
#NetworkedNation

NAVIGATING CHALLENGES, REALISING OPPORTUNITIES OF DIGITAL TRANSFORMATION

#NetworkedNation

NAVIGATING CHALLENGES, REALISING OPPORTUNITIES OF DIGITAL TRANSFORMATION

KHAZANAH RESEARCH INSTITUTE

©2021 Khazanah Research Institute June 2021

#NetworkedNation: Navigating Challenges, Realising Opportunities of Digital Transformation – Kuala Lumpur, Malaysia: Khazanah Research Institute

This work is available under the Creative Commons Attribution 3.0 Unported license (CC BY3.0) http://creativecommons.org/licenses/by/3.0/. Under the Creative Commons Attribution license, you are free to copy, distribute, transmit, and adapt this work, including for commercial purposes, under the following attributions:

Attribution – Please cite the work as follows: Khazanah Research Institute. 2021. #NetworkedNation: Navigating Challenges, Realising Opportunities of Digital Transformation. Kuala Lumpur: Khazanah Research Institute. License: Creative Commons Attribution CC BY 3.0.

Translations – If you create a translation of this work, please add the following disclaimer along with the attribution: This translation was not created by Khazanah Research Institute and should not be considered an official Khazanah Research Institute translation. Khazanah Research Institute shall not be liable for any content or error in this translation.

Published June 2021. Published by Khazanah Research Institute at Level 25, Mercu UEM, Jalan Stesen Sentral 5, Kuala Lumpur Sentral 50470 Kuala Lumpur, Malaysia.

Phone: +603 2034 000; fax: +603 2265 0088; email: enquiries@KRInstitute.org

All queries on rights and licenses should be addressed to the Chairman's Office, Khazanah Research Institute at the address stated above.

Information on Khazanah Research Institute publications and digital products can be found at www.KRInstitute.org

Cover artwork from Shutterstock

The chapters of this book were written by members of the #NetworkedNation research team, comprising researchers and interns of the Khazanah Research Institute (KRI): Dr Rachel Gong, Amos Tong, Ashraf Shaharudin, Claire Lim, Emir Izat Abdul Rashid, Gregory Ho Wai Son, Hui San Chiam, Muhammad Nazhan Kamaruzuki, Shenyi Chua and Tan Zhai Gen. The editorial team comprised Dr Rachel Gong, Ashraf Shaharudin and Nazihah Muhamad Noor.

This book was authorised for publication by the Board of Trustees of KRI, namely Tan Sri Nor Mohamed Yakcop, Datuk Shahril Ridza Ridzuan and Datuk Hisham Hamdan.

ACKNOWLEDGEMENTS

Chapter 1 - Digital Inclusion: Assessing Meaningful Internet Connectivity in Malaysia

The author would like to thank Hady Hud, Dr Nungsari Ahmad Radhi, Rinalia Abdul Rahim and reviewers from Bank Negara Malaysia for their valuable comments. The author is also grateful for the research assistance provided by Shariman Arif Mohamad Yusof, Ashraf Shaharudin, Amos Tong, Anne Sharmila Selvam, Claire Lim, Emir Izat Abdul Rashid and Shenyi Chua. The author would like to gratefully acknowledge the data shared by Bank Negara Malaysia, Pos Malaysia Berhad and Telekom Malaysia Berhad.

Chapter 2 - The Quality of Mobile Broadband and Key Policy Recommendations The author would like to thank Mohd Amirul Rafiq Abdul Rahim, Theebalakshmi Kunasekaran, Ir Dr Khairayu Badron and Dr Mohamed Awang Lah for their valuable comments. Further thanks are extended to the participants of the internet speed experiment conducted by the author.

Chapter 3 - Digital Platform Work: How Digital Access and Competencies Affect Job-Seeking

The authors would like to thank Siti Aiysyah Tumin, Amanina Abdur Rahman, Mohd Redzuan Affandi Abdul Rahim and Syuibah Abirah Mohamed Tarmizi for their valuable comments. The authors are also grateful for the research assistance provided by Amos Tong. The authors would like to gratefully acknowledge the data shared by the Malaysia Digital Economy Corporation (MDEC).

Chapter 4 - Digitalisation of Firms: Challenges in the Digital Economy

The authors would like to thank Aidonna Jan Ayub, Siti Aiysyah Tumin, Tan Zhai Gen and reviewers at the LSE Saw Swee Hock Southeast Asia Centre (LSE SEAC) for their valuable comments.

Chapter 5 - Open Government Data in Malaysia: Principles, Benefits, Challenges and The Way Forward

The author would like to thank Adam Manaf Mohamed Firouz, Chee Yoke Ling, Kuang Keng Kuek Ser, Khairil Yusof, Dr Lim Chee Han, Nur Thuraya Sazali, Puteri Marjan Megat Muzafar, Siti Aiysyah Tumin, Dr Sonny Zulhuda, Mohd Amirul Rafiq Abdul Rahim, Sri Murniati and Yin Shao Loong for their valuable comments. Special thanks to the Malaysian Administrative Modernisation and Management Planning Unit (MAMPU), particularly Dr Fazidah Abu Bakar, Zuraidah Abdul Rahman and Zulkfli Ahmad, and the Malaysia Open Science Platform (MOSP), particularly Dr Nuzatil Sharleeza, for helping the author to understand better the landscape and challenges of open government data in Malaysia.

Chapter 6 - Personal Data Privacy: Surveillance and Security

The authors would like to thank Ashraf Shaharudin, Muhammad Nazhan Kamaruzuki, Nazihah Muhamad Noor, Amos Tong, John Loh, Rueben Ananthan Santhana Dass and Dr Mary Beth Altier for their valuable comments.

Chapter 7 - Digital Governance: Classification of Information Disorder

The authors would like to thank Prof. Rosa M. Benito, Harris Zainul, Gayathry Venkiteswaran, Adam Manaf Mohamed Firouz and Nazihah Muhamad Noor for their valuable comments. The authors would like to gratefully acknowledge the research assistance from Amos Tong, Shenyi Chua, Goh Ming Jun, Lai Kah Chun, Timothy Chan Ying Jie and Wan Amirah Wan Usamah.

Chapter 8 - Artificial Intelligence in the Courts: AI Sentencing in Sabah and Sarawak

The authors would like to thank Aidonna Jan Ayub, Ong Kar Jin and representatives of the courts of Sabah and Sarawak and SAINS for their valuable comments.

The team wishes to acknowledge the help and contributions from our colleagues: Anne Sharmila Selvam, Mohd Amirul Rafiq Abdul Rahim, Shariman Arif Mohamad Yusof and Theebalakshmi Kunasekaran for their research assistance; Adam Manaf Mohamed Firouz, Hazman Azim Mokhtar and Ilyana Syafiqa Mukhriz Mudaris for their assistance in the preparation of the book; Hazilah Abdul Karim, Nicholas Khaw and Siti Najyah Johar Salim from the Chairman's Office for their operational support; and the many others whose interactions with us have directly or indirectly inspired us in shaping our research.

Finally, we would like to acknowledge Tan Sri Nor Mohamed Yakcop, Chairman of KRI for supporting and encouraging the team to pursue digital policy research in KRI. We would also like to express our appreciation to Dr Jomo Kwame Sundaram, Senior Research Advisor of KRI, for his advice and insight throughout the course of this research project.

While we have benefited tremendously from insights from various individuals and organisations in our research, any fault lies with the authors.

CONTENTS

INTRODUCTION	1		
CHAPTER 1		CHAPTER 6	
By Rachel Gong DIGITAL INCLUSION: ASSESSING MEANINGFUL INTERNET CONNECTIVITY IN MALAYSIA	Ē	By Rachel Gong, Shenyi Chua and Hui San Chi PERSONAL DATA PRIVACY: SURVEILLANCE AND SECURITY	136
IN MALATSIA	5	CHAPTER 7	
CHAPTER 2 By Muhammad Nazhan Kamaruzuki		By Gregory Ho Wai Son and Emir Izat Abdul Rashid	
THE QUALITY OF MOBILE BROADBAND AND KEY POLICY RECOMMENDATIONS	39	DIGITAL GOVERNANCE: CLASSIFICATION OF INFORMATION DISORDER	152
CHAPTER 3		CHAPTER 8	
By Tan Zhai Gen and Rachel Gong		By Claire Lim and Rachel Gong	
DIGITAL PLATFORM WORK: HOW DIGITAL ACCESS AND COMPETENCIES AFFECT JOBSEEKING	66	ARTIFICIAL INTELLIGENCE IN THE COURTS: AI SENTENCING IN SABAH AND SARAWAK	187
CHAPTER 4		AFTERWORD	198
By Amos Tong and Rachel Gong DIGITALISATION OF FIRMS: CHALLENGES IN THE DIGITAL ECONOMY	91		
CHAPTER 5			
By Ashraf Shaharudin OPEN GOVERNMENT DATA IN MALAYSIA: PRINCIPLES, BENEFITS, CHALLENGES AND THE WAY FORWARD	103		

INTRODUCTION

"It is time to stop debating whether the [i]nternet is an effective tool for political expression, and to move on to the much more urgent question of how digital technology can be structured, governed, and used to maximize the good it can do in the world and minimize the evil."

Rebecca Mackinnon¹

¹ Mackinnon, Rebecca. 2012. *Consent of the Networked: The Worldwide Struggle for Internet Freedom*. New York: Basic Books Inc, Division of Harper Collins. https://dl.acm.org/doi/10.5555/2222824.

INTRODUCTION

When this research project was conceived in 2019, our team of policy researchers recognised the growing importance of digital technologies in Malaysia. As the country progressed in its efforts to develop 5G infrastructure, digitalise systems operations and automate the workforce, it would need digital policies that could maximise the potential of new applications and govern the responsible use of data and technology.

Little did we know how the Covid-19 pandemic that began in 2020 would both accelerate and expand digital adoption and our reliance on digital tools, extending to remote education at primary school level, enabling microenterprises such as home bakeries to survive and allowing people to check in with loved ones when we could not cross state borders.

The digital policy questions raised when we began the project remain pressing concerns for the nation, even as we move into the next normal where digital connectivity and technologies are more essential to social, economic and political life. In fact, we begin to see new policy questions emerge as we grapple with the implications of having a connection that is "always on" and technology that is constantly monitoring us and collecting data on us.

This book is a compilation of our efforts to tackle some of these questions, comprising research published in stand-alone form from September 2020 till April 2021. It is a snapshot along the path of Malaysia's digital transformation, intended as a reference for researchers, policymakers and anyone interested in digital issues. We acknowledge that technology progresses, or at least changes, faster than research, policies or law, so the specifics of the statistics and examples used may soon be obsolete, if they are not already. Nonetheless, fundamental policy issues improving governance and addressing inequalities remain worth considering.

Digital inclusion was a policy objective from the start of the project. We posited that the digital divide was, like income inequality and educational opportunity, an inequity that needed immediate attention. Left unaddressed, lack of meaningful access to digital connectivity and competencies would exacerbate existing socio-economic inequalities. Admittedly, it is a challenge to conclusively determine whether it is digital inequalities that make socio-economic inequalities worse or socio-economic inequalities that make digital inequalities worse. But the two go hand in hand, making closing the digital divide a desirable policy outcome.

The first four chapters in this book address various aspects of digital inclusion. Chapter 1, *Digital Inclusion: Assessing Meaningful Internet Connectivity in Malaysia*, explores the digital divide in Malaysia by examining three aspects of digital inequalities from a demand-side perspective: first, internet penetration rates (access); second, data pricing (affordability); and third, several ways in which Malaysians use the internet (application). The chapter also discusses why closing the digital divide requires more than just technical solutions and offers some policy considerations for meaningful connectivity and digital inclusion.

Chapter 2, *The Quality of Mobile Broadband and Key Policy Recommendations*, examines mobile broadband performance in Malaysia, highlighting the differences in service provider-reported versus user-experienced download speeds. The chapter discusses raising minimum standards for broadband and strategic use of the Universal Service Provision fund as ways to improve infrastructure development and service provision.

In Chapter 3, *Digital Platform Work: How Digital Access and Competencies Affect Job-seeking*, we turn our attention to platform economies by studying the demographics of digital platform job-seekers in Malaysia and how digital access and competencies influence job-seeking activity in the digital job market. The chapter suggests that besides policies to close the digital divide, improved labour policies and social protections are also needed to support the growing platform economy.

Digital inclusion goes beyond individuals and households. Chapter 4, *Digitalisation of Firms: Challenges in the Digital Economy*, identifies challenges that firms, especially micro-, small- and medium-sized enterprises, face in digitalising their operations and argues that policies should be developed to encourage universal digitalisation by businesses to bridge the digital divide between firms and to prevent large platforms from monopolising the market.

