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Introduction 

Existing privacy protections are not sufficient to curtail big 

tech automated decision-making. Automated decisions are 

increasingly widespread and can have harmful impacts. 

Artificial Intelligence (AI) relies on vast amounts of data. 

Data’s social or relational properties can reveal information 

about individuals that wasn’t directly provided. This reduces 

the meaningful control individuals have over their data. 

This article explores the tension between data production 

practices and privacy protection in the AI age. 
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Automated decision-making directly impacts our lives 

Companies increasingly deploy AI systems to make automated decisions about millions of 

customers and workers.  

Consider how digital ride-hailing platforms dispatch great numbers of ride matches at a time1 and 

tailor dynamic pricing2 using AI. Often, these decisions are presented as a choice for the users, but 

in a significantly constrained sense3. Drivers, in particular, may be harmed by automated 

decisions about their tasks and remuneration, leaving them with little control over their work4. 

At a sufficiently large scale, collective harm can occur when people with similar conditions are 

affected by the same decisions5. 

In advanced economies, the harms of automated decisions by AI systems were reported in 

healthcare insurance6, unemployment benefits7, and more. AI systems’ underperformance in 

their operational contexts may be a risk, but there are other problems associated with automated 

decisions that go beyond accidental harm. 

How is automated decision-making done? 

In commercial applications, automated decision-making is based on actionable insights derived 

from predictive analytics. AI systems enable analytics to be automated and scaled up. AI systems 

can combine vast amounts of data from various sources, process data and make decisions 

autonomously for millions of users (or cases) at a time. 

For example, in recommender systems, machine learning (ML) models predict users’ preferred 

products, movies, or music by learning from a dataset of other users with similar browsing or 

purchasing histories. The model outputs a recommended list as an actionable insight. 

ML models rely on an immense volume of data8. The more data an ML model is trained on, the 

better the accuracy of the output9. As ML models’ performance depends on the size and quality of 

data, companies are clamouring to expand the scale of data production10.  

This has led to the mushrooming of the data production industry dedicated to the collection, 

processing, storage, and circulation of data. Not only are individuals now subjected to collection 

 

1 Ling (2023) 
2 Lei and Ukkusuri (2023) 
3 For instance, is the choice legitimate when user is only presented with a premediated options instead of the full gamut 

of options? 
4 Tan and Gong (2024) 
5 Efforts have already been made to regulate the harms of automated decisions. The European Union General Data 

Protection Regulation (GDPR), for example, provided for the right of data subjects to opt out of automated decisions 

and profiling that significantly affects them (Art 22). 
6 Lopez (2023) 
7 Lam (2013) 
8 Budach et al. (2022) 
9 Hestness et al. (2017) 
10 Yahoo Finance (2023) 
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of identifiable personal information, but also to an expanding surveillance of their behaviour, 

turning all aspects of life into data. This is known as dataification11. 

Legal scholars have pointed out the incompatibility of privacy with data production in the AI age, 

owing to the fact that data is social or relational in nature. The advancement in statistical tools 

and AI has changed the ways in which data are processed and used. To understand this 

incompatibility, we must learn how value is derived from data relationality. 

The value of social data 

Data is social  

In 2018, Cambridge Analytica harvested user data through their app “thisisyourdigitallife” to 

develop predictive psychological profiles used to target users with similar profiles for political 

advertisements on Facebook12. In this case, most Facebook users did not disclose their data to 

Cambridge Analytica but accurate prediction had exposed them to ad-targeting. 

What the incident has demonstrated is a problem of privacy. The ability of Cambridge Analytica’s 

algorithm to make predictions about one group based on information collected elsewhere 

suggested that information reveals relationships between people. 

Consider a financial services platform that uses an ML model trained on user data such as 

browsing histories, socio-economic class, and financial product preferences. Suppose Alice shares 

only her browsing history with this platform. The model infers sensitive information about her, 

such as socio-economic class and financial interests, from her browsing data. Suppose the 

platform uses this inferred information to target her for advertisements of financial products. In 

that case, Alice is affected by the data of others, independent of her choice in disclosing the target 

information. 

Salome Viljoen (2021) called this the “relationality” of data13. Relationality refers to the 

phenomena where information about others has the potential to reveal information about us 

when processed or aggregated14. 

Data production is motivated by the social nature of data 

Individual datum is not useful in itself; it is only by relating one datum to another that meaningful 

links are derived to inform valuable insights15. According to Viljoen (2021), 

In the digital economy, data isn’t collected solely because of what it reveals about us as 

individuals. Rather, data is valuable primarily because of how it can be aggregated and 

 

11 Mehta (2023) 
12 Rehman (2019) 
13 Viljoen (2021) 
14 Parsons and Viljoen (2023). Relationality in this article shall not be confused with the concept of relational database, 

which is a type of database that organises data in predefined relationships. 
15 Ashraf (2020) 
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processed to reveal things (and inform actions) about groups of people. Dataification, in 

other words, is a social process, not a personal one.16 

Companies and organisations now voraciously collect data to produce predictive analytics about 

users. More data give better approximations about groups and relationships between the features 

linked to users.  

