COENSIO powered by COENSIO

Richard MAY © London
Software Engineer t, +445552055055

i% richardmay@gmail.com

Frontend Developer

Application Date Hiring Status Time Taken

August 25, 2025 Scored 17 min

Candidate’s Score

- 22— 000000000000 92/100

Assessment Summary

No Question Title Tab Switch Time Taken Score

1 Word Transformation Wizardry - 7m 43s 10/13

In the mystical lands of Verbatim, young wizards train in the art of word transformation. Using their magic, they
can alter texts by performing three types of spells: inserting a rune (character), removing a rune, or changing
one rune into another. The challenge for these apprentices is fo transform a given incantation (word1) into a
desired charm (word?) using the fewest spells possible. Your task is fo help these budding wizards by
determining the minimal number of spells required for the transformation.

Example 1:

Input: word1 = "light”, word2 = "night"

Output: 1

Explanation:

Replace 'l' in "light" with 'n’, changing it to "night".
A single, precise spell is enough to cast the night.

Example 2:

Input: word1 = "silent”, word2 = "listen”
Qutput: 2

Explanation:

Remove 's' from "silent”, resulting in "ilent".
Insert 's' after 'i, changing "ilent” to "listen”.

A tweak and a shuffle realize the listening charm.

function minDistance(wordl:string, word2:string) : number {

const m wordl. length;
const n = word2.length;

' e Ay . M,
for (let i = @; i<=m; i++) dp[i][e]
for (let j = @; j<=n; j++) dp[jl[e]

for(let i = 1; i<=m; i++){
for (let j = 1; j <=n; j++){
if(wordl[i-1] === word2[j-1]){
dp[i][]] = dp[i-1][]-1];
}else{

dp[i][j] = Math.min(

dp[i-1][3]+1,
dp[i][j_l]+ls

dp[i-1][]j-1]+1
)R

}
return dp[m][n]

// Insert your code here

2 Identifying Performance Boftlenecks in a Web Application - 2m 10s 3/7

A web-based dashboard in the financial industry is experiencing slow load times and sluggish Ul interactions
when displaying large sets of realtime data. Without writing code, explain how you would use performance

profiling tools and techniques to identify and prioritize the main areas causing these performance issues.

Browser devtools performance profiling, network analysis, memory profiling, rendering bottlenecks, audit with

lighthouse

FREE TEXT - MEDIUM

3 TypeScript Type Assertions vs. Type Guards - 56s /7

An engineer is working with a TypeScript function that receives a value of type
unknown

from an external source. The engineer wants to access the
length

property only if the value is a string or an array. Which approach below correctly implements both compile-time

safety and runtime correctness?

function processValue(val: unknown) {
if ((val as string | any[]).length !== undefined) {
console.log((val as any).length);

O function processValue(val: unknown) {
if (typeof val === "object"” || typeof val === "string") {
console.log((val as any).length);

@ function processValue(val: unknown) {
if (typeof val === "string" || Array.isArray(val)) {
console.log(val.length};

¥

O function processValue(val: unknown) {
if ((val as any).length >= @) {
console.log((val as any).length);

}

O function processValue(val: unknown) {
if (val instanceof Array || val instanceof String) {

console.log((val as any).length);

}
}
MULTIPLE CHOICE - EASY CORRECT
4 React useEffect and Redux Integration - 37s 7/7

A React component is connected fo a Redux store and must fetch user data whenever the userld prop changes.
Which approach correcily ensures that the fetchUserData action is dispatched only when userld changes, and
not on every render?

@ Call the fetchUserData action direcily inside the function body of the component without using any React hooks

@ Use the useEffect hook, pass [userld] as the dependency array, and dispatch fetchUserData inside the useEffect
callback.

O Use the useEftect hook with an empty depends

cy array so that fetichUserData is only dispatched on initial mount

O Call fetchUserData inside the useSelector function 1o ensure it #

O Invoke fetchUserData in a callback function passed to onClick for manual triggering
MULTIPLE CHOICE - EASY CORRECT
5 Isolating Side Effects in Component Tests - 33s 7/7

A frontend team develops a React component that subscribes to a global event bus on mount and unsubscribes
on unmount. During component testing with a popular test runner, flaky test results are observed, with some
subsequent tests unexpectedly receiving events. What is the BEST practice to avoid such side effects in
component tests?

Rely on the test runner's default cleanup to handle unsubscriptions after each test
Manually trigger a re-render of the component after each test
Reset all global event bus subscribers in the test framework’s afterEach lifecycle hook

Use spies or mocks for the event bus methods only in the first test fo avoid polluting global state

© ©0 @ © O

Increase test fimeout fo allow subscripfions fo seftle between tests

MULTIPLE CHOICE - EASY CORRECT

6

Redux Reducer Principles - 27s

An engineer is designing a Redux reducer for a React application with the following user-related state:

{

user: {
id: 23,
name: ‘Alex',
isAdmin: false

Given the Redux guidelines, which of the following rules MUST be followed when implementing a reducer for
updating the user object?

