Impulse Al: Verifiable Decentralized Infrastructure for
Al Training

A Technical Whitepaper.
Version 1.0

The Impulse Al Team

1 Introduction

Over the past few years, fine-tuning large pre-trained language and vision models has become
the de facto way for organizations to extract bespoke capabilities from foundation models.
Whether adopting a multilingual transformer for legal parlance, teaching a vision model
to identify manufacturing defects, or customizing a dialog agent for customer service, fine-
tuning domain-specific data reliably boosts accuracy and relevance. In practice, teams spin
up GPU clusters on major cloud platforms (e.g., AWS, GCP, Azure), rent dedicated instances
from specialized providers, or maintain on-premises hardware orchestrated via Kubernetes
or other job-scheduling frameworks. Each training job is configured with hyperparameters,
training data paths, and checkpointing policies. Engineering teams (or management) then
monitor logs, scale resources up or down, and pay per GPU hour, plus storage and networking
overhead.

This model, which is inherently centralized, is effective, but it has four interrelated draw-
backs. First, cost and utilization inefficiencies abound: long-running clusters incur idle-time
expenses, spot instances can be interrupted unpredictably, and cloud providers’ opaque pric-
ing makes it hard to compare alternatives. Furthermore, users are often subjected to a
tradeoff between high on-demand pricing and inefficiency for long-term rentals. Second,
trust in compute integrity is assumed rather than proven. Tricks like truncated batches
(run on a third-party infrastructure) or stale gradients can reduce a model’s proper training.
Third, a single point of failure and a limited set of vendors constrain availability, geographic
diversity, and resilience against outages or regulatory disruptions. Fourth, building a com-
prehensive, tailor-made machine learning infrastructure is non-trivial, often requiring labor
and expertise in high demand but in short supply.

At the same time, the rapid proliferation of open-source compute providers, edge-data cen-
ters, and GPU-sharing marketplaces suggests that a more flexible, crowd-sourced approach
is possible—if only there were a way to guarantee that distributed providers perform the
work they claim. Traditional “spot-market” systems lack strong cryptographic assurances
or economic deterrents against fraud. Smart contract systems can automate payments,
but without verifiable proof of computation, they merely shift trust to oracles or reputation

1 © 2025 Impulse Al Inc. All rights reserved.

systems that remain vulnerable to collusion and manipulation.

Impulse addresses these gaps by being the one-stop Al marketplace that is supported by
decentralized infrastructure, by re-imagining fine-tuning as a fully decentralized, incentive-
compatible marketplace with built-in verifiable computing. Rather than negotiating VM
instances with a handful of hyperscalers, data scientists, engineers, and users in general sub-
mit fine-tuning jobs to the Impulse protocol, specifying their budget, performance objectives,
and data-access controls in a smart contract. The protocol then utilizes its Orchestration
Layer to match jobs with collateral-backed Compute Providers across a global network,
leveraging internal scheduling heuristics and external brokering partners. Once a provider
accepts a task, the system enforces verifiable training: only a fraction of gradient updates
are redundantly checked by randomly selected verifiers, all of whom stake tokens they stand
to lose if they rubber-stamp false results. Detected errors trigger the slashing of malicious
actors, while honest participants earn proportional rewards in the native token. This user
flow is exemplified in Figure 1.

2 Stakeholder Mapping

Before delving into the mechanics of the protocol, it is essential to understand who will
participate, what challenges they face today, and how Impulse AI uniquely serves each
group. Our discussion is summarized in Table 1 below.

Compute Providers (CPs) Many operators, from hyperscale centers down to small
clusters, sit on underutilized GPUs, paying power and maintenance costs without predictable
revenue. Impulse Al addresses this by matching compute providers with model trainers. In
our setting, CPs can provide computational power either as provers (i.e., the actor that
computes the main job) or as verifiers. Before joining Impulse, a provider stakes tokens;
during execution, a random subset of steps is recomputed by verifiers. Upon successful
checks, the provider receives an itemized payout, and in the event of any evidence of malicious
behavior, their stake is slashed.

Model Trainers and Fine-tuners Data scientists and ML engineers today rely on pow-
erful clouds—AWS, GCP, Azure—that can spin up custom VM types, autoscale on demand,
and plug into rich data ecosystems. However, these platforms impose four interlinked trade-
offs (cf Introduction).

Impulse AT addresses these issues: users submit a job specification (dataset, model, hyper-
parameters) via a unified SDK or API; our orchestration layer then routes that job across
clouds, edge sites, or prosumer hardware; and every compute step is cryptographically verifi-
able, so trainers need never wonder whether paid-for work ran. By decoupling compute from
any single provider, standardizing smart-contract calls, and staking correctness, Impulse
delivers flexible, cost-effective, and trustless fine-tuning.

Retail Contributors Hobbyists and small labs with one or two GPUs often find existing
marketplaces inaccessible: minimum commitments are too large, payments too infrequent,

2 © 2025 Impulse Al Inc. All rights reserved.

1) User Submits
New Job Order
(GPU, Hours, Data, Payment)

(Job Order + Payment)

Y
2) Protocol Treasury
Escrows Payment

(Schedules CP, Selects Verifiers)

Assign Job Select Verifiers
Compute Provider (CP) Verifier Committee
(Performs Training) 3) On-chain (Checks Computation)
Compute Proof Proof Submission Verify Proof
Validate
Y

or Slashing

{ 4) Payment }

Finalize

Y
{5) Reputation Update}

(CP & Verifiers)

Figure 1: High-level overview of Impulse

3 © 2025 Impulse Al Inc. All rights reserved.

and tools too complex. Impulse lowers these barriers by allowing micro-stakes and micro-
transactions in native tokens. Anyone with spare GPU cycles can opt in, stake a small
amount to signal their commitment and earn proportional rewards for verifiable FLOPs.
Over time, retail contributors build on-chain reputations, unlocking larger tasks and higher
yields. This democratizes computing, expands total network capacity, and embeds fresh
geographic and hardware diversity into the protocol.

Token Holders Native token holders are custodians of the network’s long-term suc-
cess. Impulse AI aligns its incentives by granting governance rights over critical parame-
ters—issuance schedules, slashing thresholds, and KPI targets—and by linking token utility
to real-world adoption metrics (compute volume, fee revenue, and reliability). As the pro-
tocol scales and usage grows, strong governance participation ensures a healthy network.
This creates a flywheel that rewards holders who contribute their voice and expertise to the
ecosystem’s evolution.

Ecosystem Partners Open-source maintainers, academic researchers, commercial inte-
grators, and independent tool builders each bring unique value to a decentralized compute
stack—Dbut today, they navigate siloed services and one-off revenue agreements. Impulse
Al provides a standardized SDK and smart-contract interfaces, enabling seamless interop-
erability between plugin authors, bridge developers, domain-specific orchestration adapters,
and the core protocol. High-impact contributions are recognized through Retroactive Public
Goods Funding rounds, on-chain bounties, and hackathons, ensuring that maintainers receive
token rewards proportional to actual usage, value generated, and community endorsement.
By fostering a truly community-driven development model, Impulse transforms partners into
co-creators whose work directly shapes the protocol’s security, performance, and longevity.

3 On Verifiable Compute

In this Section, we present a simple, mathematically rigorous proof-of-concept (PoC) mecha-
nism for verifiable training of machine learning models in a decentralized environment. Our
construction combines partial redundancy (i.e., verifying only a fraction of training steps)
with economic incentives (stakes and slashing) to deter malicious behavior. In an upcom-
ing paper, we will describe the work presented herein in more detail. We first present our
methodology for a single-prover case (i.e., where a single provider performs computation)
and then generalize it to multiple providers. We begin by summarizing the notation used
in this section in Table 2. We summarize the state of the art of verifiable computing in the
Appendix.

3.1 System Model

We consider a decentralized training framework composed of the following entities and as-
sumptions:

1. Prover P (or primary worker) who performs a sequence of ¢ € N, gradient-based

4 © 2025 Impulse Al Inc. All rights reserved.

Stakeholder

Pain Points

How Impulse Al
Helps

Token Benefits

Compute
Providers

Idle accelerators,
unpredictable rev-
enue, difficult

customer acquisition

Stake-backed proof-
of-compute, ran-
dom verifications,
per-task payouts,
slashing for failures

Transparent re-
wards, stake-driven

governance weight

Model Trainers &
Fine-tuners

High costs, having
to build ML infra,
vendor lock-in, pol-
icy constraints

Unified SDK/API,
marketplace routing
across clouds/edge,
cryptographic proof
of work

Budget-locked pay-
ments, no idle
charges, governance
votes on pricing &
policies

Retail Contribu- | High entry barrier, | Micro-stakes, micro- | Earn native tokens
tors minimal micro- | transactions, incre- | for small jobs, repu-
rewards, complex | mental reputation, | tation unlocks larger
tooling verified FLOP ac- | tasks
counting
Token Holders Need for sustainable | Governance rights | Voting power, influ-

network growth, in-
fluence over protocol
direction

over issuance, slash-
ing, KPI targets;
issuance tied to real
usage metrics

ence on parameter
adjustments, align-
ment with protocol
health

Ecosystem Part-
ners

Siloed integrations,
ad-hoc revenue,
limited funding for
public-goods contri-
butions

Standard
SDK/contract
interfaces, on-chain
bounties, RetroPGF
grants, hackathons
for tool creators

Token grants for
contributions,
community-
weighted funding,
seamless liquidity
bridges

Table 1: Stakeholder Analysis

updates on a model parameter vector # € R? over a dataset partition or full dataset.
Each update incurs a computational cost C' > 0.