Our second policy objective was to examine good digital governance. Digital technologies both consume and produce vast quantities of data. Big data analysis and predictive algorithms are now a big part of our daily lives, both online and offline. Complex analysis is used to predict what kind of restaurants we may want to order from, so that they can be prioritised in a customised "just for you" recommendation on an app. Hidden biases in data, such as race, are turning out to have a larger predictive effect than anticipated, for example, in hiring software that filters CVs and job applications. Data may have been first commodified by the private sector, but the public sector will find data increasingly necessary to deliver services. The use of data to develop digital or data intelligence requires good governance to ensure equitable, non-exploitative use of data in the public interest.

The final four chapters of this book address various aspects of digital governance. Chapter 5, *Open Government Data In Malaysia: Principles, Benefits, Challenges and The Way Forward*, summarises an extensive research and policy agenda to make public data open by default. The chapter provides an overview of important features of open government data, discusses the benefits of open government data and reviews the challenges in establishing an open government data ecosystem in Malaysia. It then proposes actionable items for policymakers to consider, including enacting a Right to Information law, streamlining government data policy, improving data privacy and security protection and facilitating inclusive and meaningful use of government data.

Chapter 6, *Personal Data Privacy: Surveillance and Security*, presents a different set of data concerns by focusing on the collection and use of personal data. It describes the ways in which unregulated constant tracking by digital platforms extract not only personal data but also behavioural surplus from platform users. Behavioural surplus is data generated as a by-product of particular digital behaviour. Like body language, behavioural surplus adds to digital behaviour details such as the time or place a digital action was taken, whose wide use in predictive algorithms has largely gone unregulated by governments. Left unchecked, these algorithms can go from predictive to manipulative.

In Chapter 7, *Digital Governance: Classification of Information Disorder*, we turn our attention to yet another concern in our interactions with data, exploring the problem of information disorder, that is, how information can be distorted. The chapter raises questions of how false and/or malicious information can be classified, spotted, and rectified. Although the case study is specific to Covid-19, the principles of identifying information disorder, fact-checking information and establishing reliable networks of information sharing can have broad application to other forms of news and information flow.

Finally, Chapter 8, *Artificial Intelligence in the Courts: AI Sentencing in Sabah and Sarawak*, uses the application of AI in court sentencing for cases of drug possession and rape as a case study to explore the challenges and ethics of AI. Besides identifying potential sources of bias in AI systems, the chapter reviews efforts undertaken by the courts of Sabah and Sarawak to mitigate risks of bias in their AI application.

The topics contained in this book are not intended to be comprehensive, but as a starting point for further discussion and research on digital policy concerns of the nation. We hope that readers will find our discussions useful and that researchers will be able to build upon this body of work as Malaysia continues on its journey of digital transformation.

Dr Rachel Gong On behalf of the KRI Networked Nation team

June 2021

CHAPTER

01

DIGITAL INCLUSION: ASSESSING MEANINGFUL INTERNET CONNECTIVITY IN MALAYSIA

1.1	Introduction	6
1.2	What is the digital divide?	7
1.2.1	What is meaningful connectivity?	8
1.2.2	How is broadband defined?	ç
1.3	Assessing access	12
1.3.1	Global comparison: internet penetration statistics	12
1.3.2	National demographics: internet penetration by gender and age	13
1.3.3	State subscription rates: trends in fixed and mobile broadband	15
1.4	Assessing affordability	18
1.4.1	Absolute pricing: how much does internet access cost in Malaysia?	19
1.4.2	Relative pricing: is internet access affordable in Malaysia?	20
1.5	Assessing application	22
1.5.1	What are Malaysians doing online?	22
1.5.2	Communication, social networks and video streaming	23
1.5.3	Online banking	24
	01111110 0011111110	

1.6	Further research and policy considerations	26
1.6	.1 What is digital inclusion?	27
1.7	Conclusion	31
1.8	Postscript	31
Appendix 1.1: Data pricing calculations		
References		

CHAPTER 1

DIGITAL INCLUSION: ASSESSING MEANINGFUL INTERNET CONNECTIVITY IN MALAYSIA²

By Rachel Gong

"The fight for the web is one of the most important causes of our time. Today [in 2019], half of the world is online. It is more urgent than ever to ensure the other half are not left behind offline, and that everyone contributes to a web that drives equality, opportunity and creativity."

Sir Tim Berners-Lee³

1.1 Introduction

Sabahan student Veveonah Mosibin made international headlines⁴ in June 2020 when her video of spending 24 hours in a tree to take her online examinations went viral. The Malaysian Communications and Multimedia Commission (MCMC) responded by releasing a statement indicating that plans had been made to build a new telecommunications tower⁵ where she lived, which would improve the 3G coverage and service in the area, and to upgrade coverage in the area to 4G under the Universal Service Provision (USP) fund.

Considering that Malaysia's national internet penetration rates are well over 100%, indicating that the average Malaysian has at least one way of accessing the internet, and that internet penetration in Sabah in 2019 was 80.7%, is Veveonah's story an outlier, or is it indicative of a deeper structural inequality masked by macro-statistics?

This chapter explores the digital divide in Malaysia by examining three aspects of digital inequalities from a demand-side perspective: first, internet penetration rates (access); second, data pricing (affordability); and third, several ways in which Malaysians use the internet (application). The chapter also discusses why closing the digital divide requires more than just technical solutions and offers some research and policy considerations regarding meaningful connectivity and digital inclusion.

² An earlier version of this chapter authored by Rachel Gong was published by KRI on 7 September 2020 as a Discussion Paper titled "<u>Digital Inclusion: Assessing Meaningful Internet Connectivity in Malaysia</u>".

³ webfoundation (2019)

⁴ BBC (2020)

⁵ MCMC (2020b)

⁶ MCMC (2020a)

Even before the Covid-19 pandemic created pressures to accelerate nationwide digitalisation, Malaysia was well on its path of digital transformation. The National Fiberisation and Connectivity Plan (NFCP) had been established, aiming to "put in place robust, pervasive, high quality and affordable digital connectivity throughout the country". Efforts to improve digital financial services and go cashless saw the average Malaysian making 150 e-payment transactions in 2019, compared to just 83 in 20158, and schools and universities were trying out online classes in line with the National e-Learning Policy 2.09. The pandemic has accelerated this process, and it is imperative that efforts to develop a digital economy do not neglect the fundamentals of a digital society, namely meaningful connectivity and digital inclusion.

Box 1.1: Definitions of digitisation, digitalisation and digital transformation

- Digitisation: the process of making a digital (i.e. electronic) version of something analogue, e.g. scanning a document or converting a paper ledger into an electronic spreadsheet.
- **Digitalisation**: the process "in which many domains of social life are restructured around digital communication and media infrastructures" ¹⁰. This process changes the world of work, making "the acquisition of digital skills…a prerequisite for individual, industry, and regional success" ¹¹ e.g. automated filtering of resumes and first-round interviews taking place via video-conferencing.
- **Digital transformation**: the process of technological adoption and cultural change that have broader socio-technological implications, e.g. influencers on social media becoming primary news sources as paid print journalism declines.

1.2 What is the digital divide?

Research on digital inequalities in the late 1990s and early 2000s described a "digital divide" that was primarily focused on digital inequalities in terms of internet access¹². As internet connectivity spread quickly in developed nations and the digital divide closed, at least in terms of access, researchers turned their attention to other areas of digital inequalities, such as affordability, quality of service and digital literacy¹³.

⁷ MCMC (n.d.)

⁸ Author's correspondence with Bank Negara Malaysia (BNM)

⁹ MOHE (n.d.)

¹⁰ Brennen and Kreiss (2016)

¹¹ Muro et al. (2017)

¹² DiMaggio, Hargittai, Celeste, et al. (2001), Robinson et al. (2015)

¹³ Hargittai, Piper, and Morris (2018)

Most of this early research used socio-economic factors such as income and educational attainment to predict internet use¹⁴, but as access became more ubiquitous, researchers flipped their models and began to use internet access as a predictor of socio-economic and socio-political outcomes. Initially, research indicated that people who were better off were more likely to use the internet. Later research indicated that people who used the internet were likely to improve their life outcomes, leading to a reinforcing cycle that could worsen existing inequalities.

Studies have shown, broadly speaking, that increases in internet accessibility are positively associated with improvements in socio-economic outcomes, such as educational attainment, job opportunities¹⁵, political engagement¹⁶ and health literacy¹⁷. These positive relationships have been found not just in countries with developed infrastructure but in developing countries as well.

As more and more of society's functions become dependent on internet connectivity and computer processing power, the debate continues as to whether digital inequalities are the result of existing socio-economic inequalities or the cause of continued and worsened social inequalities. These are not mutually exclusive explanations, but both point towards the same policy implication—that one of the priorities of digital policy should be universal, affordable high-speed internet access.

In 2016, the United Nations (UN) affirmed "the importance of applying a comprehensive human rights-based approach in providing and in expanding access to Internet and request[ed] all States to make efforts to bridge the many forms of digital divide" 18. The UN declared internet access a human right and several countries such as Costa Rica, Finland, Greece and India have made it a legal requirement that all their citizens have access to the internet. This does not mean that service is provided at no cost; rather it means that government policy values internet access as a public utility, like water and electricity.

1.2.1. What is meaningful connectivity?

An important shift in the conversation on the digital divide is a move away from a binary view of internet access and towards a spectrum measuring multidimensional aspects of meaningful connectivity. The UN's Broadband Commission for Sustainable Development defines meaningful universal connectivity as "broadband adoption that is not just available, accessible, relevant and affordable, but that is also safe, trusted, empowering users and leading to positive impact" ¹⁹.

The Alliance for Affordable Internet (A4AI) has proposed a meaningful connectivity standard that takes into account four dimensions, as shown in Table 1.1.

KHAZANAH RESEARCH INSTITUTE

8

¹⁴ Howard, Busch, and Sheets (2010), Willis and Tranter (2006)

¹⁵ DiMaggio and Bonikowski (2008), Hjort and Poulsen (2019), Kuhn and Mansour (2014)

¹⁶ Samsudin A. Rahim (2018)

¹⁷ Neter and Brainin (2012)

¹⁸ UNHRC (2016)

¹⁹ ITU (2019)

Table 1.1 Four dimensions of meaningful connectivity

Dimension of internet access	Minimum threshold
Regular internet use	Daily use
An appropriate device	Access to a smartphone
Enough data	An unlimited broadband connection at home or a place of work or study
A fast connection	4G mobile connectivity

Source: A4AI (2020)

Usage of this standard would mean that instead of evaluating the digital divide in terms of a single binary measure of internet penetration, policymakers would assess progress to reduce the divide along these four dimensions. At the time of writing, this standard has been tested in Colombia, Ghana and Indonesia²⁰.

1.2.2. How is broadband defined?

One of the difficulties in assessing the extent of the digital divide lies in the ways that terms are defined and measured. For starters, the definition of broadband internet, which is commonly understood to mean a high-speed connection that is always available (as compared to the early days of the internet when users had to manually dial in each time they wanted to connect), is inconsistently specified.

The International Telecommunication Union (ITU), a UN agency, in 2003 defined broadband as a combination of connection capacity and speed, "at 1.5 or 2.0 Mbps"²¹. In 2018, this definition was revised to "access in which the connection(s) capabilities support data rates greater than 2 Mbps"²². The United States of America's Federal Communications Commission (FCC), in its 2018 Broadband Deployment Report, defined broadband connections as having a minimum 25Mbps download speeds and 3Mbps upload speeds²³.

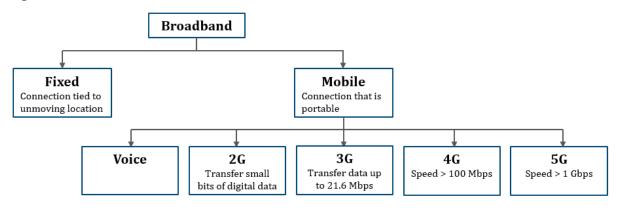
The Malaysian government, in its National Broadband Initiative (NBI) in 2010, defined broadband along two categories: broadband to high impact economic areas and businesses with a minimum speed of 10Mbps and broadband to the general population with average speeds of 2Mbps²⁴. The NFCP has set a target for internet service providers to deliver average speeds of 30Mbps for download and 10Mbps for upload²⁵. The definitions used in this chapter follow the 2019 MCMC specifications of fixed broadband with speeds starting at 1Mbps and mobile broadband with speed starting at 650kbps²⁶.

²⁰ A4AI (2020)

²¹ ITU (2003)

²² ITU (2018)

²³ FCC (2018)


²⁴ MCMC (2010)

²⁵ MCMC (n.d.)

²⁶ MCMC (2020a)

Broadband can be further divided into fixed broadband and mobile broadband, as illustrated in Figure 1.1. Fixed broadband refers to a connection tied to an unmoving location, for example, at home, school or the office. Mobile broadband refers to a connection that is portable, usually associated with a SIM card and accessed via a smartphone.