@ The reducer must mutate the existing state object directly to apply updates for performance optimization

@ The reducer should always return a new stafe object even if only one property is changed to maintain immutability.
@ Reducers should feich latest user details from an API before updating the state.

© The reducer should return undefined if the action type is not matched, ensuring a reset to initial sfate.

@ Reducers must serialize the state to JSON on each update for debugging purposes.

7/7

MULTIPLE CHOICE - EASY CORRECT

7

Micro Frontend Isolation Strategies - 20s

A large-scale enterprise adopts a micro frontend architecture where teams independently deploy their
applications into shared pages. During testing, a new micro frontend causes a global stylesheet collision,
changing button styles across other teams’ applications. Given industry best practices for micro frontend
isolation, which is the MOST robust approach to prevent such cross-application style and JavaScript conflicts?

© Assign unique class names using CSS-in-/S libraries and trust all teams to follow the naming conventions.

/7

© Configure webpack fo output each micro frontend in its own JavaScript namespace without changing €SS handling.

@ Wrap each micro frontend in a Web Component using the Shadow DOM for both style and DOM encapsulation.

@ Enforce global CSS resets and provide a shared, centrally managed stylesheet for all micro frontends to use.

®

Limit each feam’s micro frontend to a single page application (SPA} and avoid direct DOM manipulation

MULTIPLE CHOICE - MEDIUM CORRECT

8

Optimizing Ul Rendering with Virtualization - 33s 7/7

A frontend team is facing performance problems with a data-intensive React application. The main issue is long

render times when displaying large lists of data (over 10,000 items). Based on current frontend best practices,

which solution BEST mitigates rendering lag while maintaining usability and accessibility?

O
O
®

O
@)

Increase browser memory limits and use pagination controls for list navigation
Leverage React's PureComponent or memoization to reduce unnecessary renders for all list items

Implement windowing or list virtualization so that only visible ifems are rendered while using ARIA roles and
keyboard navigation support for accessibility

Move list rendering from the client to server-side rendering (SSR) for all requests

Use the useEffect hook to defer rendering with setTimeout whenever the list changes

MULTIPLE CHOICE - MEDIUM CORRECT

Advanced Git Workflow: Interactive Rebasing for Feature Branch
Integration

1 41s &/7

A team is working on a large-scale software project using Git with a trunk-based development workflow. The
team wants to ensure clean, linear history for all feature branches merged into main, minimize merge conflicts,

and maintain traceability of original commits. Feature branches may have multiple contributors and are long-
lived. According to advanced Git practices for such a workflow, what is the most appropriate workflow for a

team lead to integrate a feature branch into main upon completion?

@)
@)

®

Squash all feature branch commits info a single commit usinggit merge --squashy . merge info main and push

Merge the feature branch into main using a standard merge commit withgit merge --no-ff feature-branch
to preserve branch topology

Rebase the feature branch interactively onto origin/main, resolving conflicts and rewriting commits for clarity, then
fastforward merge the rebased branch into main

Cherry-pick each commit from the feature branch onto main in commit order, then push and close the feature

branch

Force push the feature branch to overwrite main, ensuring the branch commits are preserved as-is

MULTIPLE CHOICE - MEDIUM PARTIALLY CORRECT

10

TypeScript Utility Types Deep Understanding - 41s 7/7

An anminanr in arnatina o canmlas rrciereihion and imesdalhla cdata chana deina TieaaCarint Thas wumnd 4a Ancoea

M EIIHIIIE:I L] Llcﬂlllls a \.-UIlIPIEAr IS YT, aQllid HHnuaiawes 1ais allﬂp: u;‘:llls |rPEULI IPI. ||||=}r wWaln W Shiaul e
that an arbitrary nested object type becomes deeply readonly, such that all nested objects, arrays, and fields
cannot be mutated at any depth. Which of the following utility types MOST correctly enforces deep immutability
for any generic type T?

O type DeepReadonly<T> = Readonly<T>;

O type DeepReadonly<T> = {
readonly [K in keyof T]: DeepReadonly<T[K]>;

1

O type DeepReadonly<T> = ReadonlyArray<DeepReadonly<T>>;

f. type DeepReadonly<T>

{

readonly [K in keyof T]: T[K] extends object
? DeepReadonly<T[K]>
¢ T[K]S
)

O type DeepReadonly<T> = T;

MULTIPLE CHOICE - MEDIUM CORRECT

1

Micro Frontend Integration Strategy - 29s 7/7

A large enterprise project is adopting a micro frontend architecture to allow different teams to deploy and
update distinct parts of the user interface independently. The application consists of Angular, React, and Vue.js
micro frontends, all deployed on the same domain and rendered within a shell application. The teams want to
achieve seamless routing, global state sharing, and isolated deployments—but need to avoid version conflicts
and minimize runtime overhead. Which integration approach best addresses these requirements according to
current industry best practices?

