in a changing world

20-24
August 2023
Nantes
France

A typical application of
principal component analysis
in sensory evaluation

Panel of Trained Sensory Assessors

Illustration credit: J.C. Castura



Data from a trained sensory panel

Mozart

Attributes

Products

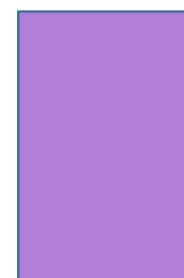
Sibelius

Attributes

Products

JS Bach

Attributes



Products

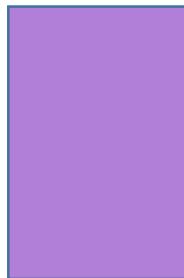
Paganini

Attributes

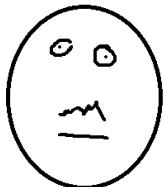
Products

Debussy

Attributes



Products



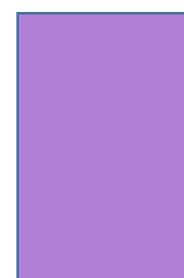
Stravinsky

Attributes

Products

Schumann

Attributes



Products

Dvořák

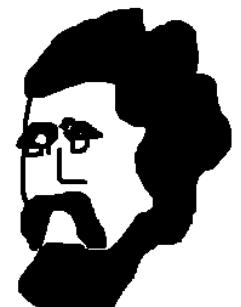
Attributes

Products

Beethoven

Attributes

Products

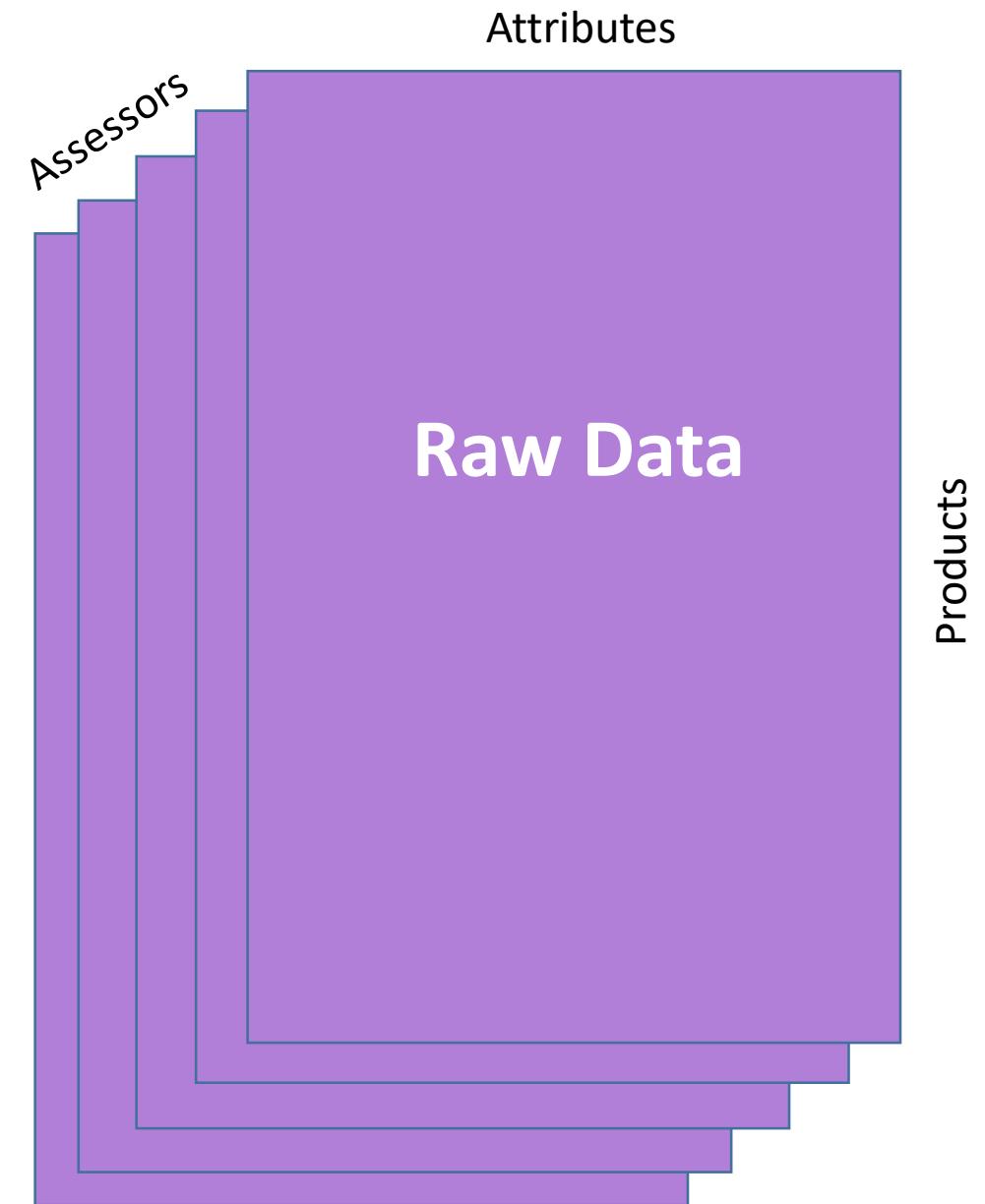


Mussorgsky

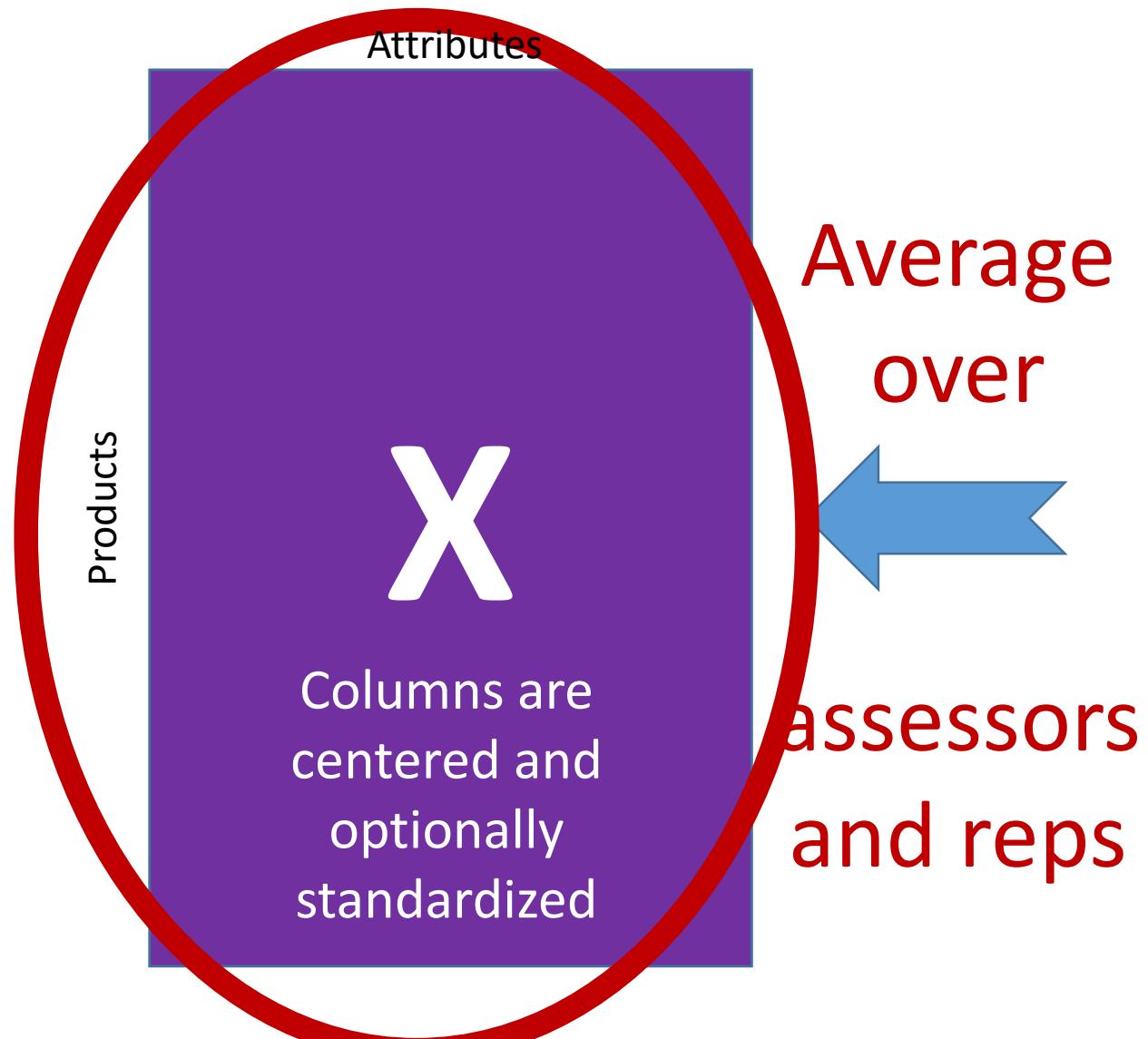
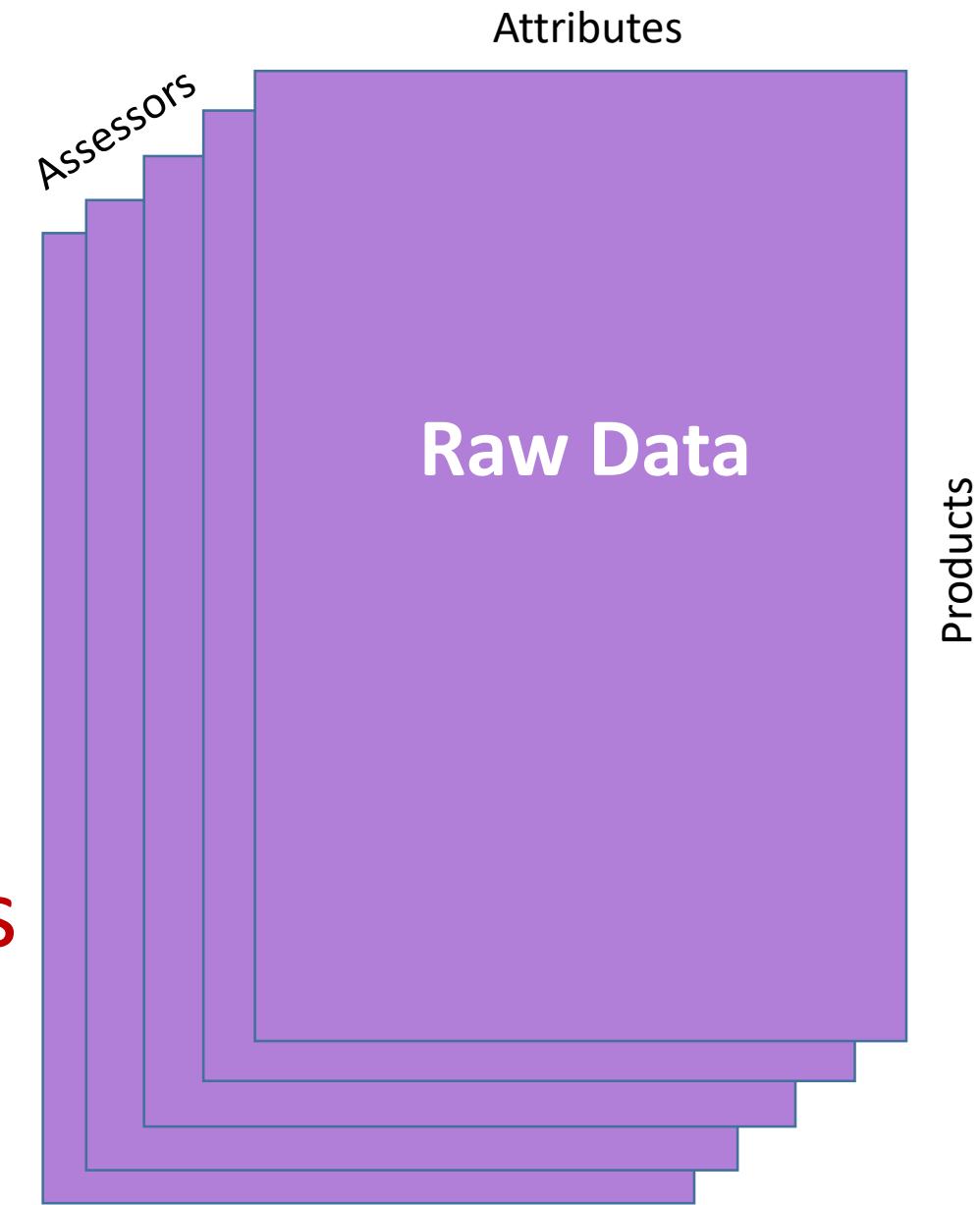
Attributes