2. A pool of Verifiers V = {V]}]]\i1 with cardinality M € N,. Each verifier can recom-
pute a single update step for C' > 0.

3. Communication model: Computation proceeds in synchronous rounds. The Prover
broadcasts its new parameter checkpoint (6;, H;) to the network in each round. We
assume authenticated, reliable channels (no message forgery or loss).

4. Staking mechanism: Prover and Verifiers deposit stakes sp and sy respectively, on
a smart contract. Honest behavior is enforced via slashing: incorrect submissions lose

their Stake.

© 2025 Impulse Al Inc. All rights reserved.

Symbol Definition

12 Total Number of gradient-update steps in one epoch

M Total Number of possible Verifiers

m Size of the verifier subcommittee per checked step

Q Fraction of steps selected for redundancy verification

n=al Expected number of steps sampled for verification

NcC{l,.. .0 Randomly chosen set of step indices to verify, |N| = 7

C Computation cost per update for the Prover

C, Computation cost per update for each Verifier

0, Model parameter vector after step t

H, Auxiliary state at step ¢ (e.g. random seed, hyperparameters)

Ly Training data (or its encrypted form) at step ¢

f Number of steps on which the Prover attempts to cheat

o(f) Probability of detecting at least one incorrect update among f
cheats

G Expected gain from cheating on a single step

sp Stake deposited by the Prover

Pundetected Probability a fraudulent step passes verification

Pdetected = 1 — Pundetected | Probability a fraudulent step is caught

N, Number of workers in distributed (DiLoCo) setting

k Number of local gradient steps per outer iteration

lowe = U]k Number of outer synchronization rounds

Cout Fraction of outer rounds sampled for verification

Mout Committee size for outer-round verification

Tout Number of outer rounds sampled: agutlout

Tout Tolerance threshold for norm-difference in block updates

3.2 Threat Model

Table 2: Notation

We allow for the following adversarial capabilities:

1. Prover corruption:

The Prover may deviate by submitting incorrect updates on up

to fp < (distinct steps.

2. Verifier collusion: Up to fyy < m verifiers in any subcommittee of size m may collude
to approve a malicious update. We require m > fy.

3. Network adversary: Cannot forge or block messages but may delay messages by up

to one round.

Under these assumptions, the protocol must satisfy:

e Soundness: Any incorrect update is detected with high probability.

» Liveness: Honest Prover and Verifiers can complete all ¢ steps in O(¢) rounds.

e Incentive Compatibility: Rational participants maximize expected utility by be-

6 © 2025 Impulse Al Inc. All rights reserved.

having honestly.

3.3 Single-Prover Verifiable Compute

We follow an approach similar to that of [22], albeit with the goal of improving its efficiency
through crypto-economic systems. We consider a setting with one primary Prover, who
trains a model by performing ¢ € N, gradient-based updates in a single epoch. Each update
costs C' € R, for the Prover. We assume there are M € N, Verifiers, each capable of
recomputing a single training step at cost C;, € R,. In a naive scheme, all M € N Verifiers
would recompute every step, incurring total verification cost on the order of M/{C,. Our
goal is to reduce this overhead without compromising verifiability:.

To that end, only a fraction a € (0,1] of the training steps are verified in our approach.
Let n := af denote the expected number of steps selected for verification, where 7 is chosen
randomly or by some protocol-specific rule. For each selected step, only a subcommittee of
size m < M is tasked with recomputing the update. This subcommittee then confirms or
refutes the correctness of the Prover’s submission. The main idea is illustrated in Algorithm
1.

Algorithm 1: Single-Prover Partial Redundancy Verification

1: Protocol determines the set of steps to check N to check, \N | = 7. These steps are kept
secret from both provers and verifiers, to avoid potential collusions.
2: fort=1.../do
3: Prover does one model update ;.1 = Update(0;, L;, H;), with L;, H, the model data
and hyper-parameters respectively.

4: Prover encrypts L;1

5 if t € N then

6: Prover saves 6, (saves computational costs)

7 Protocol choose m out of M possible validators

8 forj=1...,mdo

9: Compute 6/, , = Update(6,, £}, H,) and L], ,

10: end for

11: Determine anomalies in the distances within validators and between validators and
the Prover

12: end if

13: end for

In a committee-based' naive "fully redundant” PoL approach (cf. [22]), each of the M
Verifiers checks every one of the ¢ steps. The system’s verification cost then becomes:

Cost™¥¢ = M (C,

verify

Adding in the Prover’s training cost ¢ C' yields an overall system cost of:

Cost} = (¢ C + M (C,

"'We remark that while [22] uses a single verifier (e.g., a committee with M = 1 members), this is prone
to malicious attacks (e.g., collusion) so we resort to a committee approach with multiple members.

7 © 2025 Impulse Al Inc. All rights reserved.

In contrast, our partial redundancy protocol requires only n = af steps to be rechecked,
each by m Verifiers. The verification cost becomes:

Costyerity = nm Cy, = almC,
Thus, the total system cost is:
Costiota = LC + afmC,
We achieve a strictly lower verification overhead if:
am << M, ie. amC, < MC,+ BandwidthCosts

Hence, the partial redundancy mechanism can reduce the total cost by % relative to naive
approaches. At the same time, the stake-and-slash component enforces honest participation.

3.3.1 Detection Probability and Incentive Alignment

Let f denote the number of gradient-update steps on which the Prover attempts to cheat.
We sample without replacement a set N C {1,...,¢} of size n = al. The probability that
none of the f malicious steps lies in NV is given by the hypergeometric distribution:

(%)

(=)
Hence, the probability of detecting at least one bad step satisfies
)

(=)

For the regime f < ¢, a bound via the union estimate yields

5(f) > 1 (1— ﬁ)n (1)

Pr[no detection] =

o(f) =1 -

Remark 1. Notice that Equation (1) does not depend on the committee size m; instead it
only depends on n = af. This is due to the fact that the m parameter affects the Byzantine
tolerance and robustness of the verifiers, rather than the detection probability.

Lemma (Detection Bound). Under uniform sampling of i steps out of ¢, the detection
probability §(f) satisfies the above expressions.

Proof Sketch. Immediate from the complement of the hypergeometric probability of drawing
0 bad items in n draws.

We now analyze the Prover’s incentives. Let G > 0 denote the expected gain saved by
cheating on a single step, and let sp > 0 be the amount the Prover has staked (and risks
losing if caught). The Prover’s expected utility when cheating on f steps is

Uebeat(f) = (1 =0(f)) f G — 0(f) sp.

8 © 2025 Impulse Al Inc. All rights reserved.

An honest strategy yields zero utility, Upenest = 0. To ensure honesty is the strict best
response, we require

Uneat(f) <0 <= (1 =46(f)fG < §(f) sp,
for all 1 < f < (. In particular, enforcing the single-step condition f = 1 suffices:

1 - 5(1)

Sp > 5<1> G.

Theorem (Incentive Equilibrium). If the Prover’s stake sp satisfies sp > 1g(51()1) G, then
honest behavior mazximizes the Prover’s expected utility.

Proof Sketch. For f =1, the expected payoff becomes negative by assumption. For larger
f, the detection probability 0(f) is nondecreasing in f, tightening the incentive constraint
further. Thus, no profitable deviation exists.

This analysis quantifies the interplay between the sampling rate «, committee size m < M
(which influences §(f)), and the required stake sp, guaranteeing that rational Provers will
adhere to honest computation.

3.4 Distributed, Verifiable Compute

We now extend the ideas above to the case of multiple workers, potentially with different
hardware and locations. Our methodology is based on [13] and [12], which have shown great
promise in distributed training.

Specifically, Distributed Low-Communication training (DiLoCo) [13] is a decentralized train-
ing strategy that significantly reduces communication overhead by allowing each worker to
perform multiple local gradient steps before periodically synchronizing with other workers.
Concretely, every worker ¢+ = 1,..., N, maintains a local copy of the model parameters 6,
and updates it using standard mini-batch gradient methods (e.g., Adam) over a local dataset
or local subset of data, accumulating k steps before communication. After k local updates,
workers exchange only their updated parameters (or a compressed form) and compute a
global average: nglb al % S Nm 6,&21. Each worker then resets its local parameters to this
average, and the process repeats. By reducing the frequency and volume of parameter ex-
changes (from every step to every k step), DiL.oCo dramatically cuts down on communication
costs. At the same time, empirical evidence shows that final accuracy remains comparable to
fully synchronous (per-step) methods when k is chosen suitably. This approach is robust to
heterogeneous computing environments. It can accommodate nodes that intermittently join
or leave the training process, making it ideal for large-scale, decentralized machine learning
systems with bandwidth or latency constraints.

The idea behind enforcing verifiability on these methods is quite simple. At each outer step,
the protocol randomly selects a subset of the providers based on some criteria, and those
providers evolve the inner steps using the verification methodology outlined in Algorithm
1. Once again, the staked and rewarded amounts are chosen sufficiently large to ensure
incentive compatibility. This is illustrated in Figure 2.

9 © 2025 Impulse Al Inc. All rights reserved.

011
Outer Optimization
(e.g., Nesterov)

6

RTX3090
(LATAM)

!
!
|
|
|
|
|
|
|
!
!
|
|
[l
|
|
|
|
|
!
!
|
|
|
|
|
|
|
|
!
!
|
|
|
|
|
|
|
|
\

Figure 2: Verifiable DiLoCo. Figure adapted from [13]

3.5 Formalization

We extend the single-prover scheme to the DiLoCo setting of Douillard et al. (2023, 2025).
Suppose there are N,, workers, each performing k local gradient steps per outer iteration,
for a total of p
k

outer rounds. At outer iteration u =0, ...,y — 1, worker ¢ starts from 952 and applies

eout =

u

040, = Update (000, 1, Lunie, Hunre), t=1,....k,

Then, it computes its increment
u

ABD = e&)ﬂ)k - 97812-

All workers broadcast A0%), compute the global average

oba 1 I 7 i
O e = N > (00 + 200),
m =1

and reset their local copy to this average.

