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How do flavours evolve
in the finish of these
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Temporal
Check All That Apply (TCATA)
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Exploratory data analysis (EDA) enables
hypothesis generation and provides insights
about experimental data.



Exploratory data analysis (multivariate)
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Dimension 3 (5.51%)

Plane of PC2 vs. PC3 for Syrah TCATA data
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How well do these trajectories
represent the evolution of flavours in
the WineSips?
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Plane of PC2 vs. PC3 for Syrah TCATA data
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Can PCA do anything useful with TCATA data?

The answer
seems to be...

Yes!
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Temporal Check-All-That-Apply Characterization

of Syrah Wine

Allison K. Baker, John C. Castura, and Carolyn F. Ross

Abstract  Temporal Check-All-That-Apply (TCATA) iz a new dynamic sensory method for which analysiz techniguoes
are stll being developed and optimized. In this study, TCATA methodology was applied for the evaluation of wine finkh
by mained paneliste (n = 13) on Syrah wines with different ethanol concentrations (10.5% w/v and 15.5% v/v). Raaw
data were time standardized to create a percentage of finkh dumtion, subsequently segmented into thirds (begrinning,
middle, and end) to captore panel perception. Resnls indicated the finish of the high ethanol treatments Lsted longer
(approximately 12 s longer) than the low ethanol meatment (P < 0.05). Within each finish segment, Cochran’s () was
conducted on each attribute and differences were detectad amongst treatments (P < 0.05). Prirwise tests showed the high
ethanol treatments were more described by astringency, heat/ethanaol burn, bitterness, dark fruit, and spices, whereas
the low ethanol treatment was more characterized by sourmess, red fruit, and green fdavors (P < 0.05). This smdy
demonstrated techniqoes for dealing with the dita generated by TCATA. Furthermore, this stady further characterized
the influence of ethanol on wine finish, and by extension wine quality, with implications to winemakers responsible for

wine processing decisons involving alcohol management.

Keywords: ethanol, syrah, TCATA, wine finish

Practical Application:

Effective temporal descriptive sensory methods are esential in order to accurately characterize

attributes that change over time. This paper introduces the Tempora Check-All-That-Apply (TCATA) methodology
for performing 2 dynamic characterization of wine finish, which ha 2 complex evolution of sensations. The methods
of sandardization, time segmentation, and statistical analyzes expand wpon the current TCATA methodology and the

undenstanding of wine finish.

Introduction

Sensory perception is 3 temporal rather than static experience.
As such, it & impartant to have offective techniques for capturing
nuances of sensory attributes as they develop and diminzh aver
time. Comman methods for capturing dynamic sensory evalua-
tion datz include tme-mtensiey (T1; ASTM 2013) and temparal
deminance of sensations (TIXS; Pinesu and athers 2003). Each
provides valnable information reganding changing sensary proper-
fies over time but cach ha challenges. While T1 provides deserip-
tive curves from which parameters can be extracted for analysis,
only 1 attribute is cvaluated at 2 time. This limitation can bead
2 2 halo_chempingg efect, particularly when cvaluating 3 complex
product (Clark and Lawless 1994). TI2S allows for multi-attribute
evalnation during which a panelist indicates 1 dominant attribute
at any given time from a ligt (Pineaw and others 2009, 2012).
However, limiting cach pandlist at each moment to the selection
of only the most dominant attribate also limits their abiliy to
h erize dominant (but theles important) aspects of
aprmduct (Ares and athers 2015). For example, in 2 complex prod-
uct like red wine, astringency and alcchol barn tend to dominate
perception, overshadomwing smaller differences in flavars that may
b present in the fnish.
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Foccently, Temporal Check-All-That-Apply (TCATA) has been
introduced {Castara and others 2016). It extends Check-All-That-
Apply (CATA) methodology for temporal data collection. Tt has
been wsed with traimed and semi-trained panelsts who cvaluate
2 sample by contiually checking and unchecking the atiribatrs
from a prepopulated list. Unlike m TS, TCATA allows concar-
rent term selection. Specifically, instead of indicating 1 atribate
that is dominant at any given time, panclsts can indicte 2l -
tributes perceived at any given time. This method provides binary
data with no drect indication of atribute intensities; however,
previous stodies have reported commdation between attribute in-
tensity and CATA frequency in the evaloation of milk desserts and
beer (Brazzone and athers 2012; Rcinbach and othens 2014).

Wi sought to determine whether TCATA provides an effective
temporal sensory evaluation of 2 complex product and complex
perception: wine finish. Wine finish mcorporates several sensory
madalities, consisting of the flavors, tastes, and mouthfecls that
remain after a wine sample is swallowed or expectorated (Jackson
2003, Relsted words describing wine finish or 2 component
thereof inchude sfiertastr, persistence, and length {ar long). Eeo-
nomic studies on premivm wines suggest that a long and plezsant
finish is indicative of 2 high quality wine (Lecocq and Visser 2006;
Benfratello and others 200%).