Products

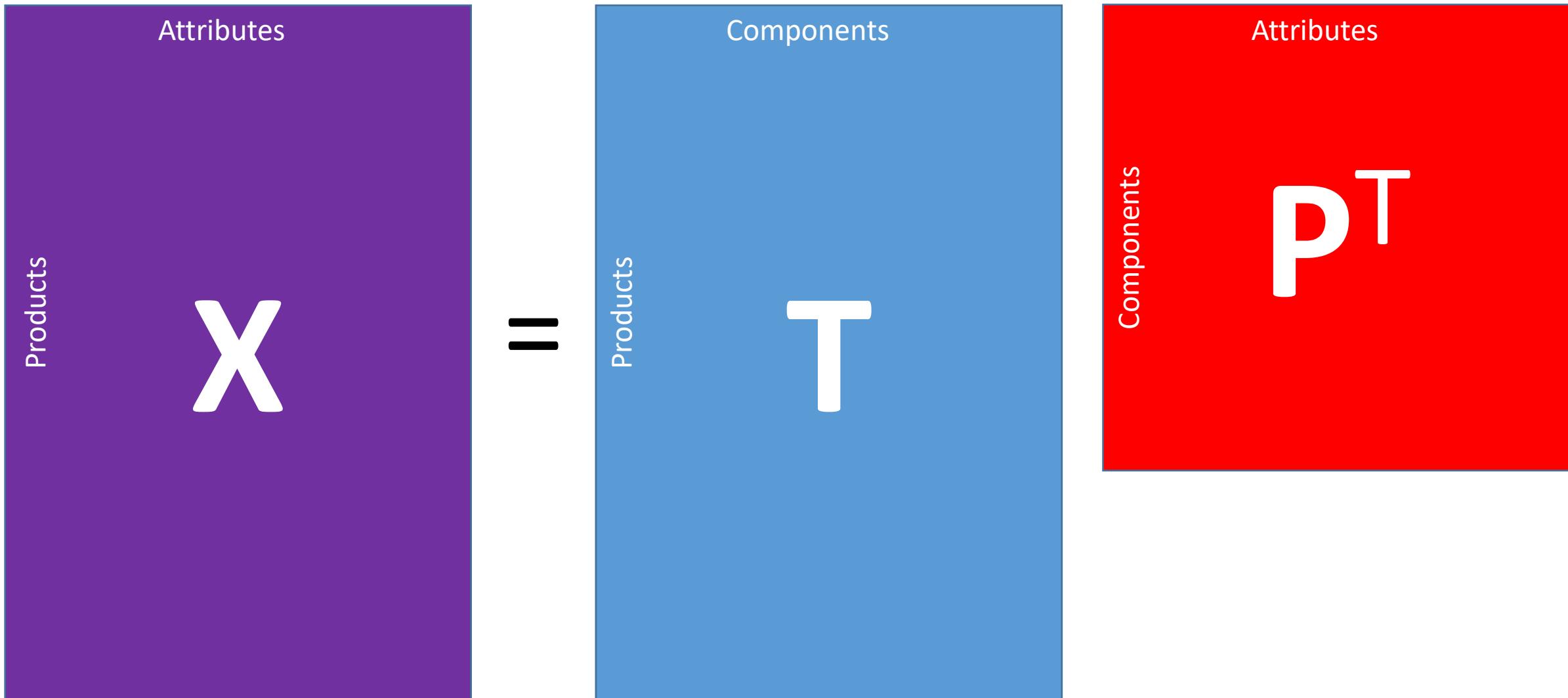
Panel data



Aggregated panel data



Principal component analysis



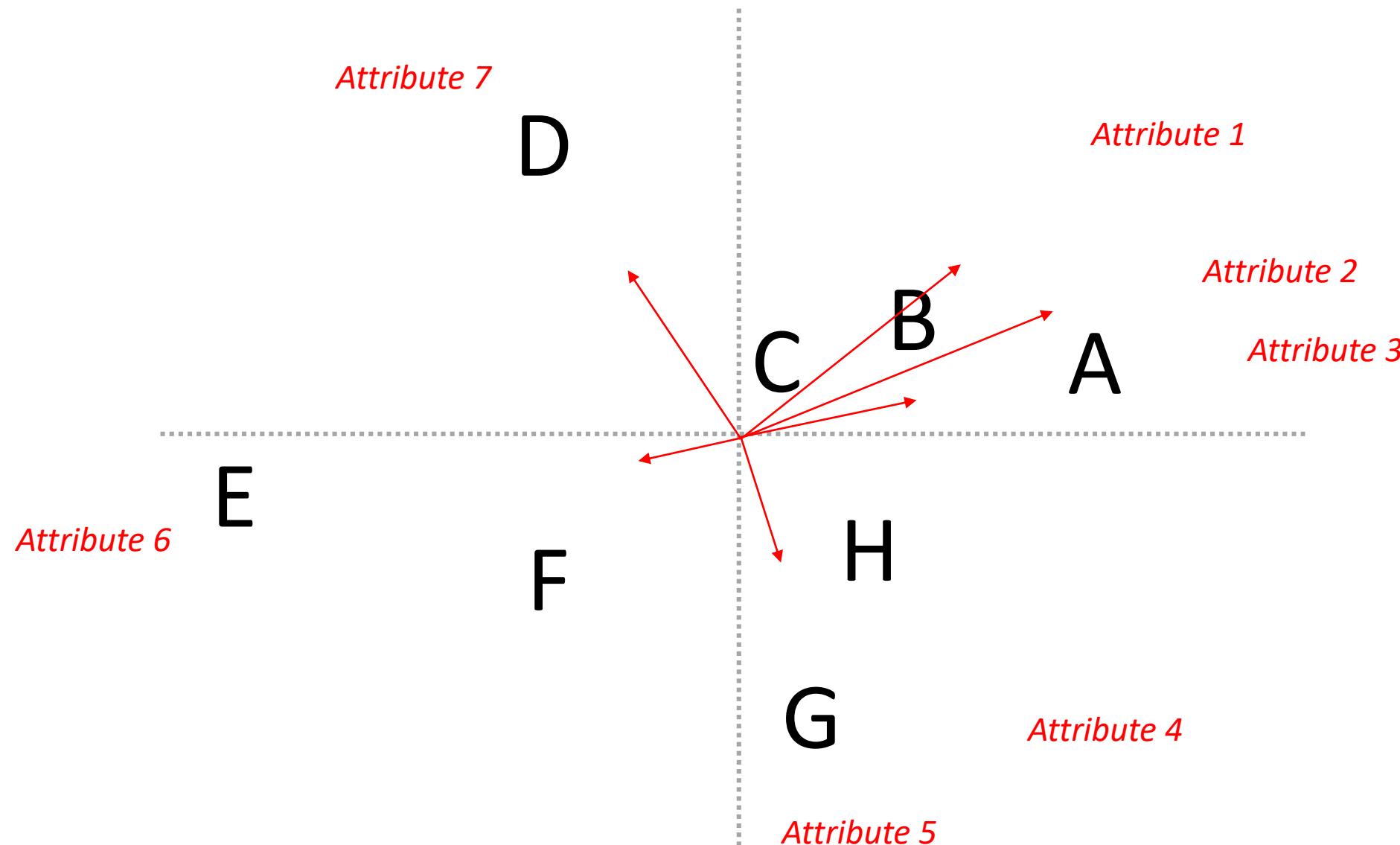
Dimension Reduction to A PCs

$X \approx$

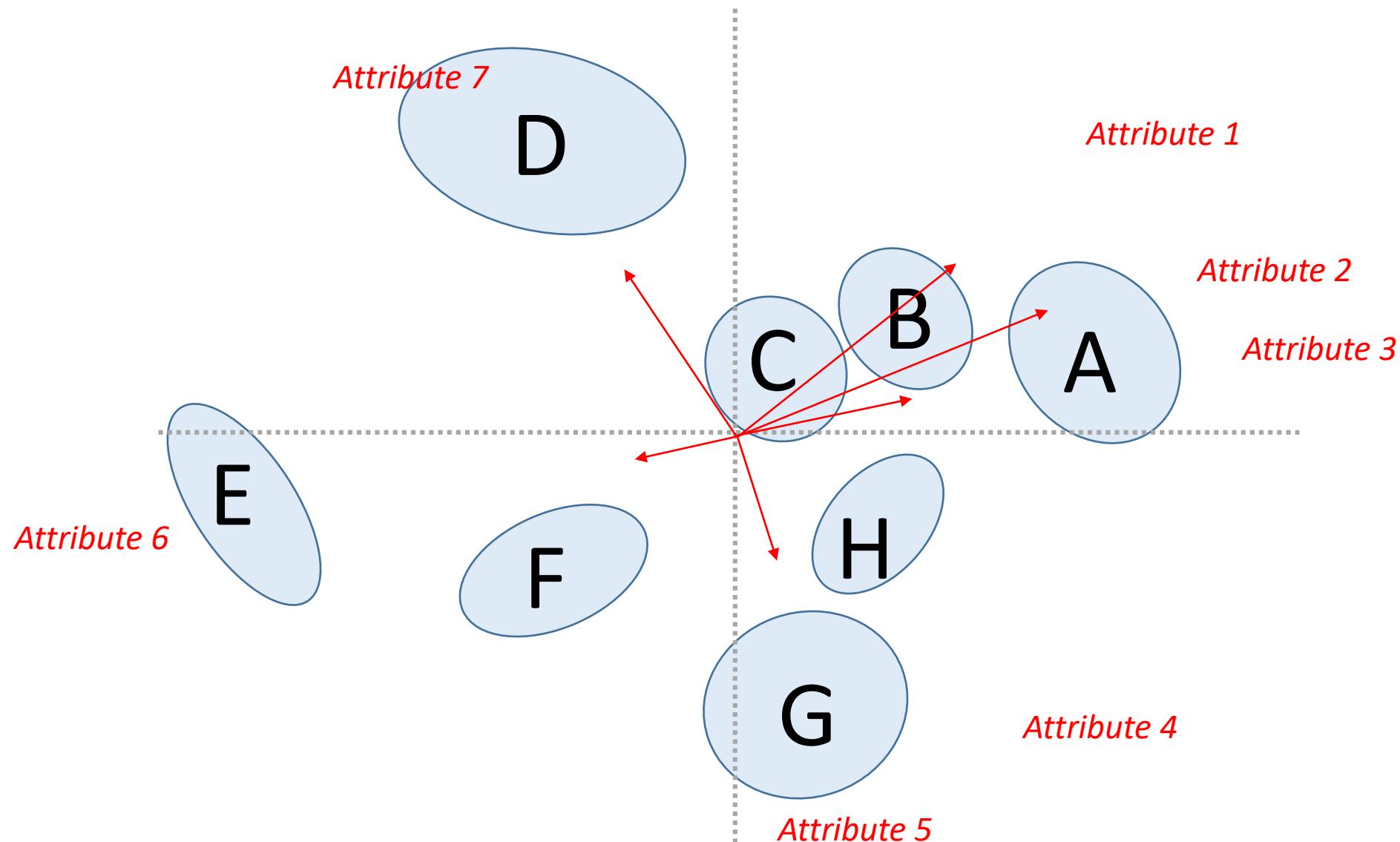
T_A

P_A^T

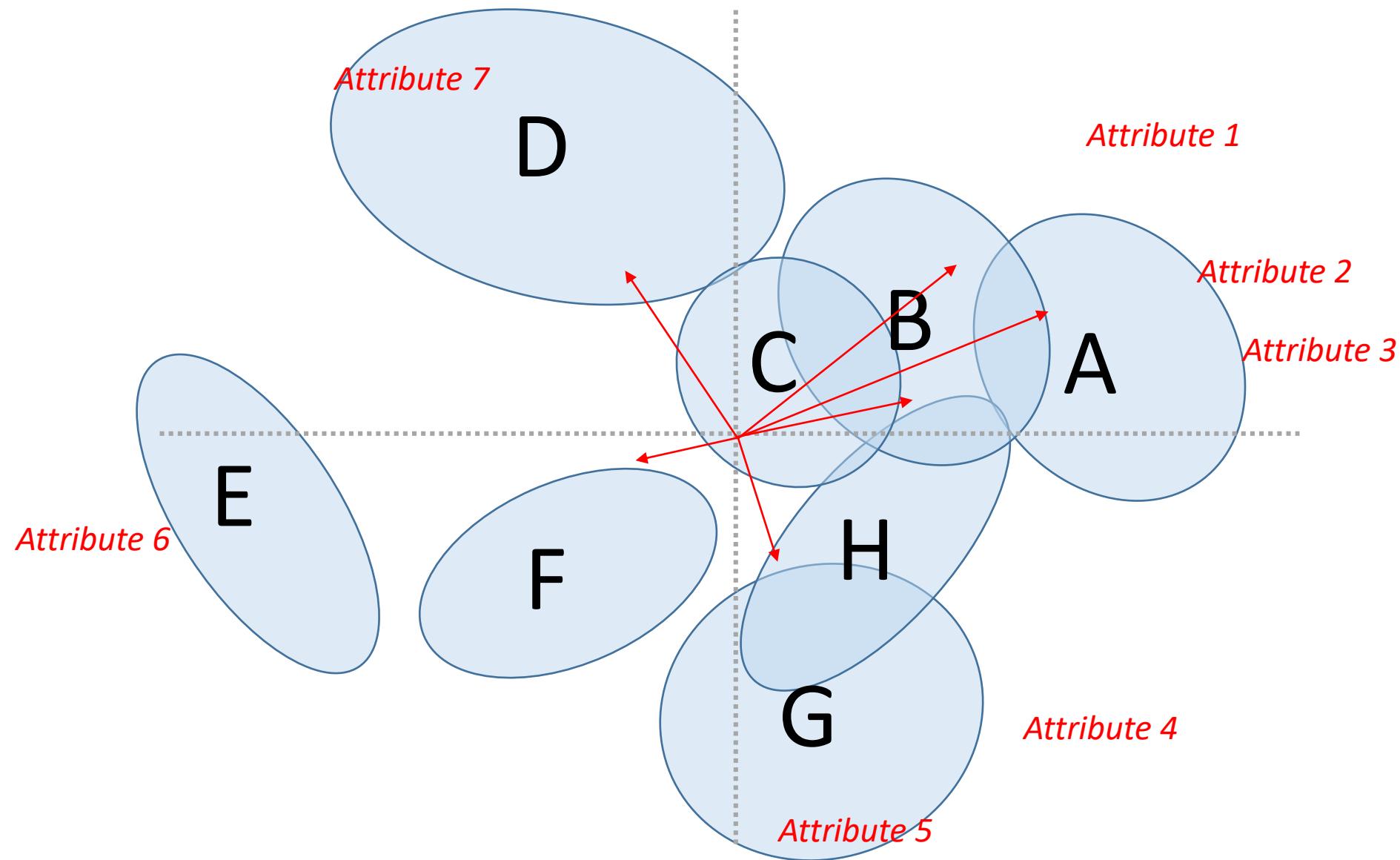
PCA results



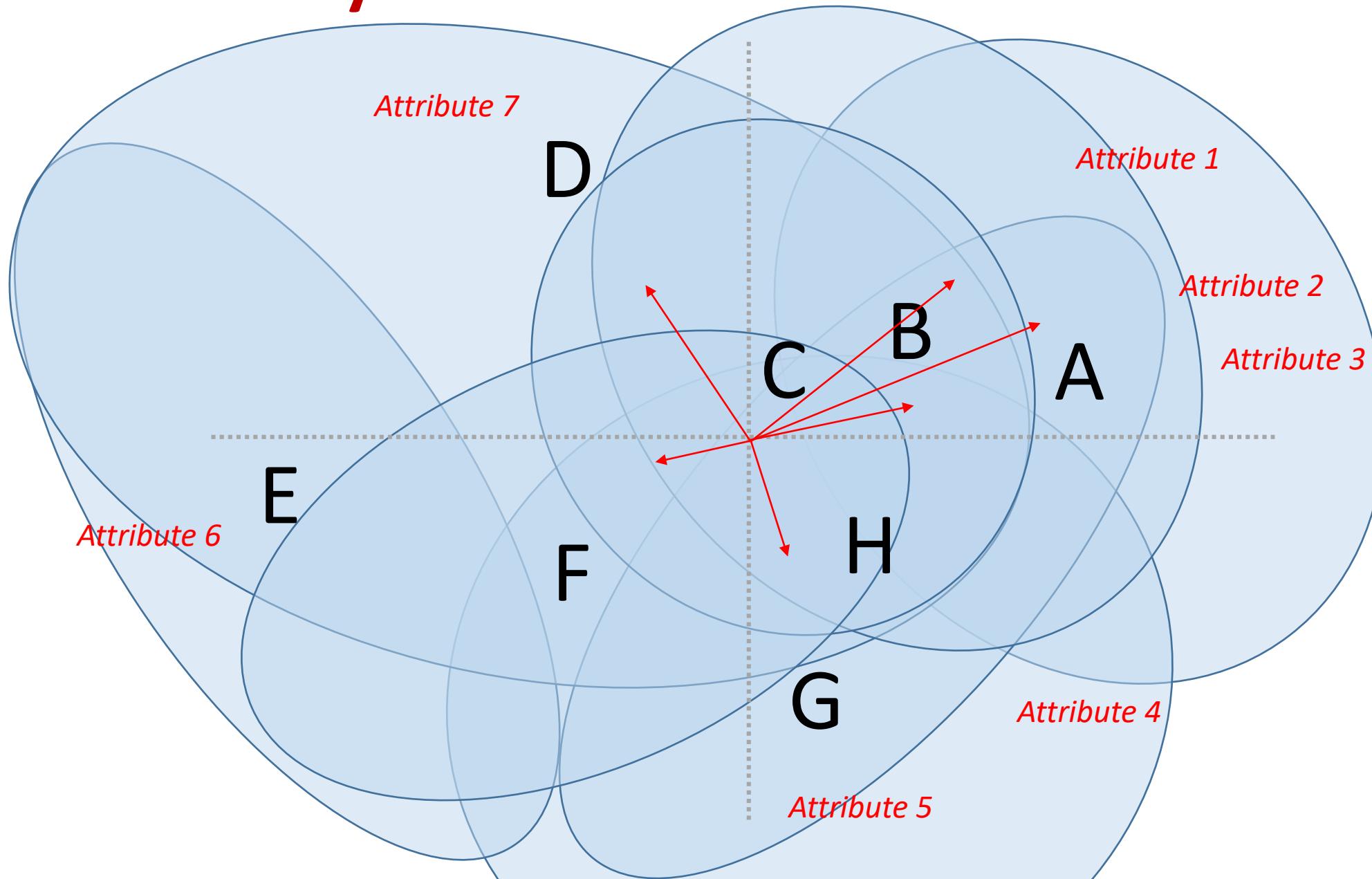