Machine learning (ML) aims to “automatically detect meaningful patterns in training data” to 

make predictions about new data17. This ability to gain insights and automate decisions is crucial 

for deriving value from data. The goal is to develop a prediction rule that approximates the 

relationship between pieces of information, such as correlations between input features and 

target variables18. 

In a way, models construct identities at an aggregated level, sometimes called “profiles.”19 For 

example, “women earning below median wage” is an input variable or a profile that groups 

individuals based on similar characteristics20. The prediction rule approximates the relationship 

between profiles and a target variable, such as the likelihood of women earning below the median 

wage in taking loans. This is a target function or “pattern”. ML seeks to predict the target variable 

in the new data based on the patterns modelled in the training data. 

A subset of users’ data is selected as training data to train a predictive model. These are often data 

of users who disclose some target information like gender, or earnings. A prediction rule is 

modelled between the target information and some readily available auxiliary information like 

browsing history, clicks, and latency. The prediction rule modelled from this pool of data is then 

used to infer new data from the rest of the users, even if they haven’t explicitly disclosed the target 

information (Figure 1). This prediction is produced as an actionable insight to either make 

automated decisions for users, such as ad targeting, or aid in decision-making.  

  

 

16 Viljoen (2021) 
17 Shalev-Shwartz and Ben-David (2014) 
18 van Otterlo (2013) 
19 Ibid. 
20 Taylor (2017); Wachter (2022) 
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Figure 1: Schematic diagram of a typical ML pipeline 

 

Source: Adapted from Mühlhoff (2023) 

In a way, predictive analytics amounts to building profiles, estimating information, and making 

decisions about them. 

The capacity of prediction is independent of whether an individual’s target data was part of the 

training dataset, provided that sufficient auxiliary information is available21. While data subjects 

can control the information they disclose, they cannot control the estimated information about 

them. This becomes problematic in two ways: (1) when private attributes are inferred from 

publicly shared information and (2) when the effect on the data subject occurs without their 

consent. 

Current privacy protections are insufficient 

The dominant regulatory approach to information flow is a combination of transparency and 

choice, also known as notice-and-consent or informed consent22. The approach “requires that 

individuals be notified and grant their permission before information about them is collected and 

used”23. The approach also stresses the role of the individual as data subjects and their autonomy 

in information disclosures. Hence, regulatory efforts often emphasise the protection of personal 

information or personally identifiable information24. 

 

21 Dwork and Roth (2014) 
22 Barocas and Nissenbaum (2014) 
23 Susser (2019) 
24 This view has dominated data protection laws. For example, the Malaysian Personal Data Protection Act (PDPA) 

requires data users to inform data subjects on processing of personal data under the notice and choice principle 
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Data relationality undermines privacy protection based on informed consent. Data 

protection laws protect information at an individual level, whereas AI sidestepped the need for 

an individual’s informed consent to learn information about that individual. 

The ability of AI to produce highly accurate predictions about us based on aggregated information 

of others erodes privacy. Thus,  there are constraints to the extent of meaningful control one has 

over their data. 

Privacy disclosures (or privacy notices) that inform how users’ data are collected and used are 

now widely implemented across the web. According to this view, the data subject’s privacy is 

protected so long as people have legitimate control over the permissions they give to disclose 

their personal information.  

In reality, most digital platforms implement opt-in contracts on a “take-it-or-leave-it” basis 

for their services25. These opt-in contracts leave users with little deciding power, as big digital 

platforms accrue users by undercutting competition from alternative platforms26. 

Helen Nissenbaum posited the impracticality of informed consent in the Internet age27. Modern 

Big Data analytics draw and combine data from various sources. Companies also trade data 

among each other28, making it hard for users to assess the trade-offs for giving away their 

information. The ability of AI to infer private information about us from public auxiliary 

information such as cookies, clickstreams, latencies, IP addresses, and so on makes drawing 

boundaries between private and public information a futile exercise and individual privacy 

calculus29 infinitely tricky. 

  

 

(required by means of written notice Article 7 Act 709, 2010). The EU GDPR, one of the strongest data protection law, 

goes a further step in requiring "controllers", or data processor to uphold "data subject rights". The regulation 

buttresses principles of notice-and-consent by requiring meaningful consent and transparent information on personal 

data processing. The regulation further enforces data minimisation, data portability, integrity and confidentiality, as 

well as accountability clauses (see Burgress, 2020) . 
25 Nissenbaum (2011); Guirguis and Howarth (2019) 
26 Feiner (2024) 
27 Nissenbaum (2010); (2011) 
28 Cyphers and Gebhart (2019) 
29 Privacy calculus refers to the decision making process of trading off privacy for the benefits of disclosing information. 

For example, an internet user may trade-off her contact information for a service. 
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Conclusion 

In the age of information flow, where data collection, processing, and use are everywhere, data 

governance is crucial. The crux of data governance is about managing the tension in “balancing 

data openness and control”30. Because data brings about essential benefits in the public interest, 

improved access to and broader sharing of data are crucial to expanding the reach of benefits that 

raise living standards31. Conversely, data misuse and unjust outcomes can arise from loose data 

flow32. 

Protection of privacy has been one of the critical principles for data handling to strengthen trust 

in information systems33. However, the current regimes of privacy protection rely on individualist 

notions of information control. This may not be sufficient to safeguard society from harms 

derived from an economy driven by social predictions based on shared data. 
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