To enforce verifiability, we sample without replacement a set N, C {0,..., lou — 1} of size

Nout = Aout gout-

10 © 2025 Impulse Al Inc. All rights reserved.

For each sampled outer index u, a committee of size mqy; recomputes a handful of the local
updates for a selected worker i:

~5(6)

Af, = LocalCompute(ij,ﬁ7 {,Cuk+t}f:1), J=1,... Moy,

and checks i) '
|80, — A6

S Tout-

Any deviation beyond 7, triggers the dishonest party’s stake slashes.

Algorithm 2: Verifiable DiLLoCo

Input: total updates per epoch: ¢, local steps per outer round: k, sampling fraction:
Qout, cCOMmittee size: Moy
Compute Loy = £/k;
Sample a set Ny, C {0,..., louy — 1} with |Nout| = Qout * Lout;
for u =0 to /,,; — 1 do

Each worker i performs k local updates — AfW;

Workers broadcast AQ{;

Compute H(gi(ff)lk — (1/N,y) (6% + A6

if u € N,y then

Form a verifier committee of size mgyt;

Each verifier recomputes the block update and checks HZES . AOD || < Tou;
Slash any party with deviation > 74u;
end if
end for

In this Section, we have presented a unified framework for verifiable computing that rigor-
ously addresses both single-prover and fully distributed training scenarios. By combining
partial-redundancy sampling (with hypergeometric detection bounds) and economic incen-
tives (stake-and-slash), we guarantee soundness, liveness, and incentive-compatibility even
in the presence of malicious or colluding parties. Our extension to the DiLoCo setting pre-
serves the low-communication benefits of decentralized training while embedding verification
at the "outer" synchronization level—ensuring correctness across heterogeneous nodes and
geographies.

In the following section, we will describe our orchestration layer, i.e., how we assign jobs to
CPs.

4 Orchestration Layer (Job Scheduling)

Our product architecture features a scheduling mechanism that provides users with the best
compute provider. We now describe how this is done.

11 © 2025 Impulse Al Inc. All rights reserved.

4.1 Problem Setup

We consider a decentralized job scheduling framework involving a set of workers, W =
{1,2,..., M}, and a set of jobs, J = {1,2,...,N}. Each job j € J is characterized by a
budget B; € R* and a load L; € R*, while each worker i € W is defined by a capacity
K; € R*, a quality score Rep; € [0,1], and a bid p;; that represents their willingness to
execute job j.

The objective is to determine a binary assignment matrix X = [z, ;] with z;; € {0,1} that
maximizes the overall utility given by:

M N
Uprotocol (X) = Z Z (5(33' - pz‘,j) —a(l - Repi)2> Li,j

i=1 j=1

where 3 > 0 scales the economic benefit and a > 0 imposes a penalty for assigning jobs to
lower-quality workers. This optimization is subject to the constraints:

N
j=1
M
Z%j <1 VjeJ

i=1

It can be shown that this problem is NP-hard via a reduction from the Multiple Knapsack
Problem, indicating that finding a globally optimal solution is computationally intractable
for large instances.

To simplify this, we consider a uniform pricing model where p; ; = p = §'B; for all i and j.
Under this assumption, the utility function reduces to:

M N
Uprotocol(X) = Z Z (rBj —a(l— Repi)z) T, withr=0-p

i=1j=1

This problem is also NP-hard and as such we propose greedy approximation algorithms. This
can be done with a naive greedy algorithm, where jobs are sorted according to their proposed
utility and chosen until the total capacity is reached (with complexity O(M N)) or via a
Capacity-Degrading Greedy Algorithm (CDA), each worker’s effective score is dynamically
adjusted as capacity is consumed:

K; K
EffScore; = Rep, x | ———
Seore; ePi % <OrigCapi>

Here, v > 0 controls the degradation rate. For each job, a binary search identifies the first
worker with sufficient remaining capacity, and a range-max query (using a balanced data
structure such as a segment tree) selects the worker with the highest effective score. Our
internal research shows that this method runs in O(M log M + N log N + N log M) time and
requires O(M + N) space.

12 © 2025 Impulse Al Inc. All rights reserved.

Empirical results, obtained from synthetic datasets, indicate that both algorithms can handle
large-scale instances efficiently (even for M, N = 10,000), with the CDA method generally
achieving higher overall utility by better balancing job value and worker quality. Results are
shown in Figure 3.

Algorithm Complexity Comparison

TTTTT T T T T T T TT] T T T T T T TT] T T T T T T 117

Time (seconds)
—_
o
&
Ty Ty LRBRRLLI LIBRLLLI Ty LRBRRLLI Ty TT

1074 . -
—o— Naive (Empirical)
10-5 —8- Advanced (Empirical)
o --- O(n?) Theoretical
107° = --- O(nlogn) Theoretical
it ! i ! e e e e e I e e o e
10! 102 10° 10*

Input Size (n)

Figure 3: Complexity of CDA vs Greedy

4.1.1 Example

To illustrate our scheduling in action, consider a minimal network with two workers, A and
B, and two jobs, j; and j,. Worker A has capacity K4 = 8 and reputation Rep, = 0.9,
while B has Ky = 5 and Repg = 0.7. Job j; arrives with load L; = 4 and budget B; = 50,
and jo with Ly = 6 and By = 30. We set economic scaling # = 1 and reputation penalty
coefficient ape, = 2.

Initially, effective scores are
2l
EffScore4 = 0.9 - (g) ,
.
EffScoreg = 0.7 - (g))

Sorting jobs by descending B;/L; gives j; before jo. We assign j; to A (highest score) and
reduce A’s remaining capacity to 4, updating

v
EffScore4 < 0.9 - (g))

Next, jo (load 6) cannot fit on A (remaining capacity 4), so we assign it to B. The final
assignment matches the external scheduler’s choice, and execution proceeds.

13 © 2025 Impulse AI Inc. All rights reserved.

The resulting protocol utility is

Uproto = (50 = 2(0.1)2) + (30 — 2(0.3)?)
— 49.98 + 29.82 = 79.80,

slightly higher than the naive greedy, which ignores degradation. In any case, we remark that
both of these are still approzimations to the optimal solution. These approximate solutions
might coincide with the optimal one, especially for smaller-sized problems, but this is not
necessarily true, in general.

4.1.2 Practical Workflow in Depth
In a real-world deployment, the Orchestration Layer unfolds through the following phases:

1. Job Submission
The user crafts a transaction payload containing data references, model hyperparame-
ters, target metrics, and a budget, denoted as B;. This payload is signed and broadcast
to the Impulse smart contract, where the budget is escrowed.

2. Job Allocation
Once the external assignment confirms which workers will serve each job, the internal
scheduler finalizes any on-chain binding of z;; and calculates per-worker stakes sp.
It then issues execution tickets, specifying compute tasks and requirements for each
worker.

3. Verifiable Execution & Finalization
Workers consume the staked funds to initiate verifiable compute (Section 3), running
either single-prover or DiL.oCo protocols. Upon successful proof submission, the user’s
budget is disbursed as payment. If any worker fails or is caught cheating, their Stake
is slashed and redistributed to honest participants.

Throughout these steps, on-chain events maintain transparency, while off-chain computation
ensures scalability. The interplay of staking, timelocks, and collateralization enforces honest
behavior from end to end.

4.2 Future work: External Scheduling

As a natural next step, we will introduce an External Scheduler that extends Impulse’s
reach by inviting off-chain solvers to compete for job assignments. This can be thought of
as 1 inch, for decentralized computing. Each external solver ¢ would stake collateral and
submit a proposed assignment matrix X, that maximizes the same protocol utility

Uproto(Xq) - Z(ﬁ (B] - pi,j) - (1 - Repz)z) .TEZ)

.3

At the close of a predetermined bidding window, Impulse’s smart contract would evalu-
ate all proposals {X,}, select the highest-scoring X+, and split the surplus between the

14 © 2025 Impulse Al Inc. All rights reserved.

winning solver and the protocol. Any solver whose proposal violates capacity or budget con-
straints would forfeit part of its Stake, ensuring honesty. By transforming job routing into
a decentralized "intent market," this extension will enable seamless brokering across pub-
lic clouds, edge networks, and federated clusters—amplifying Impulse’s internal Scheduling
with a broad ecosystem of external compute resources.

The prices in the optimization problem can be understood as the GPU price for different
compute providers (e.g., Aethir [50], Akash [1], Impulse, etc). In this setting, solving the
optimization problem subject to the constraints has a clear meaning: find the best possible
allocation of CPs for the job at hand. Borrowing some inspiration from intent markets, we
can then create the following protocol:

External Allocation Protocol
1. Given a collection of () schedulers,

2. Bach scheduler ¢ submits a solution X, to the optimization problem subject to the
constraints

3. The protocol chooses the solution X that provides the maximum utility U(X})
4. This utility is split between the protocol and the chosen scheduler

Thus, in this algorithm, each scheduler competes by proposing a solution that maximizes
the overall utility. The protocol then selects the solution that achieves the highest utility,
and the corresponding reward is split between Impulse and the winning scheduler. This
mechanism enables the protocol to indirectly partner with external providers and generate
revenue even when the routing occurs through another protocol, echoing the principles seen
in intent markets.

Remark: Notably, schedulers would need to stake some collateral as a guarantee
that X, is indeed a right solution.