Uncertainty in PCA results



Uncertainty in PCA results



Uncertainty in PCA results

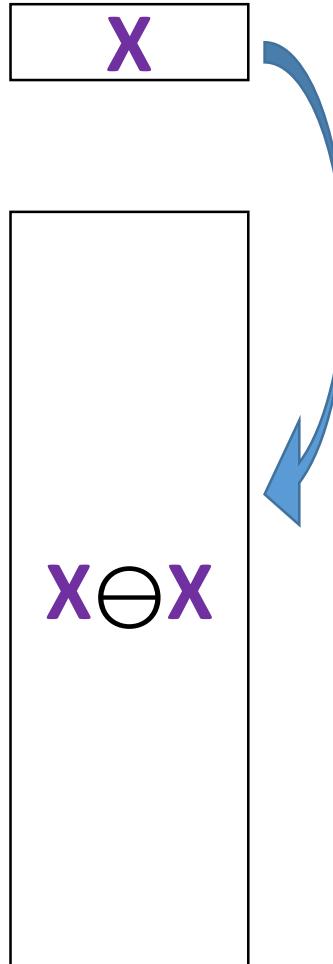


Paired Comparisons after PCA

Castura, J.C., Varela, P., & Næs, T. (2023). Investigating paired comparisons after principal component analysis. *Food Quality and Preference*, 106, 104814.