Figure 1.1: Broadband classification

Source: Author's visualisation

Mobile broadband can be classified according to what generation of development it belongs to. For simplicity, the following classifications are based on only the data transfer capabilities of each generation. The first generation of mobile technology was analogue, that is, voice only. The second generation (2G) allowed mobile users to transfer small bits of digital data, typically via text messages; 3G allowed mobile users to transfer data at up to speeds of 21.6Mbps although in practice speeds of 2Mbps were the norm. 4G was a big jump up from 3G, with speeds theoretically able to reach over 100Mbps, and 5G is expected to jump an even bigger order of magnitude, with data transfer speeds reaching over 1Gbps.

Until 5G infrastructure is widely installed and compatible devices reach the consumer market at affordable prices, the average mobile broadband user will be limited to 3G or 4G service, which is generally enough for typical consumer use such as checking email and social media, streaming audio or video, or playing games. Table 1.2 summarises the development of internet service provision in Malaysia.

Table 1.2: A brief history of internet service provision in Malaysia

1985	The Malaysian Institute of Microelectronics System (MIMOS) is established as Malaysia's first internet service provider (ISP) ^a
1986	Rangkaian Komputer Malaysia (RangKom) is set up between academic institutions ^a
1991	JARING (Joint Advanced Integrated Networking) is launched as a separate entity which absorbed RangKom and commercialised Internet access ^b
1992	A satellite link is established between Malaysia and the United States with speeds of 64kbpsb
1994	JARING upgraded the average connection speed in Malaysia to 1.5Mbps, accessible via fixed telephone lines in 16 major cities ^b
1996	Telekom Malaysia Berhad (TM) is awarded Malaysia's second ISP license, established TMNetb
1998	TIME, Maxis, Mutiara (later known as Digi), Celcom and Prismanet received ISP licenses ^c
	The government passed the Communications and Multimedia Act 1998 (CMA) and Malaysian Communications and Multimedia Commission Act (1998), which established the Malaysian Communications and Multimedia Commission (MCMC) ^d
	The Universal Service Provision (USP) fund is established to fund infrastructure costs of the Rural Broadband Initiative (RBB). ISPs contribute 6% of weighted net revenue to the USP funde
2001	TM launched Streamyx that provided national coverage and at a minimum speed of 384kpbs ^f
2008	The Government formed the Broadband Implementation Strategy in 2008 which consisted of two key strands: High Speed Broadband (HSBB) and Broadband to the General Population (BBGP) ^h
	Public-private partnership (PPP) is established with TM for HSBB Phase 1 to provide speeds of 10Mbps to 100Mbps in strategic areas ^h
2010	The government launched the National Broadband Initiative (NBI) ⁹
	TM launched its HSBB service, Unifi, providing 48 exchange coverage areas across Malaysia ⁹
2015	Further PPPs are developed for Phase 2 of HSBB and Sub-Urban Broadband Project (SUBB) to upgrade copper lines and improve speeds in suburban areas ⁱ
2018	Mandatory Standard on Access Pricing (MSAP) is implemented to regulate wholesale prices of broadband ^j
	The Ministry of Communications and Multimedia launched the National Fiberisation and Connectivity Plan (NFCP) to further improve high-speed broadband coverage nationwide ^j

Source: ^aMohamed b. Awang-Lah (1987), ^bNorfaezah binti Abd Halim (2010), ^cMCMC (2015b), ^dMCMC (2016b), ^eMCMC (2006), ^eTelekom Malaysia (2002), ^gMCMC (2010a), ^hNor Akmar Shah Minan (2009), ^eTelekom Malaysia (2015), ^gRaju (2019)

1.3 Assessing access

The first of the three aspects of the digital divide explored in this chapter is access, measured in terms of internet penetration, user demographics and broadband subscription rates.

1.3.1. Global comparison: internet penetration statistics

According to the Department of Statistics (DOS), household internet use in Malaysia has increased from 21% in 2009 to 90% in 2019²⁷. However, it is unclear from this statistic whether that refers to a fixed connection or a mobile connection.

The MCMC reports slightly different statistics, indicating that broadband penetration rates per 100 inhabitants have increased from 17% in 2010 to 131% in 2019²⁸. In other words, for every 100 people in Malaysia, there are approximately 131 registered broadband subscriptions, most of them in the form of SIM cards. It should be noted that this number is the sum of both fixed and mobile subscriptions, which are not perfect substitutes. While it is highly likely that an individual with a fixed broadband subscription also has a mobile broadband subscription, the reverse is not as likely.

The DOS and MCMC numbers differ because of the distinct ways these agencies calculate internet penetration. The DOS method employs a household survey in which respondents are asked whether they used the internet in their household in the last three months. The MCMC method takes the number of registered broadband accounts and divides it by the population of the country, as estimated by DOS. Statistics from both agencies are reported to the ITU to evaluate different measures of internet penetration. Table 1.3 compares Malaysia's internet penetration rates to selected countries in 2017 and 2018.

Malaysia outperforms the global average in terms of internet users and mobile broadband penetration but falls behind in terms of fixed broadband penetration. Based on DOS's 2018 figures provided to the ITU, 81.2% of individuals in Malaysia use the internet, compared to a global average of 73.6% across 82 reporting countries. The 2018 numbers MCMC provided to the ITU supply further detail, indicating a fixed broadband penetration rate of 8.6%, compared to a global average of 15.5% across 178 reporting countries, and a mobile broadband penetration rate of 134.5%, compared to a global average of 111.2% across 179 reporting countries. The statistics indicate that mobile broadband is preferred over fixed broadband globally, even in countries with developed fixed line infrastructure.

²⁷ DOS (2012, 2020a)

²⁸ MCMC (2010a, 2020a)

Table 1.3: Malaysia's internet penetration rates compared to selected countries, 2017, 2018

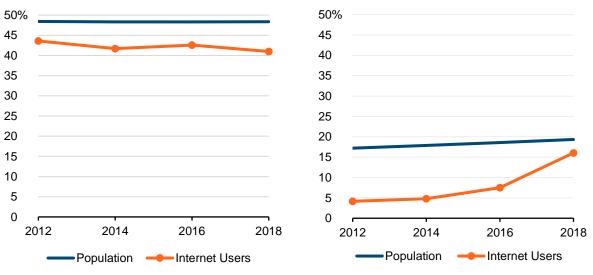
Country	Internet users (%, 2017)	Internet users (%, 2018)	Fixed broadband (%, 2018)	Mobile broadband (%, 2018)
MALAYSIA	80.1	81.2	8.6	134.5
Selected benchmarks				
South Korea	95.1	96.0	41.6	129.7
UK	94.6	94.9	39.6	118.4
US	87.3	-	33.8	129.0
Australia	86.5	-	30.7	113.6
China	54.3	-	28.5	115.5
India	34.5	-	1.3	86.9
Comparable GDP per capita				
Kazakhstan	76.4	78.9	13.4	142.3
Poland	76.0	77.5	16.1	134.8
Mexico	63.9	65.8	14.6	95.2
Comparable population				
Canada	91.0	-	39.0	89.6
Saudi Arabia	82.1	93.3	20.2	122.6
Ghana	39.0	-	0.2	137.5
Selected ASEAN				
Singapore	84.4	88.2	28.0	148.8
The Philippines	60.0	-	3.7	126.2
Vietnam	58.1	70.3	13.6	147.2
Thailand	52.9	56.8	13.2	180.2
Indonesia	32.3	39.9	3.3	119.3

Note: Hyphen "-" indicates no data available.

Source: ITU (2019)

1.3.2. National demographics: internet penetration by gender and age

Figure 1.2 shows the proportion of women in the Malaysian population and the proportion of female internet users from 2012 to 2018. The proportion of women in the population remains steady around 48.0%, but the proportion of female internet users declined over time from 43.6% to 41.0%. This is a worrying trend as it indicates a possible increase in the digital gender divide.


The digital gender divide is not limited to Malaysia. Across the 100 countries, including Malaysia, assessed in the Inclusive Internet Index 2020, men are 12.9% more likely than women to have internet access²⁹. The index indicates that this digital gender gap becomes wider as income levels and women's participation in the labour force decrease. An expert survey conducted by the A4AI and the World Wide Web Foundation in 2018 found that Malaysia had a gender-responsive broadband policy in place, which included "gender-specific targets for internet access and digital skills training, with adequate budget set aside to implement the policy"³⁰. The implementation and outcomes of this policy will need to be evaluated to determine its effectiveness.

²⁹ EIU (2020)

³⁰ webfoundation (2018)

Figure 1.2: Percentage of women in Malaysia vs internet users

Figure 1.3: Percentage of population aged >50 in Malaysia vs internet users

Source: DOS population estimates, MCMC Internet Users Survey 2012, 2014, 2016, 2018

Figure 1.3 shows the proportion of the Malaysian population aged 50 and above and the proportion of internet users in this age group from 2012 to 2018. This proportion of this age group in the general population increased slightly from 17.2% to 19.3% during this time period, but the proportion of internet users in this age group increased much more rapidly from 4.2% to 16.0% as internet usage increases overall.

While those in their 20s continue to form the biggest age group among internet users, data suggest that the digital age gap is closing. The age of the average internet user in Malaysia increased from 29.7 years in 2012 to 36.2 years in 2018^{31} . As the time period under analysis is just 2012 - 2018, this effect is likely not only due to internet users moving up into the next age group, but also likely indicates that more seniors are coming online.

On the one hand, this is an encouraging finding, indicating that Malaysians of all ages are adopting digital technologies. On the other hand, older internet users who have limited technological exposure and experience may find themselves at greater risk of becoming victims of cybercrime, especially fraud and scams, or distributors of misinformation on social media. Reports indicate that there are seniors unfamiliar with terminology, including cashless and online payments who are struggling to find appropriate education, guidance and support³². Seniors also report less experience with computers, the internet and technology in general³³. As such they could be uncomfortable with the pace at which digital technology evolves and may be reluctant to try relatively more complicated tools such as cashless online payment apps even as they embrace social media and messaging apps³⁴.

³¹ MCMC (2014, 2019b)

³² Wong et al. (2018), Yaakob, Wan Hassan, and Daud (2016), Yeoh (2019)

³³ Hui (2016)

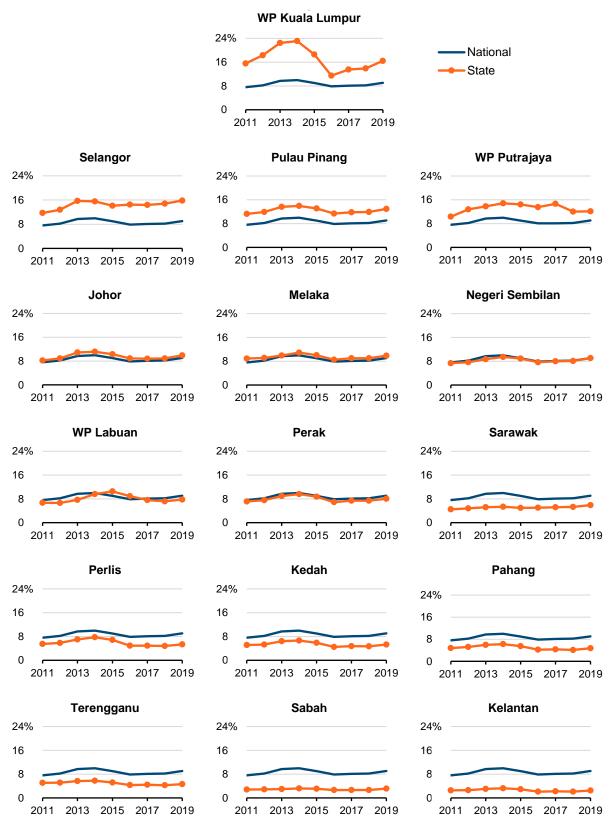
³⁴ Andalib and Hashim (2018), Wong et al. (2018)

1.3.3. State subscription rates: trends in fixed and mobile broadband

The following figures show trends in broadband subscription rates at state-level from 2011 – 2019. Figure 1.4 shows state trends in broadband subscription rates while Figure 1.5 shows state trends in mobile broadband subscription rates. Both figures are sorted in descending order of fixed broadband subscription rates for ease of comparison.

Kuala Lumpur has the highest subscription rates among the states for both fixed and mobile broadband. The fixed broadband subscription rate peaked in Kuala Lumpur in 2014 at 23.1% but then declined as mobile broadband gained popularity. As at 2019, Kuala Lumpur, Selangor, Pulau Pinang and Putrajaya outperform the national average in terms of fixed broadband subscription rates.

Mobile broadband penetration in Kuala Lumpur is significantly higher than all the other states; the mobile broadband subscription rate in Kuala Lumpur in 2019 is 249.6%, implying that, on average, every resident has at least two SIM cards. There are at least two possible explanations for this high number. First, Kuala Lumpur has a larger number of large firms that are likely to register SIM cards for their employees' work use. Second, the use of temporary prepaid SIM cards by tourists may have inflated the subscription rates.