The Orchestration Layer we present bridges user intent and provable execution with two in-
terlocking mechanisms. External Scheduling harnesses market competition—requiring sched-
ulers to stake collateral and compete on utility—to guarantee optimal routing across het-
erogeneous compute backends. Internal Scheduling then leverages capacity-aware heuristics
and reputation scoring to pack jobs efficiently into Impulse’s verifiable-compute fabric.

In the next sections, we build on this foundation by detailing reputation accumulation (Sec-
tion 5), slashing and locking policies (Section 6), and the token economy that aligns network
growth with stakeholder rewards (Sections 7-8).

5 Reputation

To allocate jobs fairly and securely in our protocol, each Compute Provider is assigned a
dynamic reputation score, Rep(i,n), which is updated after the completion of each job n.
This reputation score serves as an on-chain metric that encapsulates the provider’s historical

15 © 2025 Impulse Al Inc. All rights reserved.

performance and current Stake, while also incorporating penalties for missed heartbeats,
non-malicious job failures, and malicious activity. The reputation score is defined as:

log(1 + TotalWorkValue; ,,) StakeLevel; ,,

ep(i,n) = wy - SuccessRate; ,, + wo 3", log(1 + TotalWorkValue;) s >_; StakeLevel;,,

where wy, wy, and ws € (0,1), wy + we + w3 = 1, are tunable weights that determine the
relative importance of successful job completion, cumulative work value, and staked collateral
respectively.

The Success Rate component measures the reliability and accuracy of a provider’s work. For
job n, let r;, denote the performance rating, which is determined by the outcome of the
job: a value of 1 indicates a fully successful job with all required heartbeat signals received;
lower values indicate deficiencies due to missed heartbeats or non-malicious job failures; and
if malicious behavior is detected, r;, is set to a value approaching 0. The SuccessRate is
updated using exponential smoothing:

Ti0 ifn=0

SuccessRate; , =)
a1 7in + (1 — ap) SuccessRate; ,—1 if n >0

with ay € (0,1) ensuring that recent performance receives greater weight while still incor-
porating the complete history.

The TotalWork Value reflects the cumulative economic value of completed jobs, measured in
terms of budget or tokens earned. If W;, represents the value associated with job n, then
the cumulative work is similarly updated via exponential smoothing:

Wio ifn=0

TotalWorkValue; ,, =
’ as Wi + (1 — ag) TotalWorkValue; ,,—; if n >0

where ay € (0,1). A logarithmic transformation is applied in the overall reputation score to
mitigate the risk of spamming low-value tasks and to smooth out growth.

The StakeLevel component represents the amount of tokens a provider stakes when taking
on a job, thus reflecting their commitment. This value is updated similarly:

StakeLevel; o itn=20

StakeLevel; ,, =
’ as StakeLevel; , + (1 — ag) StakeLevel; ,_; ifn >0

with a3 € (0, 1)
In addition to these baseline metrics, the reputation mechanism incorporates specific event-

driven adjustments. A provider’s reputation is increased when a job is completed successfully

16 © 2025 Impulse AI Inc. All rights reserved.

with all heartbeat signals received. Conversely, if a provider misses a required heartbeat,
the corresponding 7;,, is penalized. Furthermore, a non-malicious job failure results in a
moderate penalty, while detection of malicious behavior causes a substantial reduction in
rin and triggers slashing of staked tokens.

The on-chain implementation is straightforward: each provider’s reputation is maintained in
a mapping (address — reputation state), and updates are performed through simple arith-
metic operations. The use of exponential smoothing guarantees that the reputation score
remains sensitive to recent performance without disregarding historical reliability, thereby
minimizing the risk of gameability or score farming.

By incorporating value thresholds, adaptive smoothing, task-count penalties, and enforced
stake lock-ups, the enhanced reputation mechanism becomes robust against farming, heart-
beat gaming, and Sybil attacks. This dynamic, on-chain score not only feeds directly into
the Internal Scheduler’s efficiency heuristics (Section 4) but also underpins the slashing and
reward distributions detailed in Sections 6 and 7. Together, these layers complete the secure,
incentive-aligned fabric of Impulse’s decentralized Al compute marketplace.

6 Locking and Slashing

To secure honest participation, both Provers and Verifiers must lock collateral and face
slashing upon misbehavior. We denote a Prover’s locked Stake by Sp.over and a Verifier’s by
Sval- A slashing event removes a fraction ¢ of this Stake—c,,, for malicious fraud and smaller
Gam for non-malicious faults—ensuring economic disincentives align with protocol goals.

6.1 Malicious Fraud

When a Prover is caught submitting a fraudulent gradient update, the protocol applies a
slashing fraction ¢ua1 € (0, 1] to Sprover- To guarantee incentive compatibility, we require that

R

)
Pdetected

Smal Sprover 2
where R is the per-step reward and pgetected = 1 — Pundetected 1S the probability of catching a
cheat. This ensures that expected losses from slashing exceed any gain from evading compute
cost C'. Upon slashing, the Prover’s instantaneous performance rating r; ,, is set to zero, and

the reputational update uses
D(Gmar) = 1 — €77

to apply the maximum reputational penalty (Section 5.3). A slashed Prover is also tem-
porarily removed from both external and internal scheduling pools for a ban duration Ti.,
blocks, preserving liveness by rerouting their jobs to honest participants.

6.2 Non-Malicious Faults

Hardware faults, out-of-memory events, or transient network outages should be subject to
lighter penalties. Let p,,, be the per-step probability of such a fault, C\,, = £ C' the wasted

17 © 2025 Impulse Al Inc. All rights reserved.

compute cost with £ € (0,1), and P, the slashed amount. The expected utility per step
under non-malicious faults becomes

E[Enm] - (1 - pnm)(R - C) - pnm<cnm + an)-
Requiring E[%,,,] > 0 yields

(1 - pnm)(R - C)
pnm

an S - Cnma

and in practice we choose P, well below this upper bound so that isolated failures remain
economically viable. Each non-malicious fault also reduces the Prover’s success rate by a
small fraction A, < 1, then smooths via exponential decay (Section 5.3), differentiating
genuine system unreliability from deliberate cheating.

6.3 Availability and Heartbeat Penalties

Compute Providers must maintain liveness even between jobs. We track an on-chain “un-
availability counter” (U;) for each missed heartbeat outside active proof windows. Instead
of slashing tokens for being offline, we penalize them by a fixed fraction of their rewards Ay,
per missed ping, and if U; exceeds a threshold Uy, we extend the provider’s stake lock-up
period by an additional ATy, blocks. This approach distinguishes transient downtime from
compute-time faults and ensures only persistent unavailability is economically discouraged.
Notice that we also intend to have “remedial” messages, so that participants can be waived
this penalty in case of, e.g., power outages, scheduled maintenance, etc.

6.4 Dynamic Lock-Up and Release

To prevent rapid stake-cycling (i.e., locking and unlocking), any newly staked collateral must
remain locked for a minimum period AT},;,. Thereafter, tokens unlock gradually according
to a linear schedule over AT, 100 blocks. Crucially, both AT, and AT 00 are functions of
the provider’s current reputation Rep(i): higher-reputation participants enjoy shorter lock-
up windows, whereas lower-reputation actors face longer durations. This design rewards
consistent, honest behavior with enhanced liquidity while maintaining security.

6.5 Integration with Reputation and Scheduling

Every slashing event emits an on-chain log that triggers two downstream effects. First, the
reputation contract pulls the slashing ratio

ASin
Sim = &
Si,n—l

and computes the reputational hit via ®(g;,), feeding into the exponential smoothing of
SuccessRate (Section 5.3). Second, the Orchestration Layer (Section 4) re-evaluates any
in-flight or queued jobs: providers with slashing above ¢,.x are temporarily blacklisted, and
their assignments are re-allocated to maintain liveness and performance.

18 © 2025 Impulse Al Inc. All rights reserved.

6.6 Parameter Illustration

A concrete configuration might set ¢, = 0.75, Py = 0.05C, A, = 0.02, 6, = 0.01,
ATin = 10,000 blocks, and Ti,,, = 100,000 blocks for malicious faults. These values can be
adjusted via governance to balance robustness against usability.

By distinguishing malicious fraud, non-malicious faults, and mere unavailability—and by
tying stake lock-up durations to reputation—this Locking & Slashing framework completes
the incentive loop across verifiable compute (Section 3), job scheduling (Section 4), and
dynamic reputation (Section 5). Economic penalties directly impact reputation scores, which
in turn influence future lock-up terms and scheduling priorities, thereby forming a cohesive
and resilient protocol for decentralized Al computation.

7 Rewards Mapping

We follow an approach similar to [58]. We begin by presenting a table summarizing our
notation.

Symbol Meaning

v New tokens minted (inflationary issuance) at epoch ¢

O (1) Total transactional (fee) revenue in tokens at epoch ¢

q Fraction of fees allocated to rewards

Yeps W VB Fractions of v; assigned to Compute Providers, Verifiers, and Block
Proposers (sum to 1)

Rep(i, t) Reputation score of actor ¢ at epoch t (Section 5)

Contribution(i,¢) | Normalized proof-of-compute volume of i in epoch ¢ (Section 7.3)

Stake(i, t) Normalized stake of ¢ at epoch ¢ (Sections 5 & 6)

Rina(i,) Actor i’s share of inflationary rewards at epoch ¢

Riees(i, 1) Actor i’s share of fee-driven rewards at epoch ¢

Every Compute Provider (CP) and Verifier i earns rewards at epoch ¢ according to a combi-
nation of inflationary issuance and fee-driven pools. We first partition inflationary issuance,
then allocate both sources proportionally based on reputation, contribution, and stake.