<https://doi.org/10.1016/j.foodqual.2023.104814>

“Crossdiff-unfolding”



X is a column-centered ($J \times M$) matrix

*Every row is subtracted
from every row*

$X \ominus X$ is a column-centered ($J^2 \times M$) matrix

“Crossdiff-unfolding”

\mathbf{X}

The covariance matrix of \mathbf{X} and the covariance matrix of $\mathbf{X} \ominus \mathbf{X}$ are identical except for a multiplier.

$\mathbf{X} \ominus \mathbf{X}$

Next, we consider PCA of \mathbf{X} and PCA of $\mathbf{X} \ominus \mathbf{X}$.

Key relationships

PCA of X

$$\boxed{X} = \boxed{\quad} \boxed{P^T}$$

PCA of $X \ominus X$

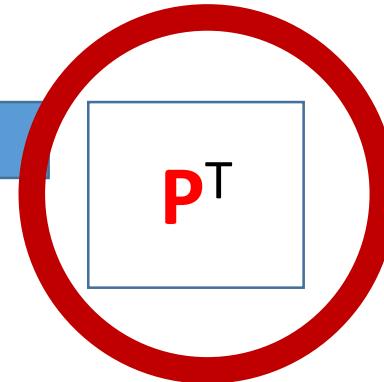
$$\boxed{X \ominus X} = \boxed{\quad} \boxed{P^T}$$

Key relationships

PCA of X

$$X$$

=


$$P^T$$

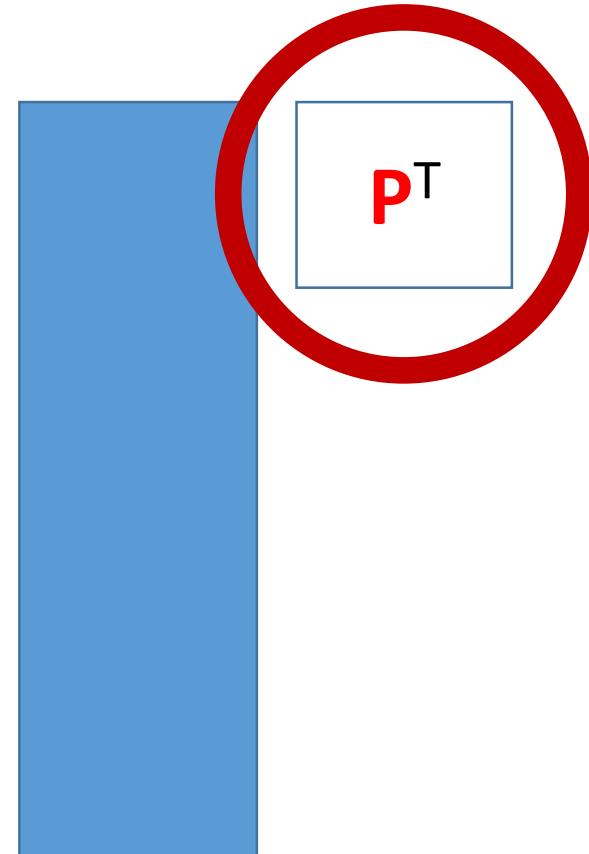
Key result #1:

Loading matrices
obtained from these two
PCA solutions are
identical.

PCA of $X \ominus X$

$$X \ominus X$$

=


$$P^T$$

Key relationships

PCA of X

$$X = \begin{matrix} T \\ P^T \end{matrix}$$

Key result #2:

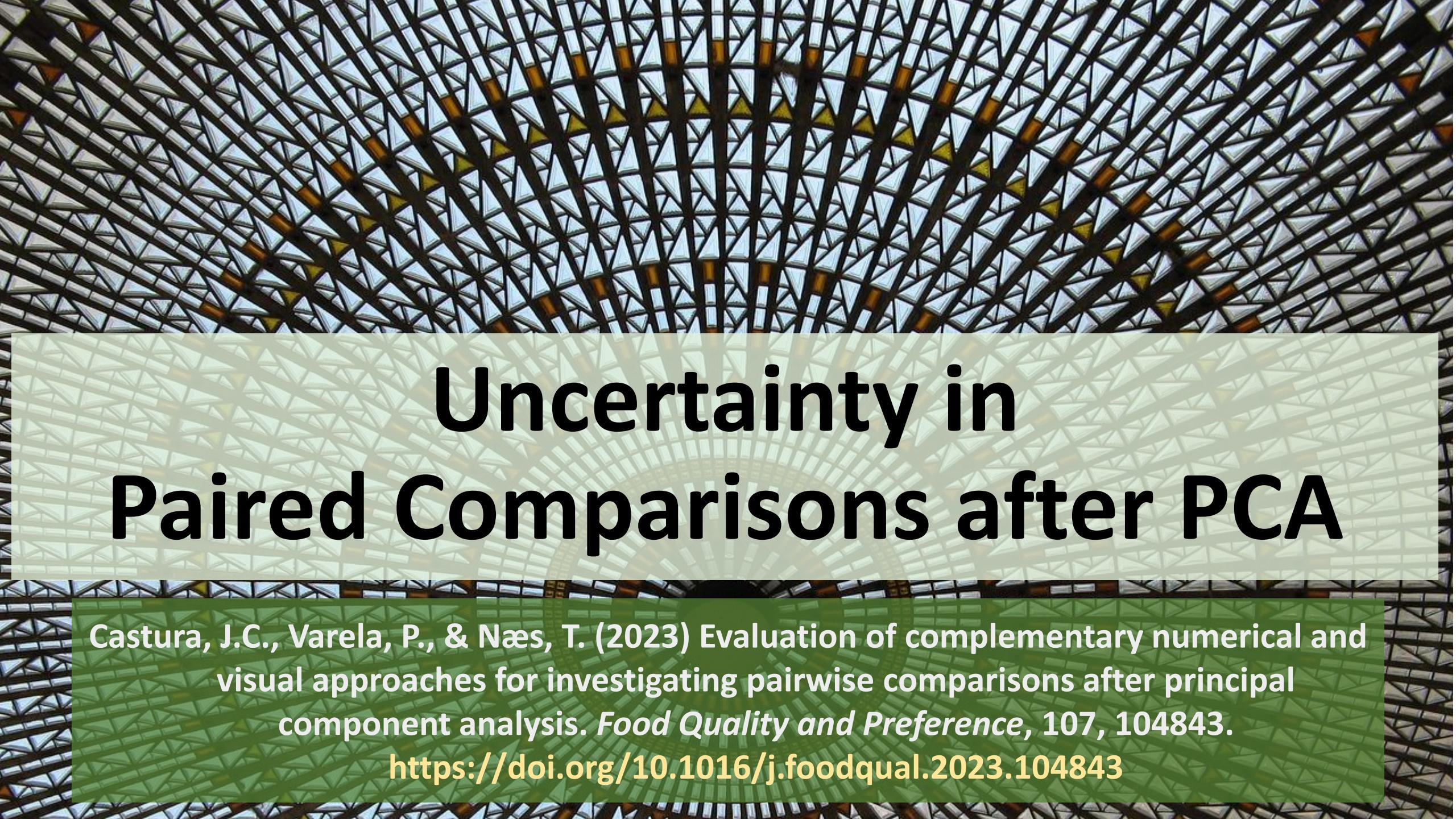
If we crossdiff-unfold scores from PCA of X , we get scores from PCA of $X \ominus X$.

PCA of $X \ominus X$

$$X \ominus X = \begin{matrix} T \ominus T \\ P^T \end{matrix}$$

Paired comparisons

Row objects in \mathbf{X} and all paired comparisons
have the same PCs



Uncertainty in Paired Comparisons after PCA

Castura, J.C., Varela, P., & Næs, T. (2023) Evaluation of complementary numerical and visual approaches for investigating pairwise comparisons after principal component analysis. *Food Quality and Preference*, 107, 104843.

<https://doi.org/10.1016/j.foodqual.2023.104843>

The uncertainty cloud of each paired difference
accounts for mutual dependencies
and can be used to obtain...