Secondurily, this study was 2 dessgned experiment with wines
systematically manipulated to allow for concheions regarding a
caumal relationship between ethano] and wine finish. Mumeraus
previous studies have described the influence of wine ethanol
concentration on aroma and flavor. Increases in ethanol con-
centration (mnging from 086 w/'v to 18% v/v] & known to de-
cTease aroma intensity and volatile recovery (Le Borre and others
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Using contrails and animated sequences to visualize uncertainty in
dynamic sensory profiles obtained from temporal check-all-that-apply

(TCATA) data
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1. Introduction

Temporal check-all-that-apply’ (TCATA; Castura Antiner.
Ciménez, & Ares, 2016) & 2 temporal s=nsory method, and its data
are used to describe the temporal evolution of sesary attributes
in the products under evaluation Assessors, who could be either
trained or untrained, are sked with checking and unchecking
attributes from a fist during the evaluation period, such that the
attributes that are sdected at ay given time desaibe the product
at that time TCATA methodalogy has been used o investigate
tempora sensary evalution in a range of produa categories: food,
such as yogurt ({astura « al, 2016}, salami, cheese, French bread,
and marinabed mussels (Ares et al. 2015% bewerages, such as
chomlate-flavoursd milk (Oliveira = al, 2015) and r=d wine
(Baker, Castura, & Ross, 2016); and non-food, such & cosmetic
producis {Boinbaser, Parente, Castura, & Ares, 2015)

Fammi liar heuri stic approaches for visualizing data from tempo-
ral dominance of sensations (TDS; Pinsaust al, 2009) studiss have
fheen leveraged io show TCATA curves as smoothed attribute cita -
ton proportions over time. for each TCATA atribute, the citation

* Commmaloy s,
E-mail adddes: padw slomspuiesiecoes | Caitea |
T The Gl e ol eadh oy G (e A alh A] S sows i Bald

B ) bl e i S vl B 06 A T
DA XA DN E T Aiiirs, Pabbliibod by Bdever Lad.

rate of a product of interest @n be @nirasted with the average
citation rate of the other products {Cestura =t al, 2016, Figs. 3
and 4} The data visualiztion described ahove can be considersd
tx be 3 generalzation of differenee curves, which mntrasts attri-
bue dation rates for one product agaimt another produa over
time, thus emphasizing statistically signifiant diffenrsncss
{Castura et al. 2016, Fig- 5L

Univariste TCATA curves can be anerous to neview when thens
are many products and mamy attribuies. For this reason it can be
useful to consider TCATA data from a multivariate perspective,
which provides bothdata reduction and interpretation ad
{Johmson & Wichemn, 2007, chap 8) Gstura =t al. (2016 Figs &
and 7) submit a confingency tahle of TCATA ctation frequencies
(rows: Product * Time; columms: Attributes) to cormes pondence
analysis (CA) and join adjacent time sles 0 create 3 separate
curve per product. Each curve can then be smoothed so as to show
trends without overfitting the dat Each curve is called a trajec-
tory, llowing terminalogy for multivariate changes in TDS dom-
imance rates in Lenfant, Loret, Pineau, Hartmamn, and Martin
(2009). A z=n=e of temporal progresion i given by pladng mark-
ersalong the trajectonies at speafisd time intervals (eg. every 5 s

A ched-all-that-apply (CATA) contingency table can also be
analyzed via principal mmponent analysis (PCA) on the covar ance
matrix (Meyners, Castura, & Carr, 2013] It is possible to conduct
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Independent Components Analysis
(ICA) with the
Joint Approximate Diagonalization of
Eigenmatrices (JADE) algorithm



What is ICA?
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Differences between PCA and ICA

PCA

e Recodingof XtoY

e PCs are each linear combination of attributes

e PC1is the direction of greatest dispersion of the samples
* Variance explained orders PCs by ‘importance’

ICA

* Signal separation

* No order of importance for ICs

 Need to estimate number of sources (via KMO measures)
* Assumes mixing process is linear



X=Ax§S
x are data observed

Cocktail party:
mixed sounds recorded by the array of microphones




X=Ax%XS

S are the source signals

Cocktail party:
sound sources (uncontaminated)



X=AXS
A IS @ mixing matrix

Cocktail party:
weighting coefficients that define mixing



X=AxS
x (data) are more Gaussian than s (sources)

S (sources) are independent of one another

 —
Strategy: solve s = W %X,
where W is the pseudoinverse of A,

and the objective is to maximize non-Gaussianity.
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Plane of IC1 vs. IC3 for Syrah TCATA data
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IC 1 — ethanol-related taste, flavour, and texture enhancement.
2 - 1€ 3 —base sensory profile of the wines, including ethanol-related
suppression of sourness.
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Plane of IC2 vs. IC4 for Syrah TCATA data
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IC 2 — trigeminal impact of ethanol and sensations that emerge as the

IC 4 — volatility of ethanol in the mouth and associated bitterness.
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Can ICA do anything useful with TCATA data?

The answer
seems to be...

Yes!
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