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How do flavours evolve
in the finish of these

Temporal
Check All That Apply (TCATA)



Temporal Check-All-That-Apply (TCATA)

Check and uncheck words to track changes in the wine.
(Check all that apply. Uncheck all that do not apply.)
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Temporal Check-All-That-Apply (TCATA)

Check and uncheck words to track changes in the wine.
(Check all that apply. Uncheck all that do not apply.)
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TCATA raw data
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Adjusted (Low to High)
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Dimension 2 (11.25%)
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How well do these product paths
represent the evolution of flavours in
the finish of the wines?



Intuitively, we understand that we can
be misled if we rely too heavily on
point estimates.
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Intuitively, we understand that we can
be misled if we rely too heavily on
point estimates.
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Data resampling

Assume that observed data is
representative of underlying data
distribution...
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Partial bootstrap

1 real panel (n=13)
+

499 virtual panels (n=13)

For each panel, obtain and project
coordinates for each productXtime
into the multivariate sensory space
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TCATA
Product Contrails
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What is the evolution of
attributes for the three wine
treatments?
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Is the evolution for Sip 1 different
from the evolution for Sip 2 for
any of the wine treatments?
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Another view...
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TCATA Product Contrails

* Assist with interpretation

e Assist with hypothesis
generation

* QGive a better sense of
uncertainty
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