Overall trends show fixed broadband subscription rates remaining relatively flat over the years, with a national rate of 9.0% in 2019 versus 7.6% in 2011. These statistics indicate that there are approximately nine registered fixed broadband subscriptions for every 100 inhabitants. However, since the average household size in Malaysia is 3.9 people³⁵, it would be reasonable to assume that approximately 35% of the population has access to a fixed broadband connection.

Mobile broadband subscription rates, on the other hand, show substantial growth beginning in 2015, which accounts for the steep growth from a national rate of 11.6% in 2011 to 122.7% in 2019. This growth can be attributed to at least three developments circa 2015. First, there was the roll out of 4G beginning in 2013 that supplemented the migration from 2G to 3G, all of which improved mobile broadband quality of service. Second, smartphones prices dropped, which made them more widely affordable. Third, telephone companies (telcos) responded by heavily promoting mobile data packages³⁶.

³⁵ DOS (2020b)

³⁶ MCMC (2016)

Figure 1.4: Fixed broadband subscription rates by state, 2011 - 2019

Source: Author's calculations based on MCMC data

Figure 1.5: Mobile broadband subscription rates by state, 2011 - 2019

Source: Author's calculations based on MCMC data

Table 1.4 shows the states' median household income and fixed and mobile broadband subscription rates as at 2019, sorted by state median household incomes. States whose median household income is above the national average are likely to have fixed and mobile broadband subscription rates that also outperform the national average, although the direction of causality cannot be conclusively determined. The data suggest that there is a significant positive relationship between fixed broadband subscription rates and median household income, and that this relationship is weaker between mobile broadband subscription rates and median household income.

Table 1.4: Broadband subscription rates and median household incomes, by state, 2019

State	Fixed broadband (%)	Mobile broadband (%)	Median household income (RM)
MALAYSIA	9.0	122.7	5,873
WP Kuala Lumpur	16.4	249.6	10,549
WP Putrajaya	12.5	102.1	9,983
Selangor	15.8	130.5	8,210
WP Labuan	8.1	107.8	6,726
Johor	9.9	142.0	6,427
Pulau Pinang	12.9	143.3	6,169
Melaka	9.9	116.3	6,054
Terengganu	4.7	96.4	5,545
Negeri Sembilan	9.0	137.4	5,005
Perlis	5.5	108.5	4,594
Sarawak	5.9	107.4	4,544
Pahang	4.7	102.3	4,440
Kedah	5.3	100.0	4,325
Perak	8.0	116.2	4,273
Sabah	3.1	82.0	4,235
Kelantan	2.5	93.0	3,563

Note: Figures diverge slightly from MCMC statistics due to rounding.

Source: Household Income Survey (HIS) 2019, author's calculations based on MCMC 2020 $\,$

Using Household Income Survey (HIS) data from 2012, 2014 and 2016, state median household incomes and fixed broadband subscription rates, the latter lagged by a year, were found to be positively correlated (r(46) = .72, p<.001) while state median household incomes and mobile broadband subscription rates, also lagged by a year, were found to have a weaker positive correlation, (r(46) = .59, p<.001).

1.4 Assessing affordability

The second of the three aspects of the digital divide explored in this chapter is data affordability, measured using data pricing for both fixed and mobile broadband and considered in absolute and relative terms.

1.4.1. Absolute pricing: how much does internet access cost in Malaysia?

Mobile broadband plans are typically priced according to how much data is allocated over a fixed period, e.g. 20GB per month. Fixed broadband plans are typically priced according to the speed at which data are transferred, e.g. 100Mbps, and do not limit the amount of data transferred.

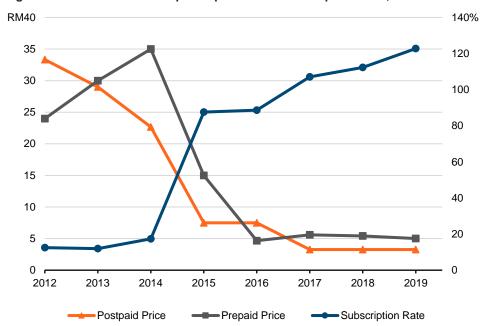


Figure 1.6: Mobile broadband prices per GB and subscription rates, 2012 - 2019

Source: Author's calculations based on web and MCMC data

Figure 1.6 shows the absolute price per GB of mobile data from 2012 to 2019. As might be expected, as the price of mobile data drops, the total number of mobile broadband subscriptions increase. From 2012 to 2018³⁷, prepaid subscriptions comprised, on average, 79.4% of all mobile broadband subscriptions. Prepaid subscriptions are slowly declining, making up 72.7% of all mobile broadband subscriptions in 2018³⁸. Postpaid plans are generally better value than prepaid plans, but usually require a payment commitment and come at higher prices.

Figure 1.7 shows the monthly price of a fixed broadband subscription with unlimited data from 2012 to 2019. Fixed broadband prices do not appear to have affected subscription rates very much, even when the price of the cheapest unlimited data subscription dropped by about 40% from 2016 to 2019. This decrease in price was partly attributable to the implementation of the Minimum Standard on Access Prices (MSAP). The MSAP regulates the price of wholesale broadband prices, effectively driving down the price of retail broadband.

³⁷ 2019 data were not available at the time of writing.

³⁸ MCMC (2016, 2019)

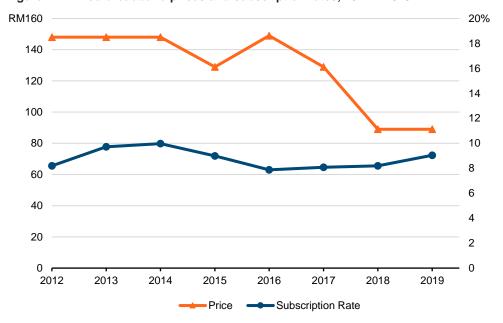


Figure 1.7: Fixed broadband prices and subscription rates, 2012 - 2019

Source: Author's calculations based on web archive and MCMC data

Reports indicate that, as a result of the implementation of the MSAP, "demand for fixed residential and commercial broadband services rose by 18 to 22 percent" from August 2018 to August 2019 and that "the number of fixed broadband subscription[s] with the uploading speed of more than 100 Mbps rose eight-fold to 1.2 million subscribers in 2018" However, the upgrade in quality of service at lower prices does not necessarily correspond to an increase in the number of new fixed broadband subscribers. As seen in Figure 1.7, the total number of fixed broadband subscribers increased by approximately 10.2% from 2018 to 2019.

1.4.2. Relative pricing: is internet access affordable in Malaysia?

In order to close the affordability gap, it is necessary but not sufficient for absolute data pricing to decrease over time. Internet access could remain at a relatively higher cost for low income groups, hence the need to assess not just price, but price relative to income.

In addition to its proposed standards for meaningful connectivity, the A4AI also uses a "1 for 2" measure to access affordability: "Affordable internet is where 1GB of mobile broadband data is priced at 2% or less of average monthly income"⁴¹. This measure was adopted by the UN's Broadband Commission for Sustainable Development in 2018 as part of its goal to close the global digital divide.

To assess whether broadband prices in Malaysia meet this affordability threshold, a variation of the "1 for 2" measure was applied to the cheapest mobile data plans and to the cheapest unlimited data fixed broadband plans available from 2012 to 2019. Median individual monthly income was estimated and used for the calculation instead of gross national income per capita.

³⁹ Bernama (2019)

⁴⁰ Bernama (2019)

⁴¹ A4AI (2019)

Using this benchmark, Malaysia performs well in terms of mobile broadband affordability. In 2019, the price per GB of data for both prepaid and postpaid mobile broadband is less than 0.3% of every state's median individual monthly income with prepaid data being slightly more expensive than postpaid data, as shown in Table 1.5. In Kelantan, where a mobile data plan is the most expensive, relative to the rest of the country, 1GB of prepaid mobile data costs 0.25% of the state's median individual monthly income. This is well below the A4AI's 2% affordability threshold and indicates that mobile data in Malaysia is generally very affordable.

Fixed broadband data does not appear to be as affordable as mobile broadband data. Table 1.5 shows data pricing as a percentage of each state's median individual monthly income in 2019.

Table 1.5: Data pricing as a percentage of median monthly individual income, 2019

State	Prepaid mobile (per GB)	Postpaid mobile (per GB)	Fixed broadband (per GB)	Fixed broadband (unlimited data)
WP Kuala Lumpur	0.09%	0.06%	0.08%	1.52%
WP Putrajaya	0.09	0.06	0.09	1.60
Selangor	0.11	0.07	0.10	1.95
WP Labuan	0.13	0.09	0.13	2.38
Johor	0.14	0.09	0.13	2.49
Pulau Pinang	0.15	0.10	0.14	2.60
Melaka	0.15	0.11	0.14	2.65
Terengganu	0.16	0.12	0.15	2.89
Negeri Sembilan	0.18	0.13	0.17	3.20
Perlis	0.20	0.13	0.19	3.49
Sarawak	0.20	0.13	0.19	3.53
Pahang	0.20	0.13	0.19	3.61
Kedah	0.21	0.14	0.20	3.70
Perak	0.21	0.14	0.20	3.75
Sabah	0.21	0.14	0.20	3.78
Kelantan	0.25	0.17	0.24	4.50

Source: Author's calculations based on web archive data and HIS 2019

At first glance, it seems that fixed broadband is only affordable at the 2% threshold in Kuala Lumpur, Putrajaya and Selangor. This analysis suggests a plausible explanation for why an individual might not want to subscribe to fixed broadband especially if they are already paying for a mobile broadband subscription.

However, this interpretation of the data for fixed broadband pricing is not strictly comparable to mobile data pricing for two reasons. First, this is a variation of the affordability measure that does not consider the price per GB of data, instead calculating the price of access to unlimited data. Second, fixed broadband access is accessible in the household by more than one person, but the price is calculated for an individual subscriber. Thus, if multiple household members use large quantities of data, it is likely that the price per GB of fixed broadband data would be lower than the price per GB of mobile broadband data.

Assuming that the average internet user uses approximately 9GB of data per month at home and the average Malaysian household comprises four people, at least two of whom use that much data, the estimated price per GB of fixed broadband data does become comparable to the price of prepaid mobile data, as shown in Table 1.5⁴². Nonetheless, as mobile services are the preferred means of internet access in Malaysia, take-up of fixed broadband for supplementary internet access remains low.

This analysis implies that data affordability is not the barrier to getting people connected, as mobile data plans are extremely affordable. However, internet users solely on mobile plans may not be able to take advantage of the benefits of fixed broadband connectivity unless they are able to pay for two broadband subscriptions.

1.5 Assessing application

The third of the three aspects of the digital divide explored in this chapter is application, measured using indicators of five of the top ten online activities in Malaysia—communicating by text, visiting social networking platforms, video streaming, online banking and online shopping.

The following analyses use selected data to gain insight into how Malaysians use the internet. Unless specifically stated, these data are not nationally representative, and should not be used to generalise across the Malaysian population. They simply indicate trends and the distribution of online activities for subsets of internet users in Malaysia.

1.5.1. What are Malaysians doing online?

Figure 1.8 shows the ten most popular online activities among internet users in Malaysia in 2018, sorted by the proportion of internet users who report engaging in such activities. Communicating by text ranked first, followed by visiting social networking platforms. Streaming videos online was the fourth most popular online activity, with online banking and online shopping in ninth and tenth place, respectively.

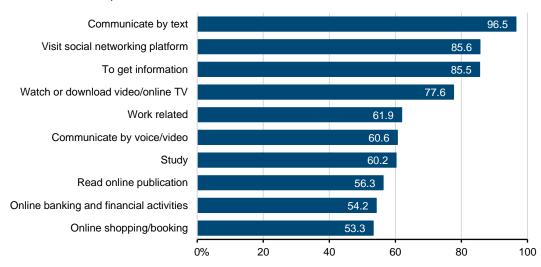


Figure 1.8: Online activities, 2018

Source: MCMC Internet Users Survey 2018

⁴² See Appendix 1.1: data pricing calculations for further details on this estimate.

1.5.2. Communication, social networks and video streaming

In 2019, mobile internet users in Malaysia used approximately 14GB of data each month⁴³. Figure 1.9 shows the share of internet data used by four of the most popular data-intensive mobile apps in 2019. These four apps—YouTube, Facebook, Instagram, and WhatsApp—rank among the top ten mobile apps, in terms of data volume, used by unifi Mobile users in 2019.