@ Mount each micro frontend in an iframe fo provide total isolation and load crossframe |avaScript messaging for

routing and state sharing

@ Use a runtime JavaScript module loader such as System)S in conjunction with the Module Federation plugin in
Webpack, allowing each micro frontend 1o expose and consume modules as needed.

. [ok LITRA] i s i i A
ich micro frontend as a static HTML fragment and have the shell application insert them using innerHTMI

whnen '1;i'-.-'|5_;|:1'|']g routes

O Bundle all micro frontends into a single monelithic JavaS

componeni-ieve conditiona IL}I‘-IZ;'_'E"I'I;._: Tor route-pase!

pt hile at g_|-;\p.;:--}-' fime in the shell application and use

E i} E i Ly § F | § F sl
Enforce that all micro frontends use the same |avaScript framework and share a single instance of the framework in

the
MULTIPLE CHOICE - HARD CORRECT
12 E2E Testing Race Conditions - 24s 7/7

A product team is experiencing non-deterministic failures in their JavaScript endto-end (E2E) test suite that uses
Cypress for Ul automation against a production-like frontend. Complex tests include asynchronous user actions

u B " = [T

|such as drag-and-drop, modal confirmation, and batch-saving) that occasionally tail due to race conditions
between Ul transitions and backend responses. Given the current state of best practices for E2E test stability,
which approach is MOST effective for eliminating race conditions while maintaining test maintainability and
reliability?

@ Introduce explicit time-based waits (e.g., cy.wait(1000)) after each asynchronous user action to allow frontend and

backend states to setile.

@ Refactor fests to always interact with the DOM using Cypress commands that automatically wait on explicit Ul state
assertions (e.g., cy.gef(selector) should("be visible")), and use network request interception (cy.intercept) 1o wait for
specific APl responses before proceeding.

© Run fests in parallel across multiple browsers and use fest refries fo decrease the overall fest flakiness, without

altering asynchronous action handling.

© Disable frontend Ul transifions (such as animations and modals) in the test environment fo decrease non

determinism, relying only on Cypress's builtin implicit wait mechanisms.

© Add custom JavaScript polling in test code 1o query backend endpoints directly, and halt test execution unti

expected data states are present in the APl responses.

MULTIPLE CHOICE - HARD CORRECT

13 Advanced Redux Selector Optimization - 48s 717

A React team nofices performance botilenecks in a component tree subscribing to complex derived state from a
large Redux store. The selectors used are recomputing on every dispatch, causing unnecessary re-renders, even
when the relevant slices of state are unchanged. Considering best practices, how should the team optimize
these selectors fo reduce unnecessary recomputations while keeping derived data consistent and performant?

O Wrap each selector in a useMemo hook within the React component to cache the results per render.

@ Use the reselect library to create memoized selectors, ensuring selectors only recompute when their relevant input
state changes.

O

Decompose all selectors into primitive functions and manually cache outputs in a medule-scoped object.

O

Remove all selectors and access state directly in mapStateloProps to avoid abstraction overhead

@ Dispatch an additional, unrelated Redux action after each successful selector call fo frigger cache invalidation

MULTIPLE CHOICE - HARD CORRECT

14 Bitbucket Webhook Security for DevOps Pipelines - 38s 7/7

A DevOps team utilizes Bitbucket fo manage source code and automate deployments through a Cl/CD
pipeline. The pipeline friggers on any update to the main branch via a Bitbucket webhook. The team is
concerned about protecting the pipeline from unauthorized or spoofed webhook requests. According to
Bitbucket's advanced security features and industry best practices, which approach best ensures that only
genuine Bitbucket events trigger the CI/CD pipeline?

@ Restrict incoming webhook requests to only allow connections from Bitbucket's documented IP address ranges and
validate event payload signatures using a webhook secret known only to Bitbucket and the pipeline endpoint.

© Configure JWT token validation on the pipeline endpoint, requiring the webhook payload to contain a user-
generated token that the pipeline can verify against Bitbucket user accounts,

@ Require all webhook requests to use HTTPS and validate the presence of a “User-Agent: BitbucketWebhooks/2.0"
header before allowing the trigger.

@ Use HTTP Basic Authentication with credentials stored in Bitbucket Repository Variables and transmitted on every
webhook event.

Configure branch permissions in Bitbucket so that only authorized users can modify the main branch, preventing
unauthorized webhook event generation.

MULTIPLE CHOICE - HARD CORRECT

coens.io