7.1 Inflationary Issuance Split

At epoch t, the protocol mints v; tokens and divides them as:

Ve = YepUr + WU + yBU, Yep +wv 8 = 1L

o Layer-2 with centralized sequencer: g = 0, so all tokens flow to Compute
Providers and Verifiers.

o Layer-1 or decentralized proposers: 75 > 0, block proposers receive ygv;, then
share further with sub-providers using the same weighting.

19 © 2025 Impulse Al Inc. All rights reserved.

Each actor’s inflationary reward is:

Rep(i, t) Contribution(i, t) Stake(i, t)
> jewy Rep(j,t) Contribution(j, t) Stake(j,t)’

Rin(i,t) = yx v X
where X € {CP,V,B} and Wy is the corresponding actor set.
Let ®(t) be total fees collected in tokens, and ¢ the fraction for rewards:
We allocate F; across Compute Providers and Verifiers by:

Rep(i,) Contribution(i, t) Stake(, t)
> iewepy ReP(4, t) Contribution(j, t) Stake(j,)

Rfees(iat) = Ft X

Summing both components:

Rewards(i,t) = Rinni(i,t) + Rfees(i,).

7.2 Worked Example
Consider the following values. We use FLOP count in this example.
« Epoch t: v, = 10,000, ycp = 0.7, 7 = 0.3.
 Fee revenue ®(t) = 2,000, ¢ = 0.5.
o Provider A: Rep = 0.9, FlopCount = 10'2 of 3 x 10'2 total, Stake = 0.5.

Hence, the inflationary share is given by

0.9 x 202 % 0.5
RER(A) = 0.7 x 10,000 x 351105 ~ 7,000.

Fee-driven:

0.9 x % x 0.5

F, = 1,000, Rpees(A) = 1,000 x
t fees (4) (.2

Total reward is the sum of these.

7.3 Remark on L1 vs. L2

On a fully decentralized L1, block-proposer rewards ~gv; incentivize honest proposal. In
L2, with a single sequencer, 75 = 0, and the sequencer’s revenue is treated off-protocol or
re-distributed via dedicated governance.

20 © 2025 Impulse Al Inc. All rights reserved.

7.4 Stake and Reputation

The final factors—Rep(i,t) (Section 5) and Stake(,¢)—ensure that enduring trust and eco-
nomic skin in the game modulate absolute work volume. A highly staked, high-reputation
provider earns a larger share, so that anyone gaming FLOP counts or staking volatility is
naturally disfavored.

The Rewards Mapping layer completes the economic feedback loop: inflationary issuance and
fees determine the total pool (base(t)), while reputation, verifiable compute contribution, and
staked capital modulate each actor’s share. This unified mechanism ties back to verifiable
compute (Section 3), orchestrated job assignments (Section 4), and dynamic reputation
(Section 5), ensuring that every token minted or fee collected reinforces honest, high-quality,
and well-staked participation in Impulse’s decentralized Al compute marketplace.

8 Token Economy

The native token underpins every layer of the Impulse protocol: it is the unit of exchange for
jobs, the collateral staked in verifiable compute (Sections 3 & 6), the metric of governance
weight, a utility (gas) token, and the denominated reward unit (Section 7). In this Section,
we deepen the token-flow model, derive precise supply dynamics, and show how deflationary
levers, staking schedules, and on-chain governance combine to sustain long-term value and
align incentives.

8.1 Roles and Flow of the Native Token

At any epoch t, tokens flow through three primary channels:

1. Inflationary Issuance. The protocol mints M; new tokens each epoch to reward block
proposers, verifiers, and standby services (Spiock, Bsubs Ostandby fractions; see Section 7.1).

2. Transactional Fees & Treasury. Users pay fees ®(t) in native tokens when submit-
ting compute jobs (Section 7.2). A governance-set fraction ¢ of these fees flows directly
into the reward pool. This reward pool will later be distributed across CP that provide
the compute work necessary for the protocol; the remainder is stored in a community
vault in the protocol, for which the community —and not the protocol- decide how to
spend those funds (e.g., funding new grants, etc). These tokens are temporarily taken
out of circulation, and denoted by B;

3. Staking and Lock-Up. Compute Providers and Verifiers lock L; tokens as collateral
when they join Impulse, depending on their compute power. These tokens are unlocked
once a CP decides to stop participating on the network.

21 © 2025 Impulse Al Inc. All rights reserved.

8.2 Supply Evolution

Combining issuance, treasury, locking, and unlocking yields the discrete supply update:
Siq1 =5 + My — AB, — Ly + Uy,

where M, is the minting of rewards, AB, are treasury tokens, L, are the newly locked
collateral, and U; correspond to tokens unlocked from prior locks.

Define the effective circulating supply C; = S; — L;. Then, net inflation per epoch is
Ct+1 - Ct . Mt - ABt - (Lt - Ut)

& C

Governance adjusts ppym and the issuance schedule {M;} (e.g. linear, decaying, or algorith-
mic) so that net inflation remains within a target band mpi, < 7 < Tax-

8.3 Lock-Up Schedules

Collateral lock-ups (are deposited by CP as a way of guaranteeing honest behaviors) when a
CP joins the network, they must stake an amount s;; (proportional to their compute power)
which is locked as long as the CP decides to participate in the protocol.

8.4 Governance and Parameter Adaptation

All key parameters—issuance schedule {M,;}, treasury allocation rate, fee split ¢, reward
fractions f3,, and lock-up durations Ajg,, Apenai—are subject to on-chain governance by
native token holders. Proposals are passed via weighted voting, proportional to stake and
reputation (Sections 5 & 7). To avoid rapid “fork-and-vote” attacks, parameter changes
adopt a two-stage timelock:

1. Signal Stage: Preliminary vote signals community sentiment without effect.

2. Execution Stage: after a fixed delay, a final vote enacts changes on-chain, giving
markets time to adjust.

8.5 Interplay with Compute and Reputation

The Token Economy completes the loop: verifiable compute (Section 3) and job scheduling
(Section 4) generate on-chain fees and proofs that feed into the Rewards Mapping (Section
7), which mints M; and distributes to staked, reputable providers. Reputation and Stake
then determine scheduling priority and lock-up benefits, reinforcing honest, high-quality
participation.

9 Minting

We adopt a goal-oriented mechanism as described in [40]. In particular, the core idea behind
this mechanism is to

22 © 2025 Impulse Al Inc. All rights reserved.

1. propose a set of observable, measurable (on-chain), quantities of interest — commonly
known as Key Performance Indicators (KPIs), together with some time-dependent
target values for these metrics, and

2. Adjust the minting rate according to how close (or far) these network parameters are
from their target, in such a way that a positive sum game is created. That is, in a way,
so that token recipients benefit whenever the network benefits.

We now formalize these ideas. Suppose we have N different KPIs. Let © C RY be the set
of all possible states of our KPIs, let 6, € © represent a specific state of these indicators
at any given time ¢, and let 6 € © be the vector of these target values at time t. We
consider that to each KPI i there corresponds a (relative) level of importance w; > 0 with

SNaw; = 1. This gives us a way of favoring one KPI over the other (or weight them all
equally as w; = 1/N, Vi=1,..,N).

Furthermore, for any i = 1,2,..., N, let §; : R* — [0,1] denote an arbitrary measure of
distance between 0;; and 0, at time ¢. Notice that here I am using the term "distance’ in a
very loose way. Here each ¢; is non-decreasing with z = 6;; — 07, and has the property that
0i (04, Zt) =0, V 0;y > 0;,. Furthermore, we define the N-dimensional distance ¢ : 0% -
0,1] as

et; sz Hltaezt (2>

Notice then that under our formulation each specific KPI has its distance function ¢; and
(time-dependent) target value ;.

Lastly, let py,, par € Rso denote the minimum (possibly 0) and maximum minting rates at
any moment in time. These upper and lower bounds provide some safety rails so that (i) at
least some tokens are minted when things are not going well or (ii) we don’t over mint when
things are going well. For any fixed ¢, we can then define the instantaneous minting rate as:

p(0:,07) = pm + [par — pm] - (1 — d(0:,67)) (3)

Notice then that, as the network reaches its KPIs (i.e., § &~ 0), we have p ~ p;. Conversely,
when the network is lagging behind its KPIs, p ~ py,.

The formulation above thus induces a (simple) goal-adaptive minting mechanism: If tokens
are being minted at every epoch 7 (e.g., every M > 1 blocks), thus, the network mints
p(0-,0%) tokens until it runs out of tokens to distribute (if at all).

9.1 On the Choice of Metrics

The crux is then to find appropriate KPIs. Rather than track dozens of vanity statistics, we
select at most four core KPIs that drive sustainable growth and resist manipulation:

1. Verified Compute Volume Measured as the total Number of FLOPs (or GPU-
hours) successfully attested via our verifiable-compute protocols each epoch. This
directly rewards network utility and is difficult to inflate—any false claims are caught

and slashed.

23 © 2025 Impulse Al Inc. All rights reserved.

2. Active High-Reputation Providers The count of distinct providers whose on-chain
reputation exceeds a threshold (e.g. Rep, > 0.8) and who completed at least one job in
the period. By focusing on quality-weighted participation, we incentivize both growth
and reliability, making Sybil farming prohibitively costly.

3. Fee Revenue Growth The percentage increase in on-chain fee revenue ®(t) compared
to a moving average. As real users drive demand, higher fees signal healthy adoption;
because fee payments burn or vest tokens, this metric inherently ties net inflation to
actual usage.