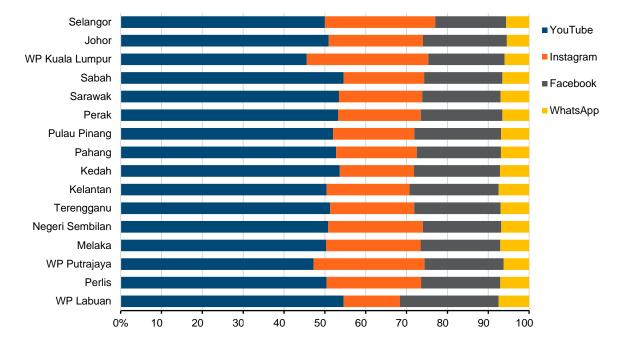


Figure 1.9: Unifi Mobile data usage for top four apps, by state, 2019

Note: Share of data usage is limited to these four apps and does not represent total mobile data usage. Source: Author's calculations based on data provided by TM Berhad upon request

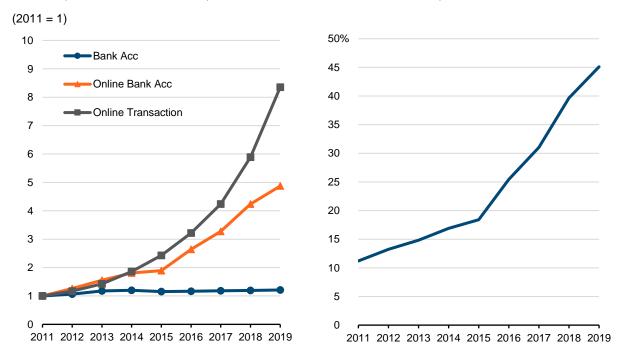
These data are in line with the 2018 MCMC survey findings as three of these four apps are the preferred apps used for the two most popular online activities of 2018. WhatsApp was the most popular text communication app, being used by 98.1% of internet users who used such apps. Facebook and Instagram were the two most popular social networking apps, used by, respectively, 97.3% and 57.0% of social network users.

The fourth most popular online activity, video streaming, generated the most amount of data, which is expected as videos are data-intensive. Across all states, YouTube generated the biggest share of data volume, averaging 50% of data used by these four apps. While there are other apps and platforms used for video streaming such as Astro Go, iFlix and Netflix, YouTube was the most data-intensive app among unifi Mobile users.

Facebook was the most popular social networking platform among internet users in 2018, but in 2019 Instagram generated more data volume than Facebook among unifi Mobile users. This may not indicate Instagram's increased popularity among users, but simply be due to the Instagram's content being more data-intensive than Facebook's content.

⁴³ This approximation is based on numbers in the Axiata, Digi and Maxis 2019 annual reports.

Although it is the most commonly used app for the most common online activity (communication by text), WhatsApp data made up the smallest proportion of data traffic among the four apps. This is to be expected because, photo and video sharing notwithstanding, the majority of WhatsApp exchanges occur through text and voice, which have a smaller data footprint than videos.


While the data sample used in this analysis are not nationally representative, there is no reason to expect internet use behaviour to differ significantly across service providers. It is reasonable to assume that the data volume would be proportionally similar across service providers. This implies that the lion's share of internet data—and digital content—in Malaysia is being driven by Google and Facebook, the latter which owns Instagram and WhatsApp, and all together make up four of the most data-intensive apps in the country.

1.5.3. Online banking

Online banking and financial activities comprised the ninth most popular online activity in 2018. Figure 1.10 shows the indexed growth trends of bank accounts, active online accounts⁴⁴, and online financial transactions from 2011 to 2019. Figure 1.11 shows active online accounts as a percentage of total number of bank accounts from 2011 to 2019. The growth rate of online accounts, which increased starting in 2015, can be expected to continue or increase given the efforts made by Bank Negara Malaysia (BNM) to move Malaysia towards adopting electronic payments and becoming a cashless society.

Figure 1.10: Growth trends of bank accounts, online accounts, and online transactions, 2011 – 2019

Figure 1.11: Online accounts as a percentage of total bank accounts, 2011 – 2019

Source: Author's calculations based on data provided by BNM upon request

⁴⁴ Active online accounts are defined as internet/mobile banking subscriptions with at least one online transaction per month.

The number of online transactions per month has increased almost nine-fold over the last nine years while the number of online accounts has increased five-fold. Online accounts remain less than half the total number of bank accounts in 2019, indicating that there is still room for growth in digital financial services. The Covid-19 pandemic is likely accelerating the transition to cashless systems.

Not only do electronic payment systems provide cost savings and improve efficiency, but they are also a means of extending financial services to unbanked communities. In addition to digital banking services provided by traditional banks, BNM has issued licenses to 47 non-bank e-money issuers to provide electronic payment systems, including e-wallets such as Boost, GrabPay, and TouchNGo⁴⁵. Widespread take-up of digital financial services at all levels of society is important in facilitating the transition to a cashless society.

Implementing BNM's Interoperable Credit Transfer Framework (ICTF) would allow cross-platform transactions from bank accounts to non-bank e-wallet accounts. In a market with multiple e-wallets, such interoperability would improve efficiency and convenience by allowing an e-wallet user to seamlessly pay and receive funds from users of other participating e-wallets. Not only would this facilitate personal and commercial transactions, it could also facilitate the disbursal of social assistance and social protections, including the PRIHATIN economic stimulus package (PRIHATIN) funds, to financially under-served populations in rural and remote areas.

1.5.4. Online shopping

Online shopping was the tenth most popular online activity in 2018 and is likely to rise in the rankings as a result of the pandemic. Figure 1.12 shows the distribution by state of the number of Pos Laju e-commerce deliveries per thousand people in 2018 and the median monthly household income in 2016 relative to their respective national averages, which are scaled to zero. This means that Selangor's median household income in 2016 was approximately RM2,000 more than the national average median household income and the number of e-commerce deliveries per thousand people in Selangor in 2018 was approximately 600 packages more than the national average of deliveries per thousand people.

A pattern emerges between household income and online shopping, where states with higher median household incomes receive more e-commerce deliveries per thousand people, Negeri Sembilan being an exception to the rule. It should be noted that this chart represents e-commerce deliveries fulfilled by one specific courier whose market share may not be consistent across states. Nonetheless, the data reveal how income inequalities and digital inequalities are linked.

⁴⁵ Data on the take-up rates and geographic distribution of these electronic payment systems were not available at the time of writing.

These economic and digital inequalities can have public health consequences. Digital inequality scholars point out that those on the privileged side of the digital divide can work from home, stay in touch with friends and family online, and have their groceries, meals and household supplies ordered online and delivered. They are better equipped to remain sheltered and connected, thus lowering their exposure and risk to the coronavirus⁴⁶. Nor are health concerns related solely to the coronavirus. Socially-isolated individuals with limited or no internet connectivity during quarantines or movement control orders may face mental health challenges such as anxiety or loneliness and may not be able to get the regular healthcare they need without access to telemedicine.

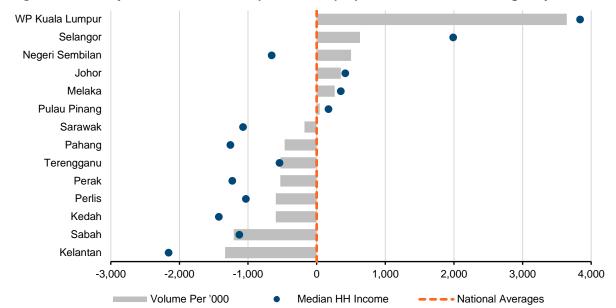


Figure 1.12: Pos Laju e-commerce deliveries per thousand people, relative to national averages, by state, 2018

Note: Delivery data for WP Labuan is captured under Sabah and WP Putrajaya under Selangor. Source: Author's calculations based on Pos Malaysia data and HIS 2016

1.6 Further research and policy considerations

Three aspects of the digital divide in Malaysia have been examined in this chapter: internet penetration rates (access), data pricing (affordability), and internet use (application).

Generally, as at 2019, Malaysia is a highly digitally networked nation, with 90% of households using the internet, mostly through mobile broadband plans on smartphones. Internet usage trends show the digital generation gap closing, but the digital gender gap widening.

Mobile data plans are affordable and popular, with national mobile broadband subscription rates exceeding 130% while national fixed broadband subscription rates lag behind at 9.0%. However, internet users solely on mobile plans may not be able to take advantage of the benefits of fixed broadband connectivity unless they are able to pay for two broadband subscriptions. Despite data affordability, there remains a positive relationship between median household income and both fixed and mobile broadband subscription rates.

⁴⁶ Robinson et al. (2020)

The most popular online activities among internet users in Malaysia are still oriented around communication, socialising, and media consumption, but economic activities rank highly as well, with approximately one in two internet users engaging in work-related activities, banking, and shopping online.

What then of the story of Veveonah Mosibin that opened this chapter? First and foremost, her story demonstrates that there remains a need for improved network coverage and quality of service, important supply-side considerations that are outside the scope of this chapter.

Her story also underlines why the digital divide is a pressing policy issue that needs to be considered from a demand-side perspective. As discussed earlier, improving digital access, affordability, and literacy could lead to gains in educational attainment, economic opportunity, and health literacy, all of which are important as Malaysia recovers from the Covid-19 pandemic and continues its development and growth, including its efforts towards digital inclusion.

1.6.1. What is digital inclusion?

Digital inclusion is a broad policy-driven approach towards ensuring that "all individuals and communities, including the most disadvantaged, have access to and use of Information and Communication Technologies (ICTs). This includes [five] elements:

- 1) affordable, robust broadband internet service;
- 2) internet-enabled devices that meet the needs of the user;
- 3) access to digital literacy training;
- 4) quality technical support; and
- 5) applications and online content designed to enable and encourage self-sufficiency, participation and collaboration.

Digital inclusion must evolve as technology advances. Digital inclusion requires intentional strategies and investments to reduce and eliminate historical, institutional and structural barriers to access and use technology"47.

Digital inclusion is about more than closing the digital divide. Building more infrastructure, improving network performance, and developing devices and apps that are easier to use and more secure are important technical solutions to the problem of the digital divide. But digital inclusion also requires social solutions, including addressing social inequality, rethinking social norms and behaviours, and thinking proactively about the societal implications of digitalisation, including education, healthcare, and social cohesion.

Providing affordable digital access is just the first step in the digital transformation of a society. Researchers and policymakers must consider the societal implications of an increasingly digital population before jumping ahead to automation, artificial intelligence and 5G. Digital literacy, data privacy, cybersafety and surveillance are just some of the issues that need to be addressed as part of the nation's digital inclusion efforts.

⁴⁷ NDIA (n.d.)

The findings of this chapter invite further investigation on the uses, benefits and risks of digital technologies in a networked, data-driven society. The following topics are presented for both research and policy consideration:

Consideration #1: Internet access as a public utility

Internet access is important for more than just economic outcomes, and is key to social development. As described earlier, the UN has declared internet access a human right and several countries have made it a legal requirement that all their citizens have access to the internet. This policy implies that governments should take the lead on the funding and provision of infrastructure in non-profitable areas, especially rural areas deemed unprofitable to private service providers.

In Malaysia, this is managed using the Universal Service Provision (USP) fund under Section 204 of the Communications and Multimedia Act (CMA) 1998. Telecommunications licensees whose annual revenue exceeds RM2 million contribute 6% of their weighted net revenue to the USP fund. This fund is currently the central source of funding for the NFCP but, should this prove insufficient to ensure universal coverage of populated areas, additional funds should be allocated for the provision of internet infrastructure.

The public sector should be cautious of entering into public-private partnerships where private companies take the lead on both funding and service provision. Facebook's Free Basics programme was intended to bring free internet access to rural areas in India by allowing users to access a limited set of websites and apps. India's telecommunications regulators rejected this plan because it violated net neutrality, meaning that it privileged some services (including Facebook) instead of allowing equal access to all online content⁴⁸.

Consideration #2: Measurement of meaningful metrics

As described earlier, the A4AI has proposed a new standard on meaningful connectivity, which includes four dimensions: enough speed, an appropriate device, enough data, and daily access. The organisation has proposed a method of applying this standard and has tested it in Colombia, Ghana, and Indonesia⁴⁹. The adoption of these metrics to complement internet penetration rates would allow policymakers to identify specific dimensions where a digital divide might exist and to address those gaps accordingly.

The A4AI standard also calls for a gender-disaggregated measure along these dimensions to examine where gender inequalities might exist. Because national identification numbers used to register broadband subscriptions include information on gender, Malaysia is well-placed to gather this data as a means of evaluating the efficacy of its gender-responsive broadband policies.

Existing surveys included data on gender, but data analysis was not always done with gender-disaggregation in mind. Allowing researchers access to existing microdata that includes gender information would permit historical analysis of digital gender inequalities to better assess if the gaps are closing.

⁴⁸ Bhatia (2016)

⁴⁹ A4AI (2020)

Consideration #3: The benefits of fixed broadband

Several studies have found that mobile broadband is a substitute for fixed broadband while fixed broadband is a complement to mobile broadband⁵⁰. This corroborates the finding that mobile connectivity is becoming far and away the preferred means of internet access, driven by the advance and falling prices of mobile devices and mobile services globally⁵¹.