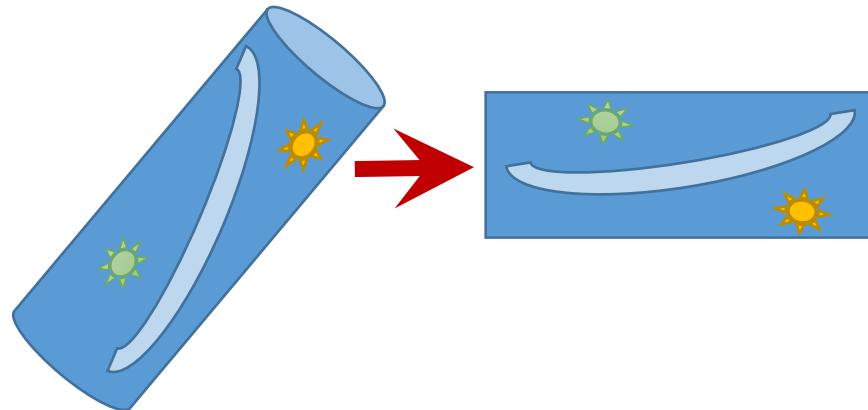
nonparametric
uncertainty
regions

confidence
ellipsoid
approximations

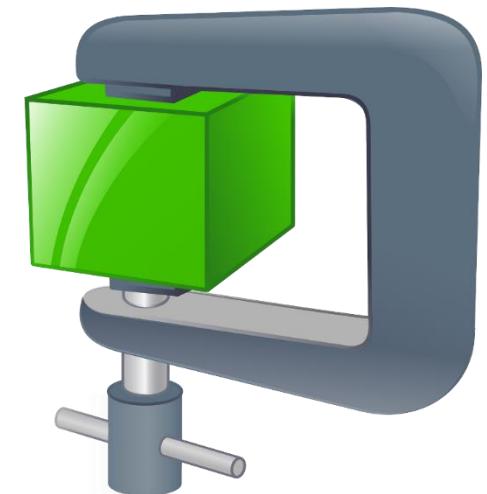
P values

Principal component analysis

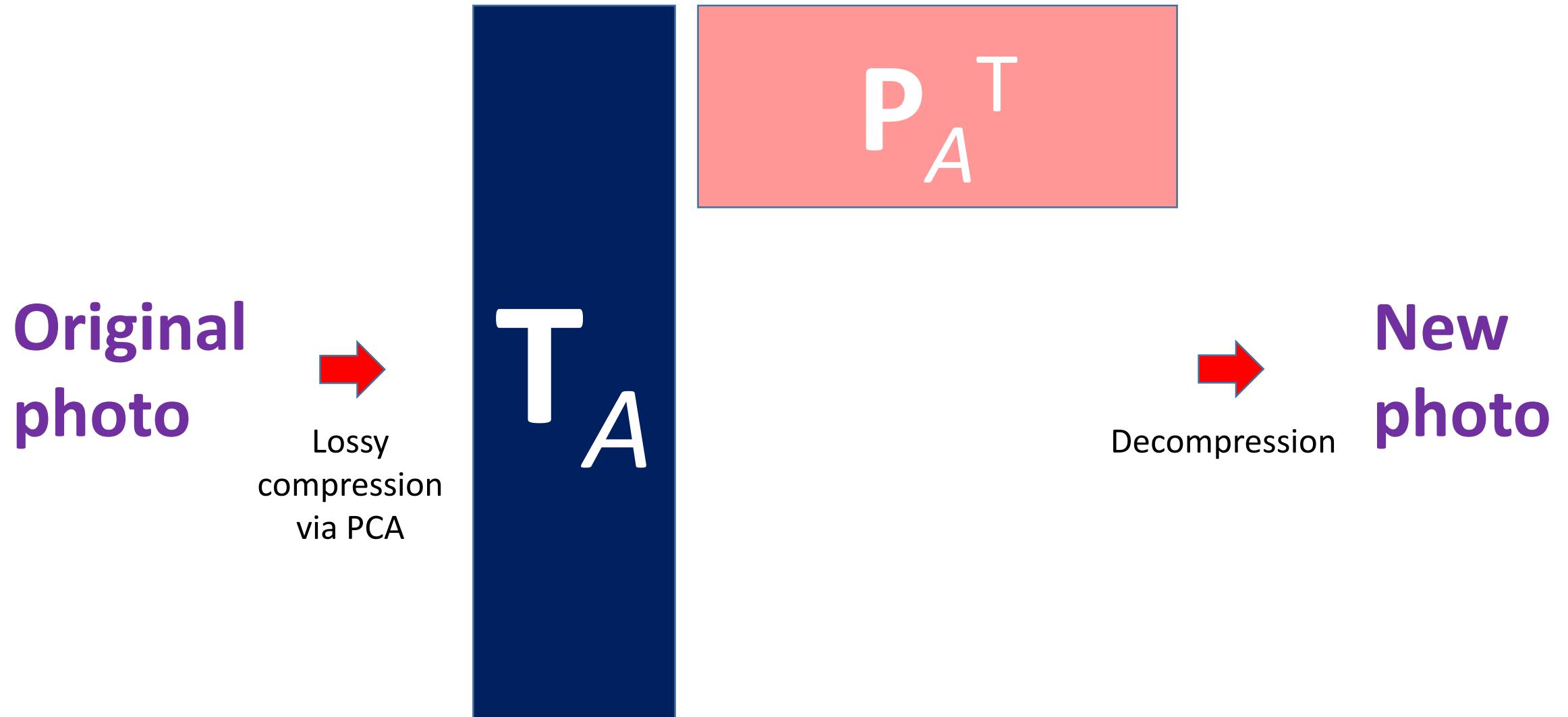
PCA is a statistical method that maximizes the variance in the standardized linear projection of a matrix.



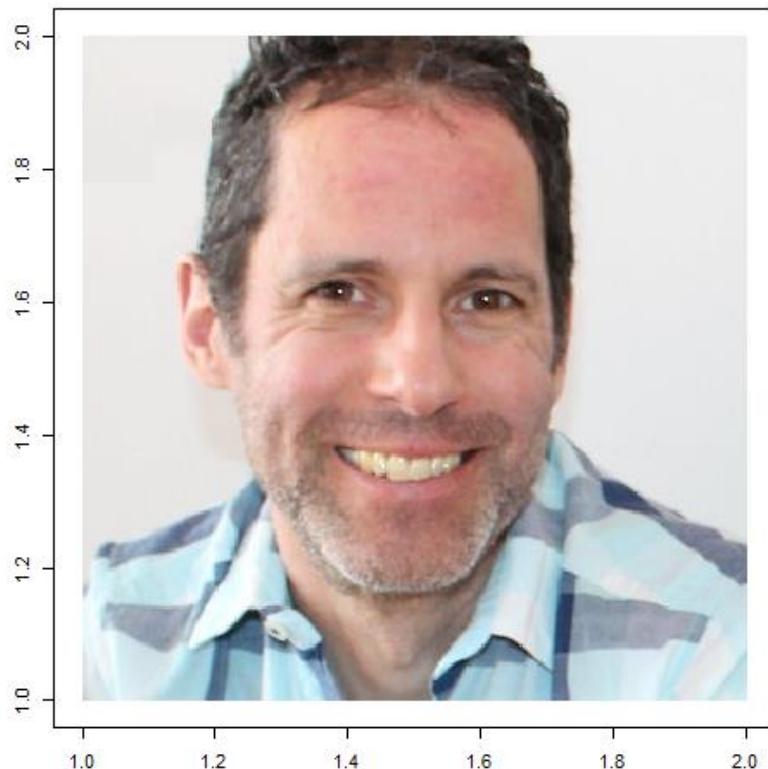
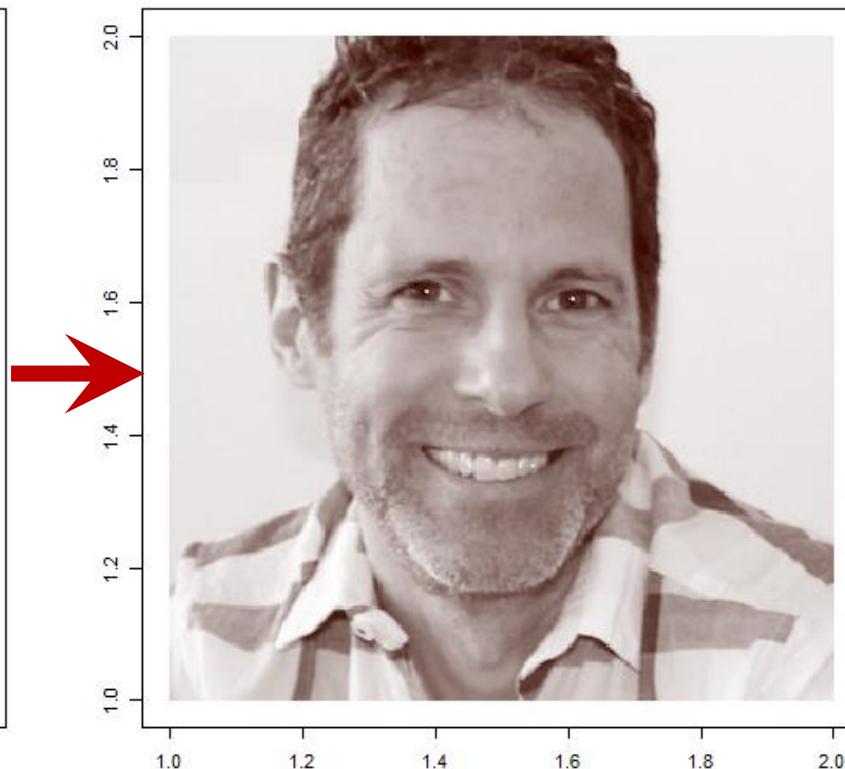
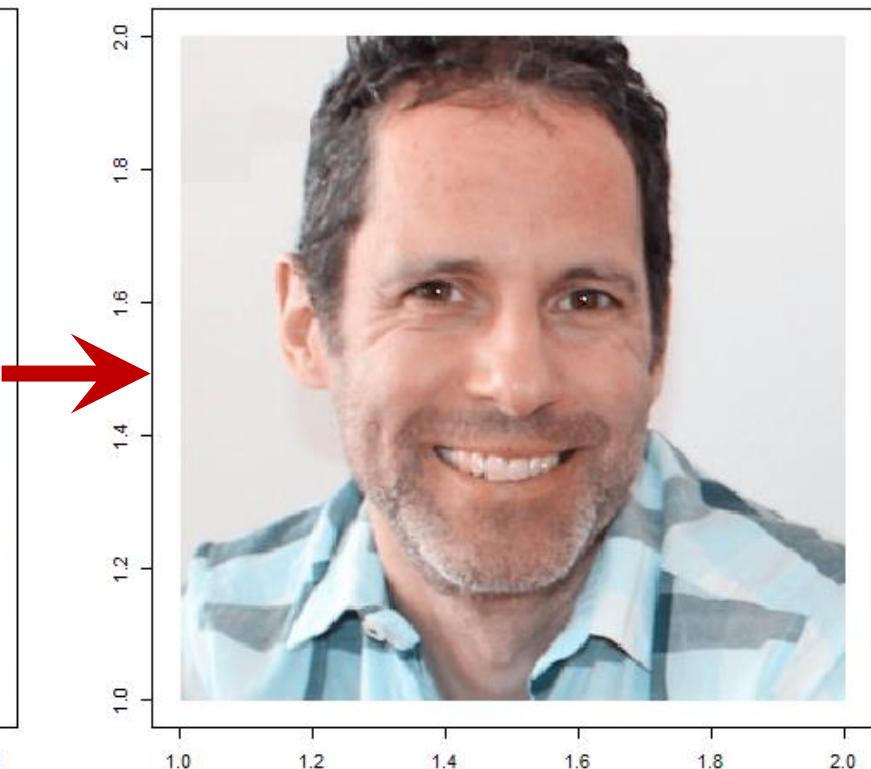
PCA is a method for **data compression** via dimension reduction.