4. Job Success Rate The fraction of submitted jobs that complete all verifiable-compute
checks without slashing or timeouts. A high success rate reflects network robustness
and a usable user experience; providers cannot game this metric without suffering
economic penalties for failed tasks.

Each KPI i has a target curve 67, that may follow a sigmoid adoption model—fast initial
growth tapering to steady state—avoiding brittle exponential baselines. We define

07,0,
* _ i,t it
61010, 07,) = max(0, B0,

which vanishes when the actual value meets or exceeds the target and scales linearly if it is
below. Weighting each w; equally or by strategic importance ensures that no single metric
dominates issuance.

10 Usability and Roadmap

Impulse Al is designed not just as a powerful on-chain compute protocol, but as a developer-
friendly platform that anyone can adopt in minutes. Today, customers have two integration
paths:

1. they can interact directly with the Impulse smart contracts—submitting jobs, staking
tokens, and monitoring reputation—or,

2. more commonly, they can use our high-level SDK, RESTful APIs, and web interface.

In practice, most users will invoke the Impulse SDK, which streamlines the entire workflow:
uploading datasets, selecting a pre-trained model, tuning hyperparameters, and dispatching
a fine-tuning job with a few lines of code.

We believe that exceptional developer tooling is as critical as a robust protocol core. Accord-
ingly, Impulse AI will underwrite and collaborate with third-party teams to build extensions,
IDE integrations, and specialized dashboards atop our SDK. A dedicated grants program
will fund companies creating value-add tools.

Looking forward, the SDK and UI will grow to support reinforcement-learning workflows,
classical deep-learning pipelines, and full pre-training loops in addition to fine-tuning. We
will layer in inference capabilities—enabling retrieval-augmented generation, multi-agent de-
cision systems, and real-time chat interfaces—so that one unified SDK covers the entire

24 © 2025 Impulse Al Inc. All rights reserved.

model lifecycle. Ultimately, we envision an Al assistant embedded in our console —a con-
versational agent that guides users through data preparation, model selection, deployment,
and monitoring, all without requiring handcrafted code.

Beneath this developer surface lies a two-pronged technical roadmap. On the protocol side,
we will expand our verifiable compute primitives to include zero-knowledge proofs that hide
raw data while guaranteeing step-by-step correctness, support fully heterogeneous distributed
training across arbitrary GPU topologies, and implement hardware-bound attestations that
prove the exact GPU performed the work. We will integrate Trusted Execution Environments
and homomorphic encryption to enable privacy-sensitive and regulatory-compliant training
and inference. Mirroring these advances, the inference protocol will gain on-chain proofs
of faithful execution, distributed low-latency inference orchestration, and privacy-preserving
pipelines for user data.

Simultaneously, our developer toolchain will evolve in lockstep. We will introduce a custom
model registry, allowing teams to import and version their private or proprietary architec-
tures alongside open-source foundations. Multi-modal support will enable images, audio,
video, and structured data tasks through the same simple API patterns. Deeper integration
with Jupyter notebooks will allow inline proof verification, real-time metric visualization,
and interactive debugging. Built-in model evaluation suites will automatically run bench-
marks, performance profiles, and fairness audits during both training and inference. Finally,
as Al assistants mature, our Ul will offer chat-based setup wizards, cost-optimization ad-
visors, and governance proposal drafting aids—making Impulse not only the most rigorous
verifiable compute platform, but also the most delightful and productive environment for Al
developers.

IMPORTANT NOTICE: DISCLAIMER

This Whitepaper is for informational purposes only and does not constitute a prospectus,
an offer document, an offer of securities, a solicitation for investment, or any offer to sell any
product, item, or asset (whether digital or otherwise). Furthermore, this document does not
constitute legal, financial, tax, or other professional advice.

The information presented in this Whitepaper is subject to change or update without notice.
Impulse AI makes no representations or warranties, express or implied, as to the accuracy
or completeness of the information contained herein, and expressly disclaims any and all
liability that may be based on such information or errors or omissions thereof.

This Whitepaper contains forward-looking statements. These forward-looking statements
are not guarantees of future performance and are subject to risks, uncertainties, and other
factors, some of which are beyond the team’s control and could cause actual results to differ
materially from those expressed or implied by these forward-looking statements. Impulse Al
is currently in development and its final structure and functionality may differ from what is
described in this document.

25 © 2025 Impulse Al Inc. All rights reserved.

References

1]

2]

[10]

[11]

Akash: Gpu pricing and availability. https://akash.network/pricing/gpus/ (2025),
online Article. Accessed 03.12.2025

Assran, M., Loizou, N., Ballas, N., Rabbat, M.: Stochastic gradient push for distributed
deep learning. In: International Conference on Machine Learning (2019)

Bellachia, A.A., Bouchiha, M.A., Ghamri-Doudane, Y., Rabah, M.: Verifbfl: Lever-
aging zk-SNARKSs for a verifiable blockchained federated learning. arXiv preprint
arXiv:2501.04319 (2025)

Bommasani, R., Hudson, D.A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein,
M.S., et al.: On the opportunities and risks of Foundation Models. arXiv preprint
arXiv:2108.07258 (2021)

Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,
A., Shyam, P.; et al.: Language Models Are Few-Shot Learners. Advances in Neural
Information Processing Systems (NeurIPS) (2020)

Buterin, V.: Proof of Stake: The Making of Ethereum and the Philosophy of
Blockchains. Seven Stories Press (2022)

Chainlink: Chainlink: A decentralized oracle network. https://research.chain.
link/whitepaper-vl.pdf (2017), accessed: 2025-02-19

Chainlink Labs: Chainlink 2.0: Next steps in the evolution of decentralized oracle net-
works. In: Whitepaper (2021), URL https://research.chain.link/whitepaper-v2.
pdf

Chen, B.J., Waiwitlikhit, S., Stoica, 1., Kang, D.: ZKML: An optimizing system for
ML inference in zero-knowledge proofs. In: Proceedings of the Nineteenth European
Conference on Computer Systems, pp. 560-574 (2024)

Choi, K., Manoj, A., Bonneau, J.: Sok: Distributed randomness beacons. In: 2023
IEEE Symposium on Security and Privacy (SP), pp. 75-92, IEEE (2023)

Diskin, M., Bukhtiyarov, A., Ryabinin, M., Saulnier, L., Lhoest, Q., Sinitsin, A., Popov,
D., Pyrkin, D., Borzunov, A., Wolf, T., Pekhimenko, G., et al.: Distributed deep learn-
ing in open collaborations. In: Advances in Neural Information Processing Systems
(2021)

Douillard, A., Donchev, Y., Rush, K., Kale, S., Charles, Z., Garrett, Z., Teston, G.,
Lacey, D., Mcllroy, R., Shen, J., et al.: Streaming DiL.oCo with overlapping communi-
cation: Towards a distributed free lunch. arXiv preprint arXiv:2501.18512 (2025)

Douillard, A., Feng, Q., Rusu, A.A., Chhaparia, R., Donchev, Y., Kuncoro, A., Ranzato,
M., Szlam, A., Shen, J.: DiLoCo: Distributed low-communication training of language
models. arXiv preprint arXiv:2311.08105 (2023)

26 © 2025 Impulse AI Inc. All rights reserved.

https://akash.network/pricing/gpus/
https://research.chain.link/whitepaper-v1.pdf
https://research.chain.link/whitepaper-v1.pdf
https://research.chain.link/whitepaper-v2.pdf
https://research.chain.link/whitepaper-v2.pdf

[14]

[21]

[22]

[25]

[20]

Foundation, T.E.: Academic grants round 2025
wishlist (2025), URL https://efdn.notion.site/
Academic-Grants-Round-2025-Wishlist-17bd9895554180£f9a9c1e98dleee7aec,
accessed: 2025-03-06

Gensyn: Gensyn Whitepaper: Decentralized infrastructure for distributed machine
learning. https://gensyn.ai/whitepaper.pdf (2023), accessed: 2025-02-19

Golem Factory GmbH: The Golem project: Crowdfunding a decentralized
computing network (2016), URL https://cdn.prod.website-files.com/
62446d07873fde065cbcb8d5/62446d07873fdeb626bcb927 _Golemwhitepaper . pdf

Google: Vm instance pricing. https://cloud.google.com/compute/
vm-instance-pricing?hl=en#section-5 (2025), online Article. Accessed 03.12.2025

Hagerup, T., Rub, C.: A guided tour of chernoff bounds. Information Processing Letters
33(6), 305-308 (1990), doi:10.1016,/0020-0190(90)90013-F

Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W_,
et al.: LoRA: Low-rank adaptation of large language models. ICLR 1(2), 3 (2022)

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, M., Chen, Z., Wu, Y., et al.: Gpipe:
Efficient training of giant neural networks using pipeline parallelism. In: Advances in
Neural Information Processing Systems (2019)

Jaghouar, S., Ong, J.M., Hagemann, J.: OpenDiLoCo: An open-source framework
for globally distributed low-communication training. arXiv preprint arXiv:2407.07852
(2024)

Jia, H., Yaghini, M., Choquette-Choo, C.A., Dullerud, N., Thudi, A., Chandrasekaran,
V., Papernot, N.: Proof-of-Learning: Definitions and practice. In: 2021 IEEE Sympo-
sium on Security and Privacy (SP), pp. 1039-1056, IEEE (2021)

Jung, S., Kim, H., Kim, Y.: zkCNN: Zero-knowledge proofs for convolutional neural
network inference. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (2021)

Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N., et al.:
Advances and open problems in federated learning. Foundations and Trends in Machine
Learning (2021)

Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum: Scal-
able, private smart contracts. In: 27th USENIX Security Symposium, pp. 13531370
(2018)