Nonetheless, fixed broadband has several advantages over mobile broadband, typically offering higher data transfer speeds, better network stability and unlimited data. For a household that generates high amounts of media streaming traffic, whether streaming movies for entertainment, attending video conferences for work or attending university or school classes, a fixed broadband subscription would be a useful supplement to individual mobile subscriptions. This is particularly important in Malaysia where the most popular online activities are all data-intensive.

Furthermore, fixed broadband access, whether at home, work or school, is associated with a non-mobile access device, such as a desktop or laptop computer, on which, arguably, users are more likely to be engaging in educational and/or productive work, compared to mobile access devices such as tablets and smartphones. The next generation of workers are likely to develop and hone their digital skills such as data analysis, coding and design on non-mobile devices that have greater processing power and better network performance. As such, the provision of internet infrastructure should not be entirely focused on mobile service provision while fixed broadband service provision is neglected.

Consideration #4: Subsidies for devices, not just data

Analysis for the Inclusive Internet Index corroborates the finding that Malaysia's data pricing plans are generally affordable. However, it also finds that Malaysia does not perform as well with respect to the affordability of access devices, e.g. entry-level smartphones⁵². Malaysian schools wrestled with online education in response to the Covid-19 pandemic as 37% of students did not have appropriate learning devices at home⁵³.

As with considerations of the value of fixed broadband connectivity, so with considerations of non-mobile access devices such as personal computers. Research indicates that having access to an internet-enabled device is more effective than reducing mobile prices in increasing broadband penetration⁵⁴. Programmes subsidising or providing devices to under-served groups could be developed alongside programmes subsidising broadband subscriptions. Once network infrastructure has been established, the USP fund could be redirected for this purpose, which is still in line with its objective to provide access to internet access throughout the country.

⁵⁰ Bae, Choi, and Hahn (2014), Prieger (2013), Srinuan, Srinuan, and Bohlin (2012)

⁵¹ Roessler (2018)

⁵² EIU (2020)

⁵³ Hawati Abdul Hamid and Jarud Romadan Khalidi (2020)

⁵⁴ Hawthorne and Grzybowski (2019)

Consideration #5: Reformatting of legal codes

The UN Broadband Commission for Sustainable Development notes that there are potential downsides to digital connectivity, especially for vulnerable groups such as women, children and seniors. These downsides include online harassment, stalking, bullying, hate speech, exploitation, fraud and scams. Legal frameworks and digital laws that take into account digital technologies have to be developed or amended from existing laws to better protect internet users from these risks. This entails a review of existing laws written in and for an analogue world to ensure they can be appropriately applied in a digitalised society.

Also needed are regulations around data governance that protect individual privacy and national data sovereignty. The existing Personal Data Protection Act (PDPA) restricts how personally identifying data may be distributed but is rarely enforced⁵⁵. The European Union's General Data Protection Regulation (GDPR) provides a model that limits personal data collection to only what is necessary, does not allow data to be used for purposes other than what was originally intended, and limits how long data can be stored.

Consideration #6: Focusing on fundamentals first

There is much to be said about (and for) technological developments and innovative applications such as 5G and artificial intelligence leading to the development of smart cities that respond to citizen actions and needs in real-time. However, before they can benefit from those technologies, Malaysians should first have meaningful universal connectivity.

For example, much has been made of the improved performance of 5G connectivity that will enable things like remote surgery and sensor-controlled factories. But in order to provide 5G service, additional infrastructure must be built and 5G poles must be even more closely placed to each other than current telecommunications towers providing 3G and 4G service.

Furthermore, internet users will need newer and more expensive devices that are 5G-compatible. This implies that urban and industrial areas are more likely to benefit from 5G compared to rural and agricultural areas, further increasing socio-economic inequality.

A more digitally inclusive policy should prioritise improving digital education and the suite of digital services available to internet users at all strata of society. This includes (1) improving digital literacy, e.g. avoiding scams and verifying information on social media; (2) improving digital skills, e.g. software, coding and data analysis; and (3) improving digital services provision, e.g. government and financial services websites and apps.

⁵⁵ Gong and Chiam (2019)

1.7 Conclusion

This chapter presents an overview of state of broadband connectivity and internet use in Malaysia as at 2019, but as with much in the field of digital technology the statistics cited within will soon be obsolete, if they are not already. However, the problem of digital inequalities and the challenges to meaningful connectivity and digital inclusion are prevailing and pressing policy issues. Research must keep up with rapidly changing trends in order to understand how technological advances affect social and economic outcomes. Policy must be flexible enough to adjust to new and unintended consequences of digital transformation. Technology, especially digital technology, evolves quickly, and the appropriate policy response should be to move fast without breaking things.

1.8 Postscript

The Malaysia Digital Economy Blueprint⁵⁶ launched in February 2021 represents a national digital transformation policy to enable Malaysia to be a regional leader in the digital economy. The blueprint defines the digital economy as "economic and social activities that involve the production and use of digital technology by individuals, businesses, and government." As such, it takes a broad approach to digitalisation, focusing on six key areas: the public sector, firms, digital infrastructure, human capital, digital inclusion, and a secure and ethical digital ecosystem.

Many of the thrusts and strategies outlined in the blueprint are aligned with the policy considerations discussed in this chapter, which was first published as a paper in September 2020. In particular, the blueprint mandates broadband as basic infrastructure (Consideration #1), prioritises the provision of digital public sector services (Consideration #6), and recognises that data affordability is not enough—devices must be provided as well, specifically to students (Consideration #3). The blueprint also acknowledges the need to review laws and regulations to accelerate the rollout of digital infrastructure, to facilitate entry to and innovation in the market, and strengthen data protections (Consideration #5).

The blueprint does not fully detail how these policies will be implemented, particularly as they require coordination and cooperation across government agencies, corporations, and social institutions. There is room for further discussion and improvements to these strategies, but in principle they bode well for the development of not just a digital economy, but a digital society in Malaysia.

⁵⁶ EPU (2021)

Appendix 1.1: Data pricing calculations

The data pricing analysis in this chapter is based on a dataset compiled from archives of technology and/or news websites that listed or compared broadband pricing plans in Malaysia from 2012 to 2019. The data were retrieved from multiple sources by a researcher and the details were verified by a second researcher.

Next, researchers estimated the cheapest available mobile data plans in Malaysia using a modification of the ITU's method⁵⁷ of determining the cheapest handset-based mobile prepaid broadband plan per country. The ITU's method identifies the cheapest plan(s) providing at least 1GB of broadband data over a 30-day period from the largest mobile network operator in each country. The modified version used here does not restrict data pricing plans to the single largest mobile provider in the country or to a 1GB minimum. However, only the three major service providers (Celcom, Digi and Maxis) were considered and the cheapest among the three was selected for analysis. Price per GB of mobile data was then calculated based on the cheapest plan.

This process was repeated for the cheapest available fixed broadband plan with unlimited data and a fibre connection, thus eliminating asymmetric digital subscriber line (ADSL) plans that use copper wires from consideration. The cheapest fibre plans came at the lowest speeds, with the lowest speed being a 5Mbps plan in 2014. Since these plans came with unlimited data, price per GB was not calculated.

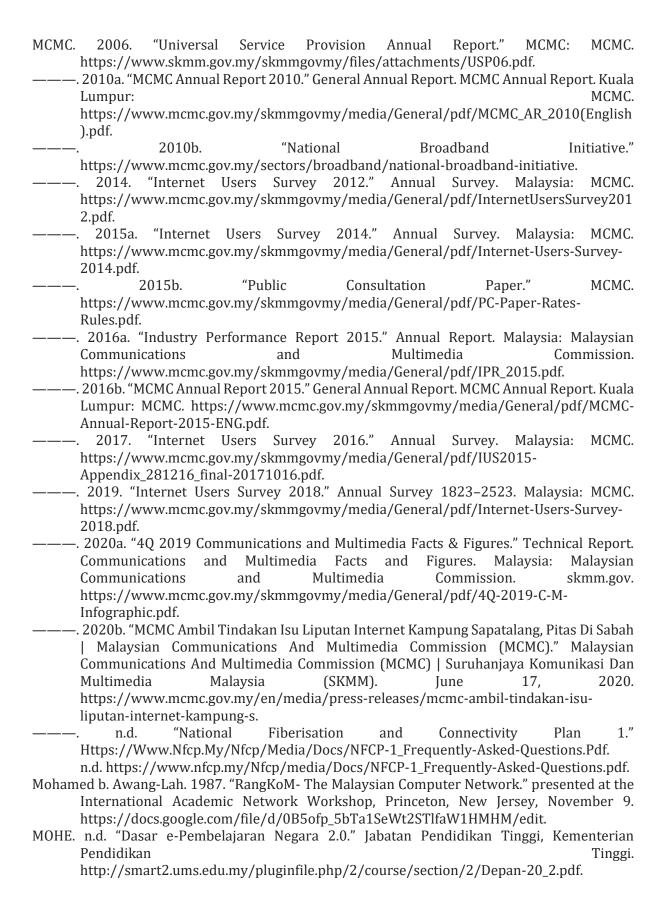
The team then calculated 2019 affordability based on the A4AI's 1 for 2 standard, using median monthly income instead of gross national income per capita. Median monthly income was sourced from DOS's 2019 HIS and adjusted from the household to the individual level by dividing the median household monthly income by the average number of income recipients per household in 2019 i.e. 1.8.

An estimate of price per GB of fixed broadband data was derived based on the following assumptions. First, average mobile broadband data usage in terms of total data volume is representative of the average internet user, regardless of whether they also have a fixed broadband subscription. Second, approximately two thirds of usage occur at home. Third, if internet users have a fixed broadband subscription at home, they will use that while at home instead of their mobile broadband subscription. Fourth, the average household includes two internet users. Thus, estimating the average monthly mobile data use to be 14GB in 2019 based on annual reports from Axiata, Digi, and Maxis, this means that the average fixed broadband home subscriber uses 2/3*14*2=18.67GB per month.

⁵⁷ ITU (n.d.)

Table A1 shows the cheapest price of prepaid mobile, postpaid mobile and fixed mobile data as well as the median monthly household income by state in 2019.

Table A1. Data prices and median household income, by state, 2019


State	Prepaid mobile (per GB)	Postpaid mobile (per GB)	Fixed broadband (unlimited data)	Median monthly household income
WP Kuala Lumpur	RM 5.00	3.27	89.00	10,549
WP Putrajaya	5.00	3.27	89.00	9,983
Selangor	5.00	3.27	89.00	8,210
WP Labuan	5.00	3.27	89.00	6,726
Johor	5.00	3.27	89.00	6,427
Pulau Pinang	5.00	3.27	89.00	6,169
Melaka	5.00	3.27	89.00	6,054
Terengganu	5.00	3.27	89.00	5,545
Negeri Sembilan	5.00	3.27	89.00	5,005
Perlis	5.00	3.27	89.00	4,594
Sarawak	5.00	3.27	89.00	4,544
Pahang	5.00	3.27	89.00	4,440
Kedah	5.00	3.27	89.00	4,325
Perak	5.00	3.27	89.00	4,273
Sabah	5.00	3.27	89.00	4,235
Kelantan	5.00	3.27	89.00	3,563