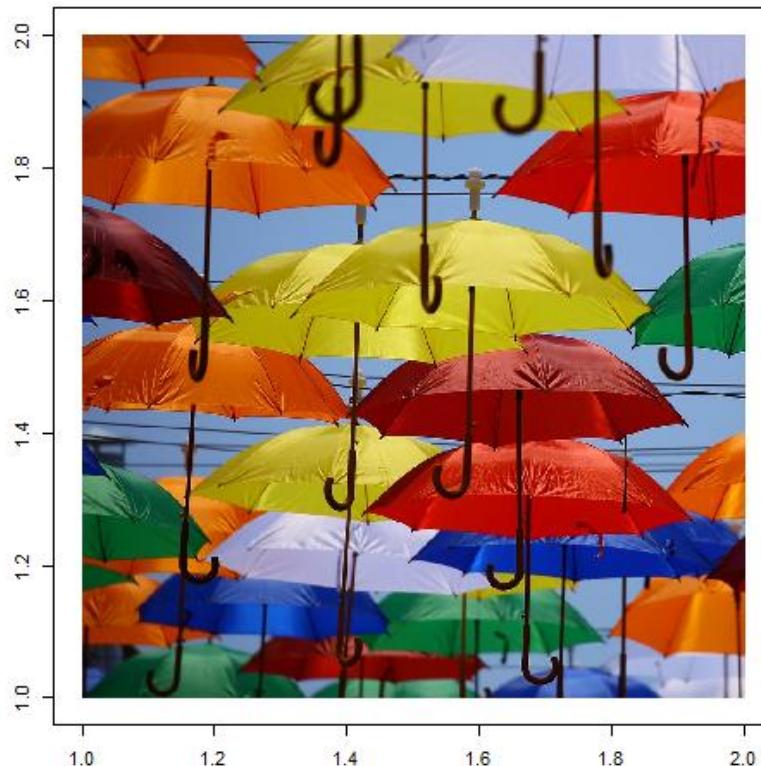
PCA of a Photograph



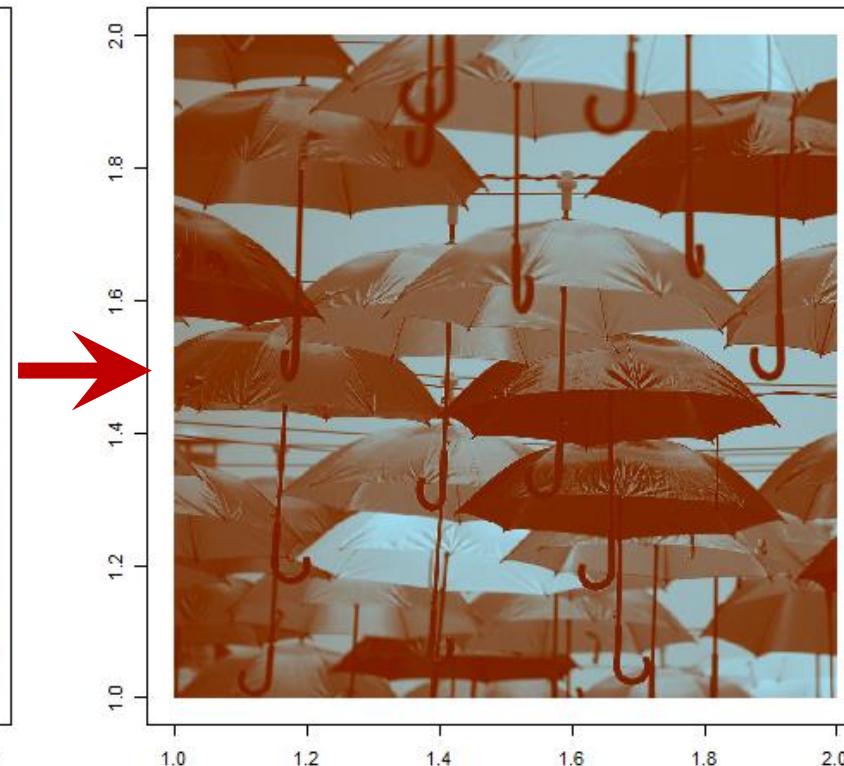
Lossy compression – example 1



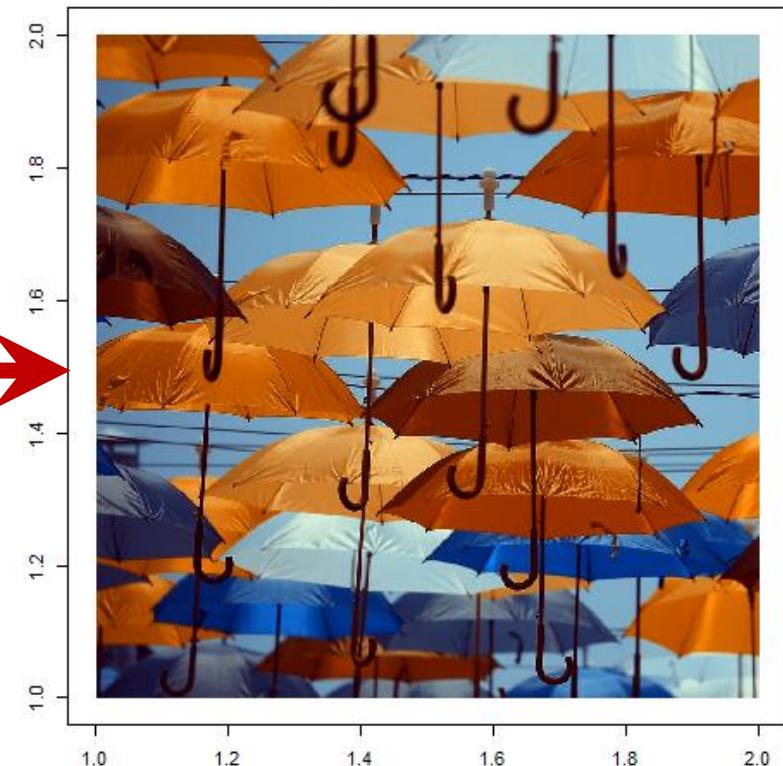
Lossy compression – example 2



Original image
has 3 components (RGB)



Compression to 1 PC
57% of RGB variance
extracted



Compression to 2 PCs
92% of RGB variance
extracted

Investigating a Subset of Paired Comparisons after PCA

Castura, J.C., Varela, P., & Næs, T. (2023). Investigating only a subset of paired comparisons after principal component analysis. *Food Quality and Preference*, 110, 104941. <https://doi.org/10.1016/j.foodqual.2023.104941>

When are only a subset of paired comparisons relevant?

Examples:

1. Many Test Products vs One Control

Focus on Test-Control pairs,
not Test-Test pairs

2. Temporal sensory data

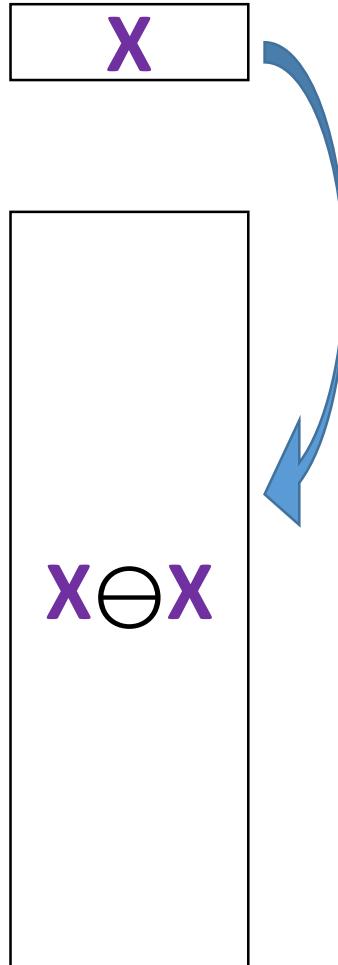
Focus on Within-timepoint pairs,
not Across-timepoint pairs

Investigating only a subset of paired comparisons

“...the interrelationships between the variables might be different for the subset of paired comparisons than it is for all paired comparisons. So the covariance matrix for a matrix of all paired comparisons and the covariance matrix of selected paired comparisons will differ depending on the data. ”

Castura, J.C., Varela, P., & Næs, T. (2023). Investigating only a subset of paired comparisons after principal component analysis. *Food Quality and Preference*, 110, 104941.

Crossdiff-unfolding



X is a column-centered ($J \times M$) matrix

*Every row is subtracted
from every row*

X ⊖ X is a column-centered ($J^2 \times M$) matrix

Rows of $\mathbf{X} \ominus \mathbf{X}$ contain all paired comparisons

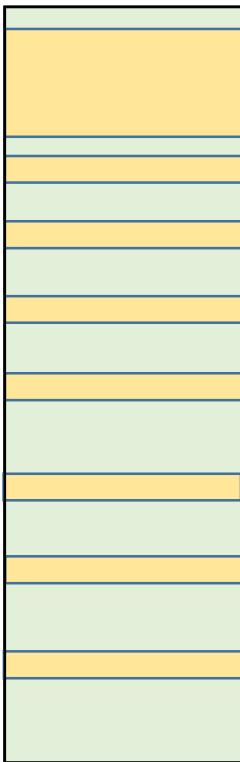
$\mathbf{X} \ominus \mathbf{X}$

$(J^2 \times M)$ matrix

Matrix Δ^* contains only C relevant paired comparisons

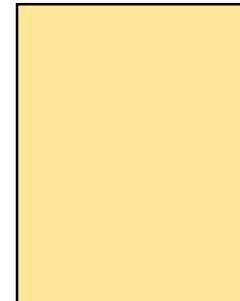
$\mathbf{X} \ominus \mathbf{X}$

$(J^2 \times M)$ matrix



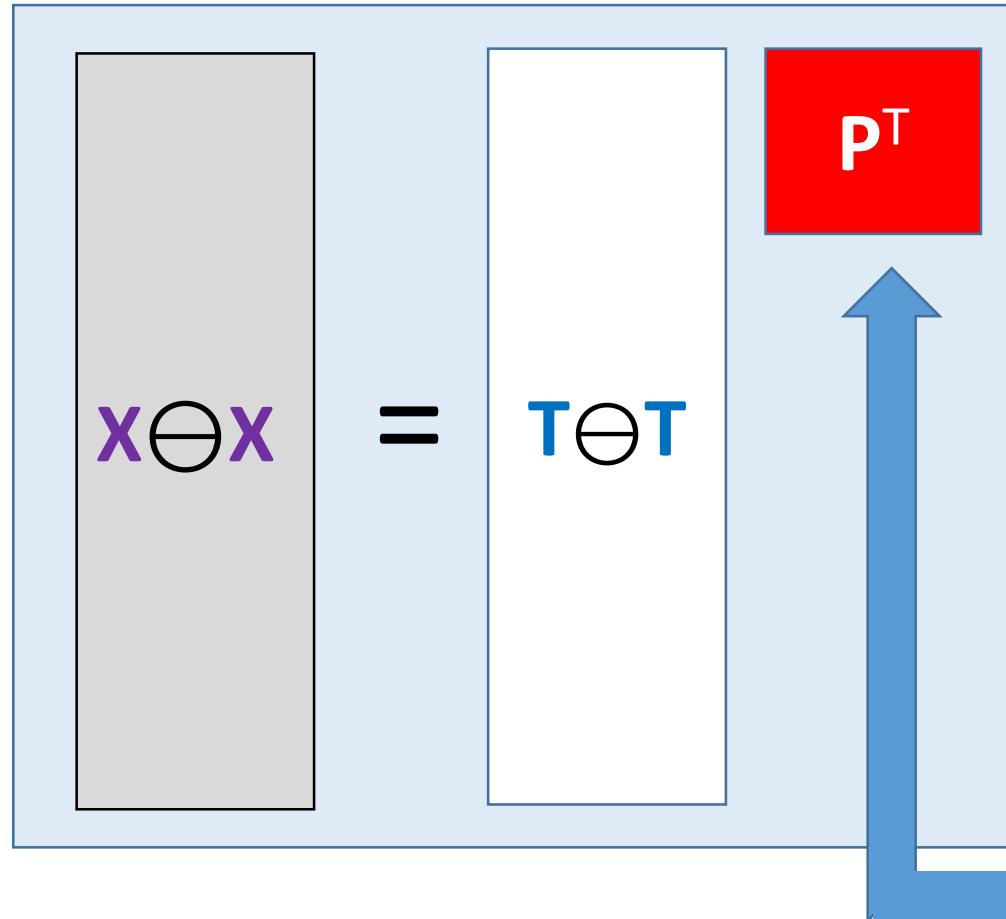
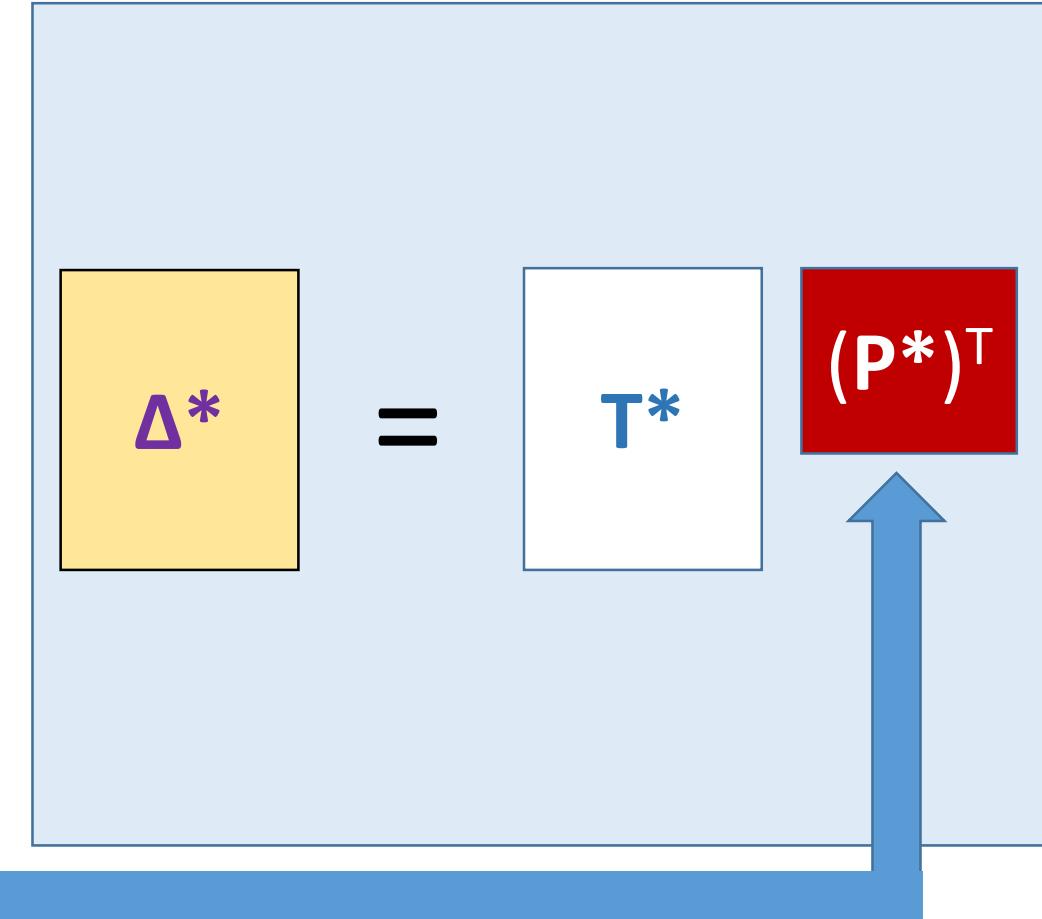
Δ^*