Kersi¢, V., Karakati¢, S., Turkanovi¢, M.: On-Chain Zero-Knowledge Machine Learn-
ing: An overview and comparison. Journal of King Saud University-Computer and
Information Sciences p. 102207 (2024)

27 © 2025 Impulse AI Inc. All rights reserved.

https://efdn.notion.site/Academic-Grants-Round-2025-Wishlist-17bd9895554180f9a9c1e98d1eee7aec
https://efdn.notion.site/Academic-Grants-Round-2025-Wishlist-17bd9895554180f9a9c1e98d1eee7aec
https://gensyn.ai/whitepaper.pdf
https://cdn.prod.website-files.com/62446d07873fde065cbcb8d5/62446d07873fdeb626bcb927_Golemwhitepaper.pdf
https://cdn.prod.website-files.com/62446d07873fde065cbcb8d5/62446d07873fdeb626bcb927_Golemwhitepaper.pdf
https://cloud.google.com/compute/vm-instance-pricing?hl=en#section-5
https://cloud.google.com/compute/vm-instance-pricing?hl=en#section-5

[27]

28]

[29]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Kingma, D.P.; Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

Kulkarni, M., Gupta, N., Delworth, S.: Decentralized training of foundation models in
heterogeneous environments. arXiv preprint arXiv:2206.01288 (2022)

Lavin, R., Liu, X., Mohanty, H., Norman, L., Zaarour, G., Krishnamachari, B.: A
survey on the applications of zero-knowledge proofs. arXiv preprint arXiv:2408.00243
(2024)

LeCun, Y.: The mnist database of handwritten digits. http://yann.lecun.com/exdb/
mnist/ (1998)

Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated Learning: Challenges, methods,
and future directions. IEEE Signal Processing Magazine (2020)

Lihu, A., Du, J., Barjaktarevic, 1., Gerzanics, P., Harvilla, M.: A Proof of Useful Work
for Artificial Intelligence on the Blockchain. arXiv preprint arXiv:2001.09244 (2020)

Lin, J., Song, C., He, K., Wang, L., Hopcroft, J.E.: Nesterov accelerated gradient and
scale invariance for adversarial attacks. arXiv preprint arXiv:1908.06281 (2019)

Lin, Y., Han, S., Mao, H., Wang, Y., Dally, W.J.: Deep gradient compression: Reducing
the communication bandwidth for distributed training. In: International Conference on
Learning Representations (2018)

Liu, M., Wong, H.S.P.: The path to a 1-trillion-transistor gpu: Ai’s boom demands new
chip technology. IEEE Spectrum 61(7), 22-27 (2024)

Liu, Q., et al.: Proof-of-Useful-Work: A consensus protocol for decentralized machine
learning. https://arxiv.org/abs/1909.07962 (2019)

Liu, S.T., Yu, J., Steeves, J.: Poster: Solving the free-rider problem in Bittensor. In:
Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communica-
tions Security, pp. 5045-5047 (2024)

Madrigal-Cianci, J.P.: Analysis of filecoin gas: Modelling and uncertainty quantification
(2023), URL https://wuw.youtube.com/watch?v=pRb1BSPZvRk, accessed: 2025-03-06

Madrigal-Cianci, J.P.: Utility and demand for block space (2023), URL https:
//hackmd.io/LQ8Um2zURFeoGt joGpiVyA7both=, accessed: 2025-03-06

Madrigal-Cianci, J.P.: Bullish Minting (2025), URL https://hackmd.io/1_
Ipeo87R8eE6J0631CniA7view, blog post. Consulted on March 4, 2025

McMahan, H.B., Moore, E., Ramage, D., Hampson, S., Agueray Arcas, B.:
Communication-efficient learning of deep networks from decentralized data. In: Pro-
ceedings of AISTATS (2017)

28 © 2025 Impulse AI Inc. All rights reserved.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1909.07962
https://www.youtube.com/watch?v=pRb1BSPZvRk
https://hackmd.io/LQ8Um2zURFeoGtjoGpiVyA?both=
https://hackmd.io/LQ8Um2zURFeoGtjoGpiVyA?both=
https://hackmd.io/1_Ipeo87R8eE6JO631CniA?view
https://hackmd.io/1_Ipeo87R8eE6JO631CniA?view

[42]

[43]

[44]

[45]

[51]

[52]

[53]

Offchain Labs: Arbitrum Rollup: Scalable, private smart contracts. https://
developer.offchainlabs.com/docs/intro (2021), accessed: 2025-02-19

Parno, B., Howell, A., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifiable
computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238-252, IEEE
(2013), doi:10.1109/5P.2013.31

Perhats, M., Ferreira, M.X., Cortes-Cubero, A., Karra, K.: Local protocol (2024), URL
https://palette-labs-inc.github.io/, accessed: 2025-03-06

Rajbhandari, S., Rasley, J., Ruwase, O., He, Y.: Zero: Memory optimizations to-
ward training trillion parameter models. https://arxiv.org/abs/1910.02054 (2020),
arXiv:1910.02054

Rao, Y., Steeves, J., Shaabana, A., Attevelt, D., McAteer, M.: Bittensor: A peer-to-
peer intelligence market. arXiv preprint arXiv:2003.03917 (2020)

Sergeev, A., Del Balso, M.: Horovod: Fast and easy distributed deep learning in ten-
sorflow. https://arxiv.org/abs/1802.05799 (2018), arXiv:1802.05799

Shoeybi, M., Patwary, M.P., Puri, R., LeGresley, P., Casper, J., Catanzaro, B.:
Megatron-lm: Training multi-billion parameter language models using model paral-
lelism. https://arxiv.org/abs/1909.08053 (2019), arXiv:1909.08053

Sun, H., Li, J., Zhang, H.: zkllm: Zero knowledge proofs for large language models
(2024)

Team, T.A. Aethir whitepaper. https://3028335560-files.gitbook.io/~/
files/v0/b/gitbook-x-prod.appspot.com/o/spaces’,2F1JdZs7NyMJ6Ewm4U1eRPY,
2Fuploads’%2F0Vdpd7QoNIDAZdfpGrGVY,2FAethir)20Whitepaper.pdf 7alt=media&
token=ec38bfde-1668-472d-97d7-2a48fb1300703 (2024), online Article. Accessed
03.17.2025

Team, T.G.: Gensyn litepaper. https://docs.gensyn.ai/litepaper (2022), online
Article. Accessed 03.17.2025

Team, T.H.: Heurist whitepaper. https://www.heurist.ai/whitepaper (2024), online
Article. Accessed 03.17.2025

Team, T.P.I.: Introducing prime intellect’s protocol & testnet: A peer-to-peer compute
and intelligence network. https://www.primeintellect.ai/blog/protocol (2024),
online Article. Accessed 03.17.2025

Teutsch, J., ReitwieBner, C.: A scalable verification solution for blockchains. In: Aspects
of Computation and Automata Theory with Applications, pp. 377-424, World Scientific
(2024)

Thaler, J., et al.: Proofs, Arguments, and Zero-Knowledge. Foundations and Trends®
in Privacy and Security 4(2-4), 117-660 (2022)

29 © 2025 Impulse AI Inc. All rights reserved.

https://developer.offchainlabs.com/docs/intro
https://developer.offchainlabs.com/docs/intro
https://palette-labs-inc.github.io/
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1802.05799
https://arxiv.org/abs/1909.08053
https://3028335560-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FlJdZs7NyMJ6Ewm4U1eRP%2Fuploads%2FOVdpd7QoNIDAZdfpGrGV%2FAethir%20Whitepaper.pdf?alt=media&token=ec38bfde-1668-472d-97d7-a48fb1300703
https://3028335560-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FlJdZs7NyMJ6Ewm4U1eRP%2Fuploads%2FOVdpd7QoNIDAZdfpGrGV%2FAethir%20Whitepaper.pdf?alt=media&token=ec38bfde-1668-472d-97d7-a48fb1300703
https://3028335560-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FlJdZs7NyMJ6Ewm4U1eRP%2Fuploads%2FOVdpd7QoNIDAZdfpGrGV%2FAethir%20Whitepaper.pdf?alt=media&token=ec38bfde-1668-472d-97d7-a48fb1300703
https://3028335560-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FlJdZs7NyMJ6Ewm4U1eRP%2Fuploads%2FOVdpd7QoNIDAZdfpGrGV%2FAethir%20Whitepaper.pdf?alt=media&token=ec38bfde-1668-472d-97d7-a48fb1300703
https://docs.gensyn.ai/litepaper
https://www.heurist.ai/whitepaper
https://www.primeintellect.ai/blog/protocol

[56] Wang, S., et al.: BlockFL: A blockchain-based federated learning framework. In: TEEE
International Conference on Communications (ICC) (2020)

[57] Wikipedia: 2020-2023 global chip shortage (2023), URL https://en.wikipedia.org/
wiki/2020%E2%80%932023_global chip_shortage, accessed: 2025-03-06

[58] Woodhead, P., Cortes-Cubero, A.: Checker network protocol: Litepaper (2025),
URL https://blog.checker.network/posts/checker-network-litepaper-1, ac-
cessed: 2025-03-06

[59] Woodhead, P., Team, T.C.: Checker network pro-
tocol: Economic white paper (2025), URL https://
bafkreiaw4vizzgufxse2bohdzsgtb7zvvlduajekm4n6l jh615hf2tghbiq. ipfs.w3s.
link/, accessed 2025-05-06

[60] Xu, L., Zhang, B., Chen, W.: VERITAS: A framework for verifiable federated learn-
ing. Proceedings of the 40th International Symposium on Reliable Distributed Systems
(2021)