Sources: Author's calculations based on web archive data and HIS 2019 $\,$

References

- A4AI, Alliance for Affordable Internet. 2019. "Affordability Report 2019." Annual Report. Affordability Report. Washington DC: Web Foundation. a4i.org. https://a4ai.org/affordability-report/report/2019/.
- Alliance for Affordable Internet. 2020. "Meaningful Connectivity: A New Standard to Raise the Bar for Internet Access." Alliance for Affordable Internet.
- Andalib, Sara, and Noor Hazarina Hashim. 2018. "The Influence of Dispositional Resistance to Change on Seniors' Mobile Banking Adoption in Malaysia." *Journal of Soft Computing and Decision Support Systems* 5 (6):1–12.
- Axiata. 2020. "Axiata Integrated Annual Report 2019." Axiata.
- Bae, Jinsoo, Yun Jeong Choi, and Jong-Hee Hahn. 2014. "Fixed and Mobile Broadband: Are They Substitutes or Complements?" Working Paper. South Korea: Economic Research Institute Yonsei University.
- BBC. 2020. "Malaysian Student Sits Exams in a Tree to Access Wifi." *BBC News*, June 18, 2020, sec. News from Elsewhere. https://www.bbc.com/news/blogs-news-from-elsewhere-53079907.
- Bernama. 2019. "Demand for Broadband Services Grew 18-22 Pct in a Year Gobind." Media. Malaysiakini. October 8, 2019. https://www.malaysiakini.com/news/494929.
- Bhatia, Rahul. 2016. "The inside Story of Facebook's Biggest Setback." *The Guardian*, May 12, 2016, sec. Technology. https://www.theguardian.com/technology/2016/may/12/facebook-free-basics-india-zuckerberg.
- Brennen, J. Scott, and Daniel Kreiss. 2016. "Digitalization." In *The International Encyclopedia of Communication Theory and Philosophy*, 556–66. Chichester: Wiley-Blackwell. https://doi.org/10.1002/9781118766804.wbiect111.
- Digi. 2020. "Integrated Annual Report 2019 Digi.Com Berhad." Digi. https://images.digi.com.my/annualreport/download/DIGI_IAR_2019_FINAL.pdf.
- DiMaggio, Paul, and Bart Bonikowski. 2008. "Make Money Surfing the Web? The Impact of Internet Use on the Earnings of US Workers." *American Sociological Review* 73 (2):227–50. https://doi.org/0.1177/000312240807300203.
- DiMaggio, Paul, Eszter Hargittai, Coral Celeste, and Steven Shafer. 2001. "From Unequal Access to Differentiated Use: A Literature Review and Agenda for Research on Digital Inequality." *Social Inequality*, January, 71.
- DiMaggio, Paul, Eszter Hargittai, W. Russell Neuman, and John P. Robinson. 2001. "Social Implications of the Internet." *Annual Review of Sociology* 27 (1):307–36. https://doi.org/10.1146/annurev.soc.27.1.307.
- DOS. 2012. "Household Income and Basic Amenities Survey Report 2009." Annual Survey. Malaysia.
 - https://www.dosm.gov.my/v1/images/stories/files/LatestReleases/household/Press_Release_household2009_BI.pdf.
- ———. 2020a. "ICT Use And Access By Individuals and Households Survey Report, Malaysia, 2019." Annual Survey. Malaysia: Department of Statistics Malaysia. https://www.dosm.gov.my/v1/index.php/index.php?r=column/cthemeByCat&cat=395 &bul_id=SFRacTRUMEVRUFo1Ulc4Y1JlLzBqUT09&menu_id=amVoWU54UTl0a21NWm dhMjFMMWcyZz09.
- ———. 2020b. "Households Income and Basic Amenities Survey Report 2019." Annual Survey. Malaysia: Department of Statistics Malaysia.
- EIU. 2020. "The Inclusive Internet Index 2020 Executive Summary." The Economist Intelligence Unit. https://theinclusiveinternet.eiu.com/assets/external/downloads/3i-executive-summary.pdf.

- EPU. 2021. "Malaysia Digital Economy Blueprint." Policy Paper. Putrajaya: Economic Planning Unit, Prime Minister's Department. https://www.epu.gov.my/sites/default/files/2021-02/Malaysia-digital-economy-blueprint.pdf.
- Federal Communications Commission. 2018. "2018 Broadband Deployment Report." Government. Federal Communications Commission. February 5, 2018. https://www.fcc.gov/reports-research/reports/broadband-progress-reports/2018-broadband-deployment-report.
- Gong, Rachel, and Hui San Chiam. 2019. "Personal Data Privacy and Surveillance Capitalism." Kuala Lumpur: Khazanah Research Institute. http://krinstitute.org/Views-@-Personal_Data_Privacy_and_Surveillance_Capitalism.aspx.
- Hafisah Yaakob, Wan Hartini Wan Hassan, and Siti Rohana Daud. 2016. "Digitial Divide Among Elderly Workers A Comparative Study Between Public and Private Sectors in Melaka." *Asian Journal of University Education* 12 (1):53–81.
- Hargittai, Eszter, Anne Marie Piper, and Meredith Ringel Morris. 2018. "From Internet Access to Internet Skills: Digital Inequality among Older Adults." *Universal Access in the Information Society*, May, 881–90. https://doi.org/10.1007/s10209-018-0617-5.
- Hawati, Abdul Hamid, and Romadan Khalidi Jarud. 2020. "Covid-19 and Unequal Learning." Kuala Lumpur: Khazanah Research Institute. http://krinstitute.org/assets/contentMS/img/template/editor/20200426_Covid_Education v3.pdf.
- Hawthorne, Ryan, and Lukasz Grzybowski. 2019. "Narrowing the 'Digital Divide': The Role of Complementarities between Fixed and Mobile Data in South Africa." SSRN Scholarly Paper ID 3418635. Rochester, NY: Social Science Research Network. https://papers.ssrn.com/abstract=3418635.
- Hjort, Jonas, and Jonas Poulsen. 2019. "The Arrival of Fast Internet and Employment in Africa." *American Economic Review* 109 (3):1032–79.
- Howard, Philip N., Laura Busch, and Penelope Sheets. 2010. "Comparing Digital Divides: Internet Access and Social Inequality in Canada and the United States." *Canadian Journal of Communication* 35 (1):109–28.
- Hui, Kam Yong. 2016. "Determinants of Smartphone Adoption Among Older Adults in Malaysia." Universiti Tunku Abdul Rahman. http://eprints.utar.edu.my/2081/1/1205857.pdf.
- ITU. 2003. "The Birth of Broadband." Https://Www.Itu.Int/Osg/Spu/Publications/Birthofbroadband/Faq.Html#: \sim :Text=Birt h%20of%20Broadband-
 - ,Frequently%20Asked%20Questions,A.&text=113%20of%20the%20ITU%20Standardiz ation,Per%20second%20(Mbits)%E2%80%9D. September 2003.
- ——. 2018. "Definition of Broadband Access." International Telecommunications Union. https://www.itu.int/en/ITU-T/committees/scv/Documents/T17-SCV-LS-0015.pdf.
- ———. 2019. "State of Broadband Report 2019." Geneva: International Telecommunication Union and United Nations Education, Scientific and Cultural Organization. https://www.broadbandcommission.org/Documents/StateofBroadband19.pdf?mc_cid=ba1bfdab1d&mc_eid=e546476035.
- ——. n.d. "ICT Price Basket Methodology." n.d. https://www.itu.int/en/ITU-D/Statistics/Pages/definitions/pricemethodology.aspx.
- Kuhn, Peter, and Hani Mansour. 2014. "Is Internet Job Search Still Ineffective?" *The Economic Journal* 124 (581):1213–33. https://doi.org/doi/abs/10.1111/ecoj.12119.
- Malaysian Communications and Multimedia Commission. 2019. "Industry Performance Report 2018."
- Maxis. 2020. "Maxis Integrated Annual Report 2019." Maxis. https://maxis.listedcompany.com/misc/ar2019.pdf.

- Muro, Mark, Sifan Liu, Jacob Whiton, and Siddharth Kulkarni. 2017. "Digitalization and the American Workforce." Washington, DC: Brookings Institution. https://www.brookings.edu/wp-content/uploads/2017/11/mpp 2017nov15_digitalization full report.pdf.
- National Digital Inclusion Alliance. n.d. "Definitions | National Digital Inclusion Alliance." Organization. Digital Inclusion. n.d. https://www.digitalinclusion.org/definitions/.
- Neter, Efrat, and Esther Brainin. 2012. "EHealth Literacy: Extending the Digital Divide to the Realm of Health Information." *Journal of Medical Internet Research* 14 (1):e19. https://doi.org/10.2196/jmir.1619.
- Nor Akmar Shah Minan. 2009. "HSBB: Malaysia's Drive for High Speed Broad." ...MyConvergence Volume 3 (1):4–9.
- Norfaezah binti Abd Halim. 2010. "Sejarah Intenet Malaysia." Pusat Teknologi Maklumat Dan Komunikasi Universiti Malaysia Pahang. May 12, 2010. http://archive.ump.edu.my/ptmk/index.php/artikel/69-telekomunikasi/198-sejarah-internet-malaysia.html.
- Prieger, James E. 2013. "The Broadband Digital Divide and the Economic Benefits of Mobile Broadband for Rural Areas." *Telecommunications Policy* 37 (6):483–502. https://doi.org/10.1016/j.telpol.2012.11.003.
- Raju, Janakky. 2019. "Double the Speed, Half the Price." ../MyConvergence, 2019.
- Robinson, Laura, Shelia R. Cotten, Hiroshi Ono, Anabel Quan-Haase, Gustavo Mesch, Wenhong Chen, Jeremy Schulz, Timothy M. Hale, and Michael J. Stern. 2015. "Digital Inequalities and Why They Matter." *Information, Communication & Society* 18 (5):569–82. https://doi.org/10.1080/1369118X.2015.1012532.
- Robinson, Laura, Jeremy Schulz, Aneka Khilmani, Hiroshi Ono, Shelia R. Cotten, Noah McClain, Lloyd Levine, et al. 2020. "Digital Inequalities in Time of Pandemic: COVID-19 Exposure Risk Profiles and New Forms of Vulnerability." *First Monday* 25 (7). https://firstmonday.org/ojs/index.php/fm/article/view/10845/9563.
- Roessler, Philip. 2018. "The Mobile Phone Revolution and Digital Inequality: Scope, Determinants and Consequences." 15. Pathways for Prosperity Commission. Background Paper Series. Oxford, United Kingdom: Oxford University.
- Samsudin A. Rahim. 2018. "Digital Experience and Citizen Participation in Bridging Ethnic Divide: An Analysis of Young Generation in Malaysia." *Jurnal Komunikasi: Malaysian Journal of Communication* 34 (4):154–67. https://doi.org/10.17576/JKMJC-2018-3404-09.
- Srinuan, Pratompong, Chalita Srinuan, and Erik Bohlin. 2012. "Fixed and Mobile Broadband Substitution in Sweden." *Telecommunications Policy*, Services, regulation and the changing structure of mobile telecommunication markets, 36 (3):237–51. https://doi.org/10.1016/j.telpol.2011.12.011.
- Telekom Malaysia. 2015. "TM Signs HSBB 2 and SUBB Agreements with the Government to Further Connect Malaysians Nationwide." *Telekom Malaysia*, 2015. https://www.tm.com.my/AboutTM/NewsRelease/Pages/TM-SIGNS-HSBB-2-AND-SUBB-AGREEMENTS-WITH-THE-GOVERNMENT-TO-FURTHER-CONNECT-MALAYSIANS-NATIONWIDE.aspx.
- TM Group. 2002. "Annual Report 2001." Telekom Malaysia Berhad. https://www.tm.com.my/AboutTm/InvestorRelations/Documents/Annual%20and%20 Sustainability/TM2001_AR_ENG.pdf.
- UNHRC. 2016. "Promotion and Protection of All Human Rights, Civil, Political, Economic, Social and Cultural Rights, Including the Right to Development." Koninklijke Brill NV. https://doi.org/10.1163/2210-7975 HRD-9970-2016149.
- webfoundation. 2019. "30 Years on, What's next #ForTheWeb?" World Wide Web Foundation. March 12, 2019. https://webfoundation.org/2019/03/web-birthday-30/.

- Willis, Suzanne, and Bruce Tranter. 2006. "Beyond the 'Digital Divide': Internet Diffusion and Inequality in Australia." *Journal of Sociology* 42 (1):43–59. https://doi.org/10.1177/1440783306061352.
- Wong, Chui Yin, Rahimah Ibrahim, Tengku Aizan Hamid, and Evi Indriasari Mansor. 2018. "Mismatch between Older Adults' Expectation and Smartphone User Interface.," 16.
- World Wide Web Foundation. 2018. "The Case #ForTheWeb." Washington DC: Web Foundation. http://webfoundation.org/docs/2018/11/The-Case-For-The-Web-Report.pdf.
- Yeoh, Angelin. 2019. "Helping the Elderly in Malaysia Keep up with Technology." *The Star*, December 9, 2019. https://www.thestar.com.my/tech/tech-news/2019/12/09/helping-the-elderly-in-malaysia-keep-up-with-technology.

CHAPTER

02

THE QUALITY OF MOBILE BROADBAND AND KEY POLICY RECOMMENDATIONS

2.1 I	Introduction	40
2.2	Quality of service report	41
2.2.1	Mobile broadband in Malaysia	42
2.2.2	Aside from network coverage, what other factors affect the quality of service?	43
2.2.3	Quality performance reports from MCMC	44
2.2.4	Malaysia Mobile Network Experience Report, September 2019 from Opensignal	47
2.2.5	Difference in network quality between 4G and 3G	48
2.2.6	Analysis of the disparity between MCMC and Opensignal reports	50
2.3 I	Download speed test	52
2.3.1	Background of the download speed test	52
2.3.2	Observation 1: Download speeds are significantly better early in the day	52
2.3.3	Observation 2: The quality of service in urban areas requires further attention	54
2.3.4	Observation 3: The lowest recorded speeds were below the minimum standard	54

2.3.5 Observation 4: No participant recorded download speeds above 100Mbps, even with the best network coverage	55
2.4 Conclusion and discussion on key policies	56
2.4.1 Key policy 1: Provide a high quality network service in all locations	57
2.4.2 Key policy 2: A pre-emptive approach in strategically developing communications infrastructure	58
2.4.3 Key policy 3: Wider and more strategic use of funds	59
Appendix 2.1: The method of conducting the download speed test	61
References	62

CHAPTER 2

THE QUALITY OF MOBILE BROADBAND AND KEY POLICY RECOMMENDATIONS⁵⁸

By Muhammad Nazhan Kamaruzuki

"An efficient telecommunications network is the foundation upon which an information society is built."