$(2C \times M)$ matrix



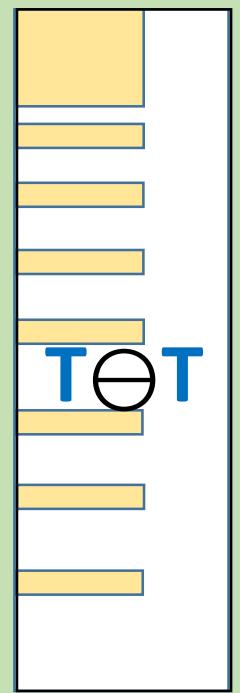
Δ^* contains a subset of the rows in $\mathbf{X} \ominus \mathbf{X}$

PCs of $X \ominus X$ and PCs of Δ^* are usually different

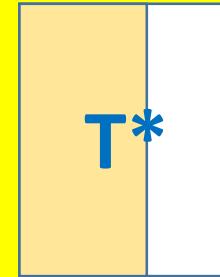


Calculate the relevant sum-of-squares extracted

Sum of
squares of
relevant
rows in A
PCs

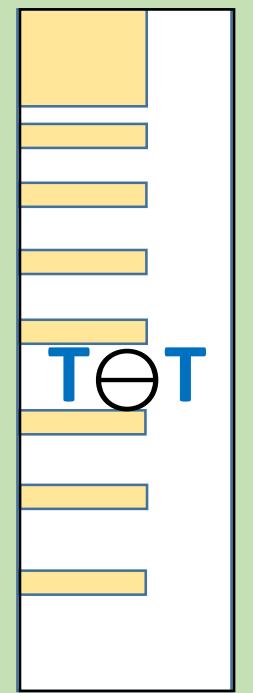


Sum of
squares of **all**
rows in A
PCs

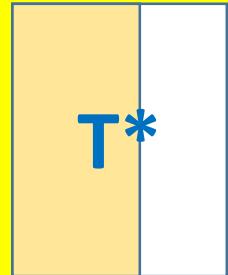


Gain of focusing on A PCs of Δ^* instead of A PCs of $x \ominus x$

Sum of squares of **relevant rows** in A PCs



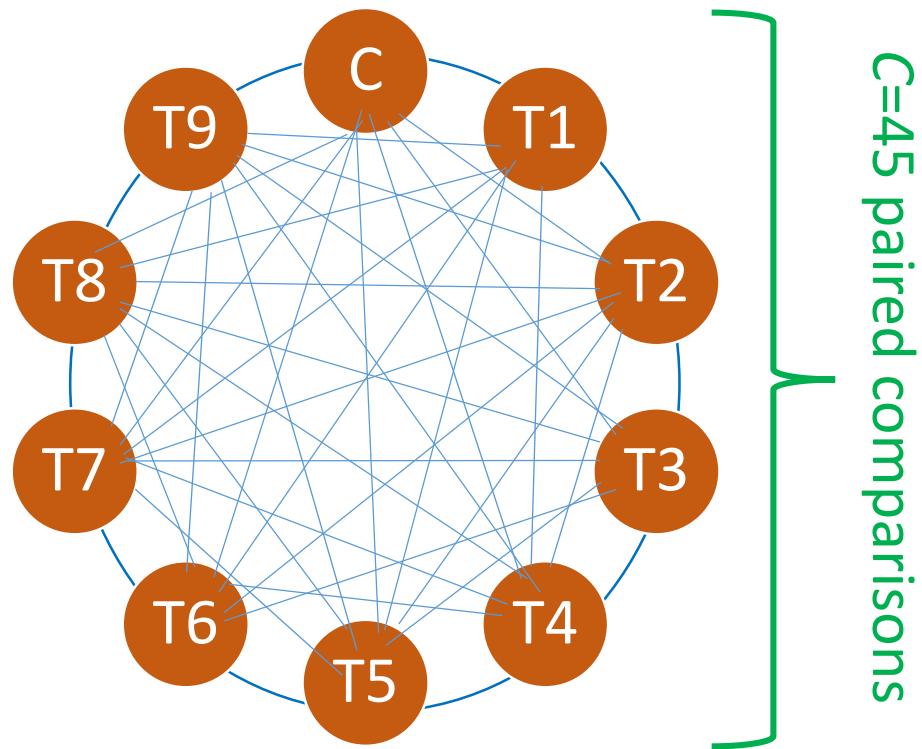
Sum of squares of **all rows** in A PCs



$$\text{Gain} = 100 \left(\frac{\text{[Yellow Box]}}{\text{[Green Box]}} - 1 \right) \%$$

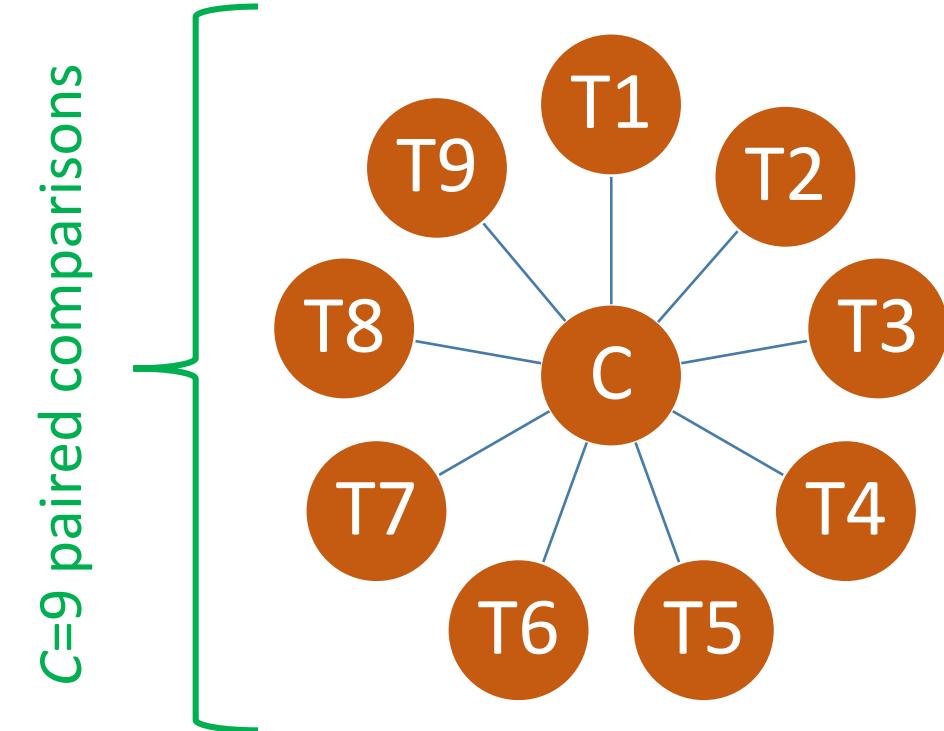
Example 1. QDA of multiple products vs a control