[61] Zhang, Y., Wang, S.: Proof of sampling: A nash equilibrium-secured verification pro-
tocol for decentralized systems. arXiv preprint arXiv:2405.00295 (2024)

[62] Zhao, Z., Fang, Z., Wang, X., Chen, X., Su, H., Xiao, H., Zhou, Y.: Proof-of-Learning
with incentive security. arXiv preprint arXiv:2404.09005 (2024)

[63] Zuo, X., Wang, M., Zhu, T., Zhang, L., Ye, D., Yu, S., Zhou, W.: Federated
trustchain: Blockchain-enhanced llm training and unlearning. https://arxiv.org/
abs/2406.04076 (2024), arXiv:2406.04076

Appendix

A The State of Verifiable, Decentralized Training

In what follows, we present a brief literature review of the state of the art on verifiable
compute (Section A.1) and distributed training (Section A.2) in the context of decentralized
training of large-scale machine learning models. For brevity, the presented review is inten-
tionally short. However, we refer the interested reader to [22, 61, 62, 3, 29] and [45, 34, 13, 12]
(and the references therein) for comprehensive surveys of recent methods in verifiable and
distributed computing, respectively. We also note that several emerging whitepapers, includ-
ing those by Heurist.ai [52], Aethir [50], Gensyn [51], Akash [1], and Primelntellect [53], offer
conceptual frameworks for trustless or decentralized AI compute. While these proposals vary
in their specific architectures and token-based economic models, most acknowledge the core
challenge of verifying correctness in large-scale training tasks and the need for techniques
that mitigate overhead without sacrificing security.

30 © 2025 Impulse AI Inc. All rights reserved.

https://en.wikipedia.org/wiki/2020%E2%80%932023_global_chip_shortage
https://en.wikipedia.org/wiki/2020%E2%80%932023_global_chip_shortage
https://blog.checker.network/posts/checker-network-litepaper-1
https://bafkreiaw4vizzgufxse2bohdzsgt57zvvlduajekm4n6ljh6l5hf2tg5iq.ipfs.w3s.link/
https://bafkreiaw4vizzgufxse2bohdzsgt57zvvlduajekm4n6ljh6l5hf2tg5iq.ipfs.w3s.link/
https://bafkreiaw4vizzgufxse2bohdzsgt57zvvlduajekm4n6ljh6l5hf2tg5iq.ipfs.w3s.link/
https://arxiv.org/abs/2406.04076
https://arxiv.org/abs/2406.04076

A.1 Verifiable Compute

We begin by defining some essential concepts. Let T denote a training task parameter-
ized by model weights W and hyper-data Dy (encompassing hyper-parameters and training
data). A wverifiable compute (VC) mechanism in our setting comprises three components.
First, there is a mapping A that satisfies Wyew = A(Woa, D), representing a training
step. Second, there is a proof certificate Il (e.g., a zero-knowledge proof or transcript) that
shows how W, was obtained from W4 using Dr. Finally, there is a verification procedure
V (7, Woid, Whew, Dr), which returns true if the proof Il is valid. The goal is to ensure that
the trainer has indeed performed the requisite work to produce the update W.,. Typical
properties of VC mechanisms are completeness (an honest trainer can produce a proof that
verifiers accept), soundness (no adversary can pass off a wrong model update as correct),
and relative efficiency (the computational cost of generating and verifying proofs remains
small compared to training itself) [22].

Although these properties establish a theoretical foundation for verifiable computation, cur-
rent approaches do not efficiently scale to decentralized large language model (LLM) training
and fine-tuning. Both cryptographic proofs (e.g., zero-knowledge systems) and alternative
trust methods (spot-checking, redundant execution, or proof-of-learning transcripts) can in-
cur substantial overhead or become insecure at large scales, as discussed below.

A.1.1 Cryptographic Proofs (zkML)

One prominent approach is to rely on cryptographic proofs, often zero-knowledge succinct
arguments (zk-SNARKs and STARKSs [29]), to certify that training computations were car-
ried out correctly. In principle, such proofs can show that a large-scale computation (such as
a transformer training step) has been executed faithfully, with the verification time remain-
ing independent of the model’s size [55]. While this provides strong correctness guarantees,
compiling even a modest neural network training phase into a SNARK circuit is expensive.
Recent analyses indicate multi-order-of-magnitude slowdowns just for inference in a zero-
knowledge setting [9], making full-scale LLM training prohibitively expensive. For instance,
VerifBFL [3] demonstrated verifiable federated learning by generating zk-SNARK proofs for
each participant’s local training. The on-chain verification step was efficient (under one
second), but creating a proof even for simple convolutional networks took on the order of
a minute per batch. Scaling these techniques to 70B-parameter models without a major
breakthrough in proof efficiency is currently not feasible.

Projects such as Heurist.ai, Gensyn, and others occasionally mention zero-knowledge or
multi-party approaches as long-term goals for verifiable compute, but they too acknowledge
the practical barriers of zk-circuit overhead when handling large models. Gensyn, for ex-
ample, proposes partial replication of training steps coupled with watchers that replicate
small portions of the execution, citing the intractability of fully cryptographic approaches
for massive LLM workloads.

31 © 2025 Impulse Al Inc. All rights reserved.

A.1.2 Proof-of-Learning (PoL)

The Proof-of-Learning (PoL) concept [22] exploits the idea that the sequence of weight
updates generated by standard optimizers (SGD or ADAM [27]) is hard to forge without
doing the actual work. Under Pol., the trainer logs a series of intermediate states and hyper-
parameters. A verifier randomly replays selected segments to check if those model updates
align with the claimed transitions. This random sampling can offer probabilistic security.
Constructing a fake log that plausibly reproduces the final weights without honest training
is generally as difficult as performing the training itself.

However, repeated spot-checks still incur nontrivial overhead. Recent extensions such as
[62] and [61] suggest combining Pol. with “capture-the-flag” incentives or random sampling
protocols that penalize malfeasance with staked tokens. These proposals attempt to re-
duce average verification costs while discouraging trainer collusion. Yet they still remain
challenging at the scale of LLM training, where each step involves billions of floating-point
operations.

A.2 Decentralized Distributed Training

When training large language models, the computational demand is often immense due to
the sheer parameter count and data volume. Distributing the workload across multiple
geographically separated machines is a practical way to mitigate these expenses. Some
whitepapers in the decentralized space, such as Aethir, reference enclaves to protect off-chain
computation but do not fully detail how to orchestrate globally distributed training across
many untrusted nodes. Gensyn’s Litepaper proposes bridging off-chain GPU resources while
leveraging partial replication and a custom scheduling layer, and Akash focuses on container-
based resource leasing with less emphasis on verifiable large-scale updates. Primelntellect
mentions distributed pipelines but still relies on stake-based assumptions for correctness.

From a more algorithmic standpoint, the distributed training literature is extensive. Douil-
lard et al. [13, 12] introduced DiLoCo, a low-communication protocol that clusters updates
from local workers and periodically averages parameters. By reducing the frequency of syn-
chronization to every few hundred steps, DiLoCo can accommodate intermittent connectivity
while preserving accuracy. Streaming Dil.oCo [12] extends these ideas further by partially
synchronizing and quantizing model updates. Such methods demonstrate that large-scale
models can be trained without a dedicated high-speed interconnect, reducing bandwidth by
factors of 100-500. Rajbhandari et al. [45] also show how careful partitioning and gradient
accumulation strategies can yield efficient parallelism on commodity hardware.

When applying these distributed techniques in a decentralized setting, the remaining ques-
tion is how to verify each participant’s contribution to ensure correctness and detect cheating.
Many whitepapers (Heurist.ai, Aethir, etc.) refer to building trust through enclaves, while
others (Gensyn) propose partial re-computation or staking-based fraud proofs. Yet the over-
head and security trade-offs become increasingly nontrivial at scale. A robust solution must
combine low-communication distributed optimizers with a verification scheme that remains
efficient over potentially billions of parameters.

32 © 2025 Impulse Al Inc. All rights reserved.

Overall, although the distributed training literature offers multiple ways to reduce com-
munication and accommodate heterogeneous hardware, integrating these approaches into a
secure, trustless framework for large-scale verifiable training is still an open challenge. Our
goal is to advance this frontier by leveraging, refining, and extending the PoL. techniques,
cryptographic proofs, or incentive-based verifiers, so that fully decentralized fine-tuning of
large models becomes tractable in practice.

33 © 2025 Impulse Al Inc. All rights reserved.

	Introduction
	Stakeholder Mapping
	On Verifiable Compute
	System Model
	Threat Model
	Single-Prover Verifiable Compute
	Detection Probability and Incentive Alignment

	Distributed, Verifiable Compute
	Formalization

	Orchestration Layer (Job Scheduling)
	Problem Setup
	Example
	Practical Workflow in Depth

	Future work: External Scheduling

	Reputation
	Locking and Slashing
	Malicious Fraud
	Non‐Malicious Faults
	Availability and Heartbeat Penalties
	Dynamic Lock-Up and Release
	 Integration with Reputation and Scheduling
	 Parameter Illustration

	Rewards Mapping
	 Inflationary Issuance Split
	Worked Example
	Remark on L1 vs. L2
	Stake and Reputation

	Token Economy
	Roles and Flow of the Native Token
	Supply Evolution
	Lock‐Up Schedules
	Governance and Parameter Adaptation
	Interplay with Compute and Reputation

	Minting
	On the Choice of Metrics

	Usability and Roadmap
	The State of Verifiable, Decentralized Training
	Verifiable Compute
	Cryptographic Proofs (zkML)
	Proof-of-Learning (PoL)

	Decentralized Distributed Training