All Paired Comparisons



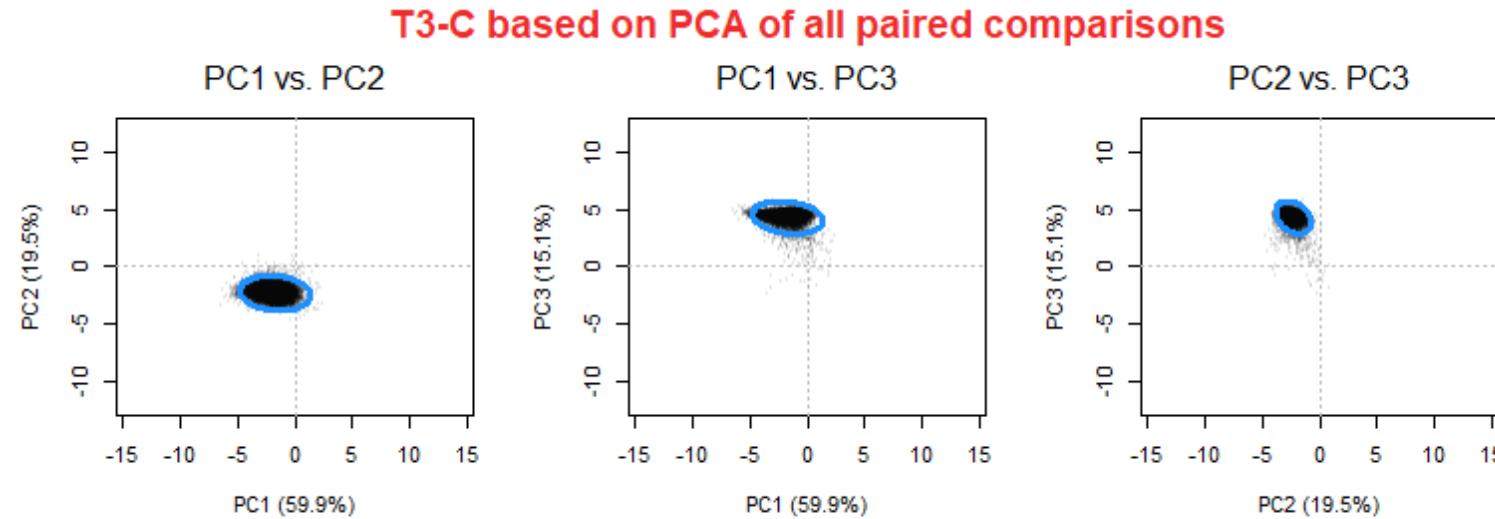
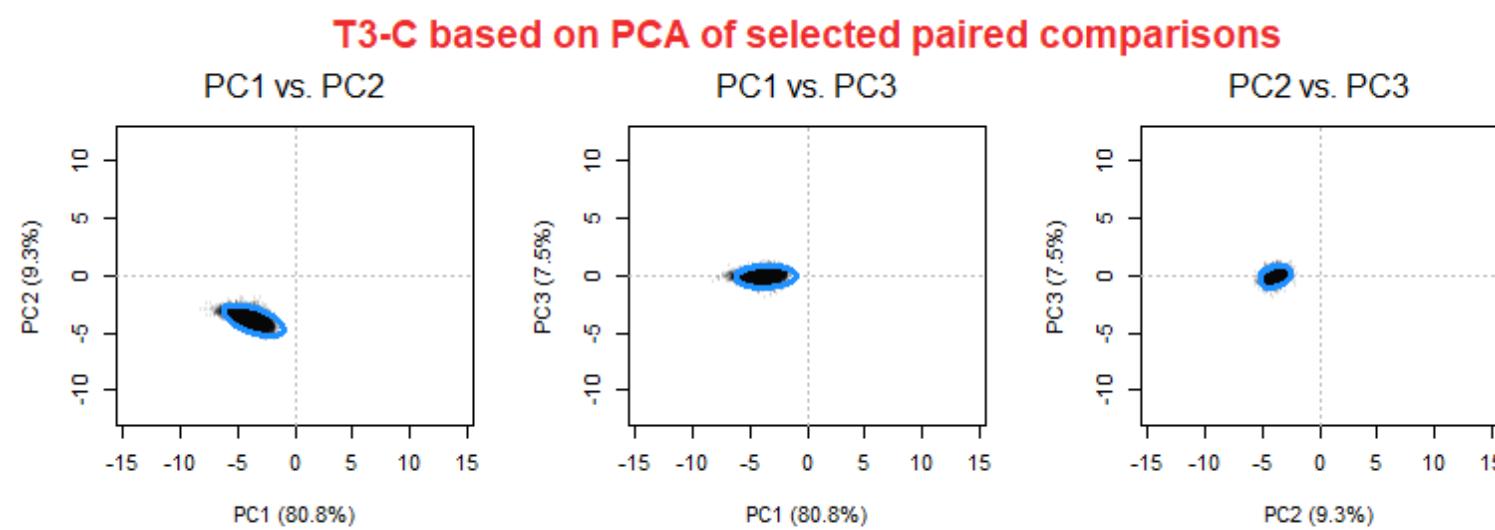
$\mathbf{X} \ominus \mathbf{X}$ has $J^2=100$ rows

Relevant Paired Comparisons



Δ^* has $2C=18$ rows

Example 1. QDA of multiple products vs a control



Gain:

1 PC:
15%

2 PCs:
14%

3 PCs:
1%

Example 2. Temporal check-all-that-apply

All Paired Comparisons

- 8 yogurts \times 56 timepoints
- 448 combinations
- All pairs = 100,028
- 10 attributes

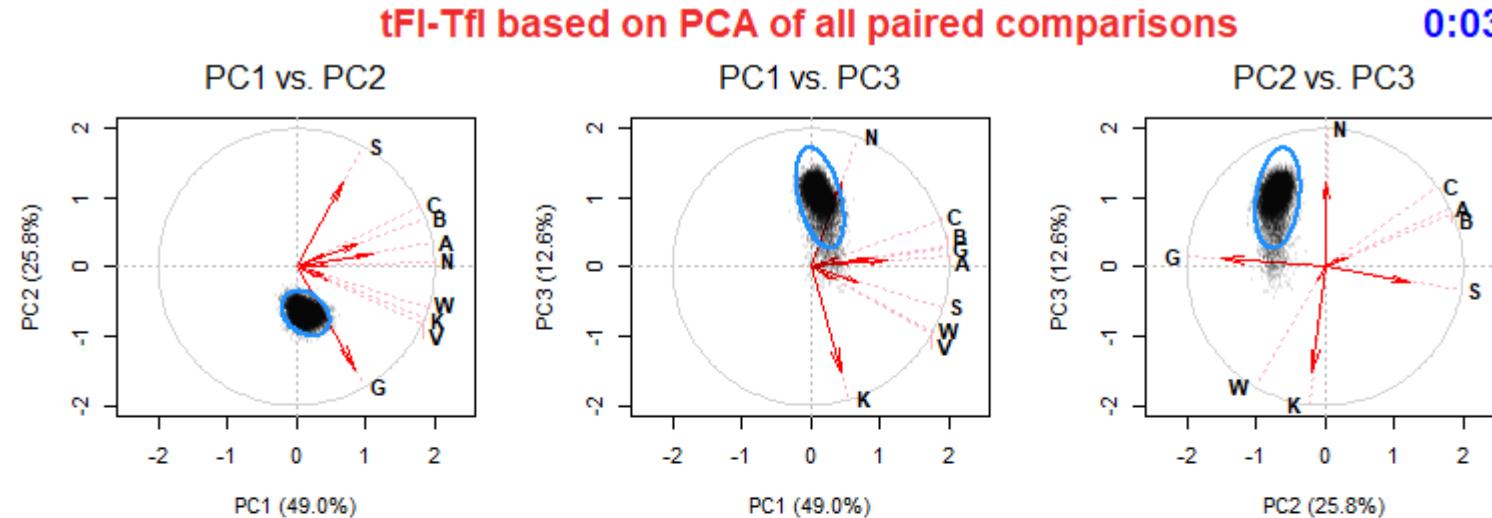
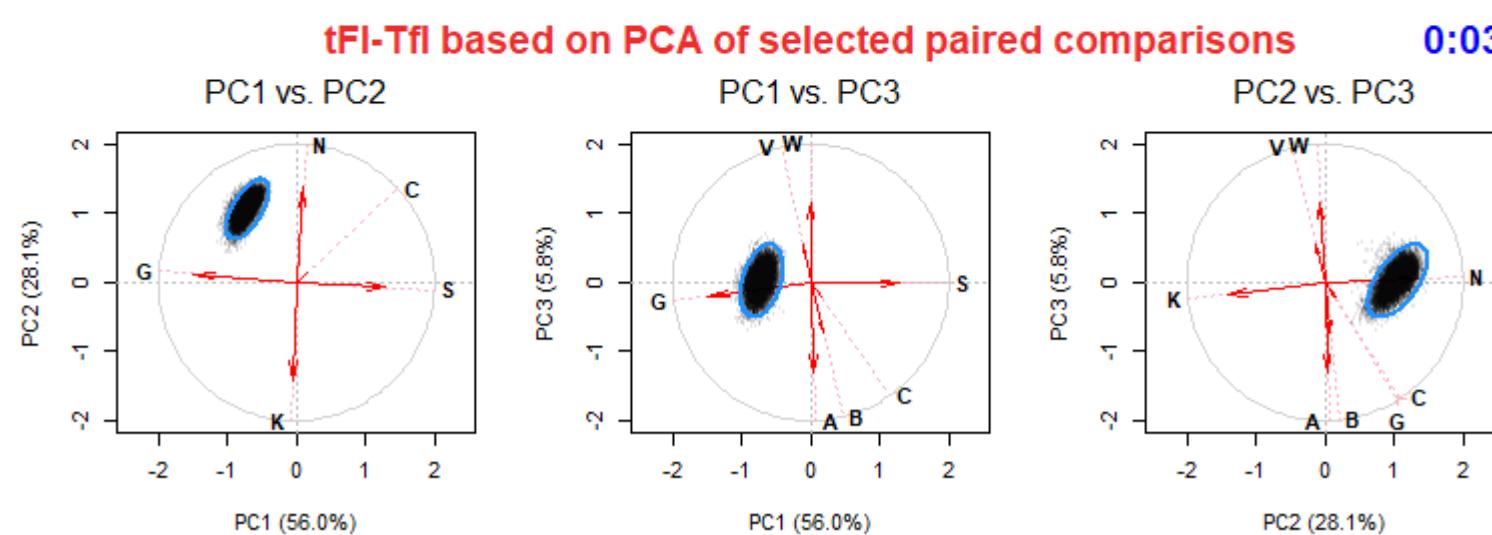
$X \ominus X$ has dimension
 100028×10

Relevant Paired Comparisons

- 28 within-timepoint pairs
- 56 timepoints
- $C = 28 \times 56 = 1568$
- 10 attributes

Δ^* matrix has dimension
 3136×10

Example 2. Temporal check-all-that apply



Gain:

1 PC: **>3500%**

2 PCs: **52%**

3 PCs: **1%**

When only a subset of paired comparison are relevant

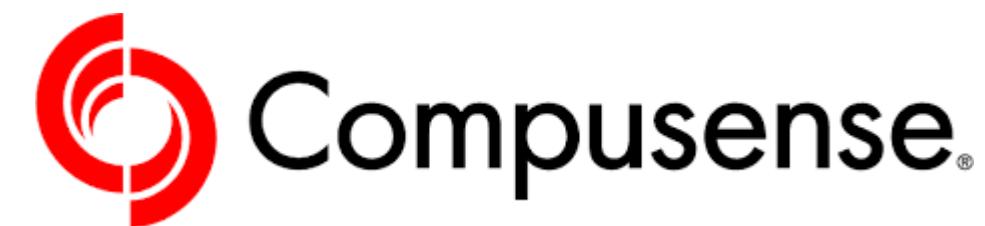
Advantages of PCA of Δ^* over PCA of $\mathbf{X} \ominus \mathbf{X}$

- Δ^* contains only relevant variance
...so *all* variance extracted by PCA of Δ^* is relevant
- Important PCs will tend to have large %VAF
- More natural to focus interpretation on PCs with large %VAF
- Recommended only if a subset of paired comparison are relevant

Advantages of PCA of $\mathbf{X} \ominus \mathbf{X}$ over PCA of Δ^*

- Interpretations identical to interpretations of PCA of \mathbf{X}
- Conventional so easier to communicate
- Row objects in \mathbf{X} are well represented in PCs of $\mathbf{X} \ominus \mathbf{X}$

John Castura



Paula Varela

Tormod Næs

For further information, please contact jcastura@compusense.com