Talal Abu Ghazali⁵⁹

2.1 Introduction

In the year 2019, up to 96% of internet users in Malaysia relied on mobile broadband to access the internet⁶⁰. Among the most popular online activities are texting, browsing social media, streaming videos and looking up information. Up to 40% of mobile broadband customers use the service for internet tethering⁶¹, which allows for broadband users to connect their internet service to other devices using specific smartphone features. For example, users can rely on their cell phones to connect personal computers to the internet in the absence of a Wi-Fi connection.

The state of the mobile telecommunications infrastructure in Malaysia is far more developed compared to previous decades. Communication through voice calls is now more advanced with the availability of video calls. Even games on mobile phones are also evolving into online games with more attractive graphics as well as allowing communication between players. For some, mobile gaming has become a source of income. These developments have all been supported by the advancement of broadband technology, especially mobile broadband.

The advancement of broadband technology has not only benefited the fields of entertainment and communication. Its impact towards social and economic development cannot be ignored. Broadband technology helps to facilitate education, healthcare, banking and online transactions as well as the provision of government services through smartphone applications⁶².

The movement restrictions imposed throughout Malaysia in response to the Covid-19 pandemic has seen quality internet access emerge as a significant barrier preventing online learning for some students, coupledd with a lack of access to internet compatible electronic devices⁶³. Poor mobile broadband quality may jeopardise educational and developmental opportunities among an entire section of the population. Thus, the provision of quality broadband service should be prioritised due to its importance to the Malaysian population.

⁵⁸ An earlier version of this chapter authored by Muhammad Nazhan Kamaruzuki was published in Malay by KRI on 12 February 2021 as a Discussion Paper titled "<u>Kualiti Jalur Lebar Mudah Alih dan Teras Pembangunannya</u>".

⁵⁹ Talal Abu Ghazali (2004)

⁶⁰ MCMC (2020b)

⁶¹ MCMC (2020b)

⁶² ITU (2015)

⁶³ Hawati and Jarud (2020)

This chapter discusses the quality of broadband services provided by telecommunications companies in Malaysia. A performance analysis is important to determine the standards of service provided to consumers. Poor service results in a greater likelihood of online activities being disrupted and may not even be worth the costs of subscription. More importantly, it may harm the economic and social development of people who are already disadvantaged. This chapter also assesses whether there exists a technology gap in Malaysia based on user location and whether users receive good network coverage and service throughout the day.

Several indicators can be used to assess the quality of mobile broadband service. However, this chapter focuses on download speeds as the most basic indicator of quality. Download speeds determine the amount of data that can be transferred to the user (via electronic devices like smartphones) in a given time period. Data is then processed and translated in the form of texts, audio, images, videos or functions in an online game. Higher broadband speeds indicate a higher quality. Download speeds are typically measured in kilobytes per second (kbps) or megabytes per second (Mbps). In this chapter, download speeds will be measured in Mbps for the purposes of standardisation.

The issue of service quality can be examined based on reports published by the Malaysian Communications and Multimedia Commission (MCMC) as well as Opensignal. Both reports contain data related to download speeds from several telecommunications companies in Malaysia but differ in their methodology. This chapter also presents the results of a small-scale test conducted by the author alongside a group of users to evaluate the quality of broadband performance in greater depth.

A discussion of several key policies based on results and analysis conducted is presented in the final section of this chapter. The first key policy is the provision of the best coverage in each area even if it may not be profitable. The second key policy is a pre-emptive approach to the improvement and upgrading of infrastructure in order to reduce service outages, especially in times of crisis such as the current Covid-19 pandemic. Since infrastructure investment requires government funding and intervention, the third key policy is the wider use of funds alongside strategic arrangements between government and industry players.

2.2 Quality of service report

Users typically have the choice of internet service through either mobile broadband or fixed broadband. Fixed line broadband requires a physical connection to internet cables and has a higher download speed than mobile broadband. However, not every region can be connected to landlines especially with fibre optics. The cost of mobile broadband subscriptions is typically based on data packages and quotas while the cost of fixed lines is based on speed.

Telecommunications companies also offer wireless broadband that use mobile broadband networks such as 4G LTE. This service is common in areas that do not have fiberised fixed broadband. The data capacity of such wireless broadband package is usually higher than mobile broadband subscriptions. Wireless broadband requires the use of routers and connects users via Wi-Fi while mobile broadband is connected directly to user devices via SIM cards on which users can use 2G, 3G and 4G networks.

2.2.1. Mobile broadband in Malaysia

Mobile broadband began to grow after 3G networks were introduced in the early 2000s in Malaysia⁶⁴. 3G technology can accommodate the use of mobile internet via radio frequencies compared to the previous technology, 2G, which is limited to voice calls and text messaging. 3G technology also allows the use of smartphone applications that require more stable internet services such as video calls⁶⁵ with a speed of up to 21.6Mbps⁶⁶. With the advancement of mobile internet, 4G and 4G LTE networks were introduced in the Malaysian market in 2013 promising faster speeds than the 3G network⁶⁷.

When it comes to 4G network, there are several terms that refer to specific technologies and their capabilities. The International Telecommunication Union – Radiocommunications Sector (ITU-R) sets a minimum download speed of 100Mbps (while moving) and 1,000Mbps (while static) for 4G networks. However, telecommunications companies using Long Term Evolution (LTE) technology are not able to meet this minimum⁶⁸. Therefore, LTE refers to technologies that are closer to achieving the 4G standards set by the ITU-R. In turn, 4G LTE-A or Long Term Evolution – Advanced technologies are even more sophisticated than LTE, which almost meet the 4G standards set by the ITU-R. In Malaysia, LTE and LTE-A networks are allowed to be labelled as 4G although only 4G LTE-A can give a speed of more than 100Mbps to consumers⁶⁹. In 2019, the MCMC reported 4G LTE coverage in Malaysia reached a rate of 82.2% in remote areas⁷⁰ but there is no information regarding the coverage of 4G LTE-A.

Nowadays, the world awaits the emergence of 5G that promises greater capabilities and speeds than the mobile broadband technology we now enjoy. 5G technology can provide a download speed of more than 1,000Mbps, which is several times faster than 3G and 4G, and is able to accommodate the use of the Internet of Things on a large scale such as in an industrial area and in smart cities⁷¹. Malaysia did not miss out on the introduction of 5G technology, with the launch of a technology demonstration project in Langkawi, Kedah in January 2020⁷².

⁶⁴ Sevia Mahdaliza and Mohd Ariff Bin Arifin (2008)

⁶⁵ GSMArena (n.d)

⁶⁶ Gong (2020)

⁶⁷ Nor Aziati Abdul Hamid et al. (2016)

⁶⁸ Rodiadee Nordin (2016), Shahrul Yusof (2019), Robert (2021)

⁶⁹ Rodiadee Nordin (2016), Shahrul Yusof (2019), MCMC (2020a)

⁷⁰ MCMC (2020c)

⁷¹ Gong (2020)

⁷² Bernama (2020)

However, while new technologies are being developed in Malaysia, the quality of existing mobile broadband services need to be constantly evaluated and improved upon as there are still concerns regarding coverage and quality of service from consumers 73. A study from the Malaysian Consumer Forum (CFM) reported that during the Movement Control Order (MCO), user feedback claimed that they did not enjoy promised internet speeds. There were even complaints from users who could not acquire any network access in their homes and places of residence due to the absence of nearby telecommunication towers 74. The media has also reported a lower grade of mobile broadband services in Malaysia compared to countries considered less economically developed, such as Vietnam, Cambodia and Myanmar 75.

2.2.2. Aside from network coverage, what other factors affect the quality of service?

Signal degradation problems can occur even when a user is in an area with good network coverage. These problems occur when there are physical obstructions such as concrete, bricks, walls and metal frames that interfere with the propagation and reduce the power density of electromagnetic waves, resulting in a phenomenon known as path loss⁷⁶. This can adversely affect the quality of service, especially indoors.

In addition, a large volume of data traffic by many users can also result in network congestion, which then affects service. A study found that this was common in high density urban areas in the Klang Valley, contributing to service performances lower than those in the suburbs⁷⁷.

Generally, increased traffic can be addressed with more spectrum allocation to service companies as well as the construction of base stations that manage data traffic in an area⁷⁸. Network problems within a building may require radio frequency testing to be carried out to see what types of improvements are needed⁷⁹. Small cell antennae are a great way to improve coverage in buildings, but this requires telecommunications companies, building owners and tenants, facility managers as well as local governments to come to a consensus.

Infrastructure reliability remains a factor when it comes to the quality of good mobile broadband services in an area. For example, optical fibres in the backhaul can support mobile broadband services in accommodating larger data traffic, while more innovative technologies such as small cell technology and smart active antennae are needed in dense urban areas and that have limited space for the construction of base stations⁸⁰. Currently only 40% of telecommunication towers are connected to fibre optic cables, contributing to the poor quality of mobile broadband services⁸¹.

⁷³ CFM (2019)

⁷⁴ CFM (2020)

⁷⁵ Ng (2020), Kugan (2019)

⁷⁶ CAS Dataloggers (2016)

⁷⁷ WCC and UTM (2017)

⁷⁸ WCC and UTM (2017)

⁷⁹ CAS Dataloggers (2016)

⁸⁰ CAS Dataloggers (2016), Carpenter (n.d)

⁸¹ MCMC (2019d)

Reliable infrastructure development requires continuous commitment from industry players. In 2018, the MCMC reported that telecommunications companies' capital expenditure for infrastructure upgrading had decreased compared to the previous year and that the ratio of said expenditure to revenue in 2018 was below the global average⁸².

Apart from addressing the lack of infrastructure in certain areas, the commitment to providing better network services should be further strengthened. Although mobile broadband network coverage was high (91.8% of Malaysia is covered by a 4G network⁸³) this does not always correlate to a satisfactory quality of service. This is because some areas do not have telecommunications towers in their vicinity while in other areas, there may be issues of internal coverage preventing peak performance even with towers nearby.

2.2.3. Quality performance reports from MCMC

MCMC is the government agency responsible for regulating telecommunications in Malaysia including mobile broadband services. In line with this responsibility, MCMC has published several reports on the development of the telecom industry in Malaysia.

These reports include The Quality of Service Network Performance Reports⁸⁴ that assess the quality of telecommunications services in the provision of voice calling and broadband services in Malaysia. Based on selected indicators, the reports examine the quality of fixed line broadband and mobile broadband services as well as voice calling from several telecommunication companies in Malaysia.

In 2019, the report named Maxis as the best mobile broadband service company in Malaysia in terms of best average download speed, best overall download speed, lowest network sensitivity as well as the lowest percentage of data packet loss.

Mandatory parameters or standards that must be complied with by mobile broadband service providers in Malaysia are as follows⁸⁵:

- 1. Download speeds (or broadband speeds) of at least 1Mbps 80% of the time;
- 2. Response time or round-trip time (RTT) of a data packet that does not exceed 250ms (milliseconds) 70% of the time; and
- 3. Data packet loss that does not exceed 3%.

When it comes to the measurement of download speeds that indicate the rate of transfer of data to a user's device in a given time, the higher the value, the better. In contrast, when it comes to response times and packet losses measuring the time period in which the data will appear and how much data fails to reach the user (which cause lagging and buffering), the lower the value the better. According to the MCMC report, all wireless and mobile broadband services offered by companies in Malaysia met the mandatory standards in 2019.

⁸² MCMC (2018)

⁸³ MCMC (2020d)

⁸⁴ MCMC (n.d)

⁸⁵ MCMC (2019a, 2019e)

CHAPTER 2

THE QUALITY OF MOBILE BROADBAND AND KEY POLICY RECOMMENDATIONS

Nonetheless, there is still room for this standard to be made more relevant to current needs by taking into consideration increased data traffic, indoor use and use on the move (such as through navigation applications). This encourages telecommunication companies to constantly ensure acceptable service through continuous infrastructure improvement and effective response to quality issues.

The mandatory standard for internet speed in Malaysia came into force in 2016 and was then renewed in 2018. In 2019, there were recommendations to amend these mandatory standards to include achieving minimum download speeds of 30Mbps⁸⁶. Among the countries that set higher download speed standards compared to Malaysia are Poland (30Mbps for 100% of households), the USA (25Mbps), Qatar (100Mbps for 96% of households) and Germany (10 Mbps for 98% of households)⁸⁷. In these countries, meeting the standards is a condition of spectrum distribution to telecommunication companies⁸⁸.

Data on quality achievement of mobile broadband services is reported by each state and telecommunications company based on download speed indicators, the RTT of packets and data packet loss. This chapter focuses on download speed indicators.

Figure 2.1 shows the average data download speed per telecommunications company by state in 2019. Based on Figure 2.1, Maxis has the highest speed in Malaysia and in all states except in Terengganu and Johor (where Digi has a higher download speed).

⁸⁶ MCMC (2019f)

⁸⁷ WCC and UTM (2017)

⁸⁸ WCC and UTM (2017)

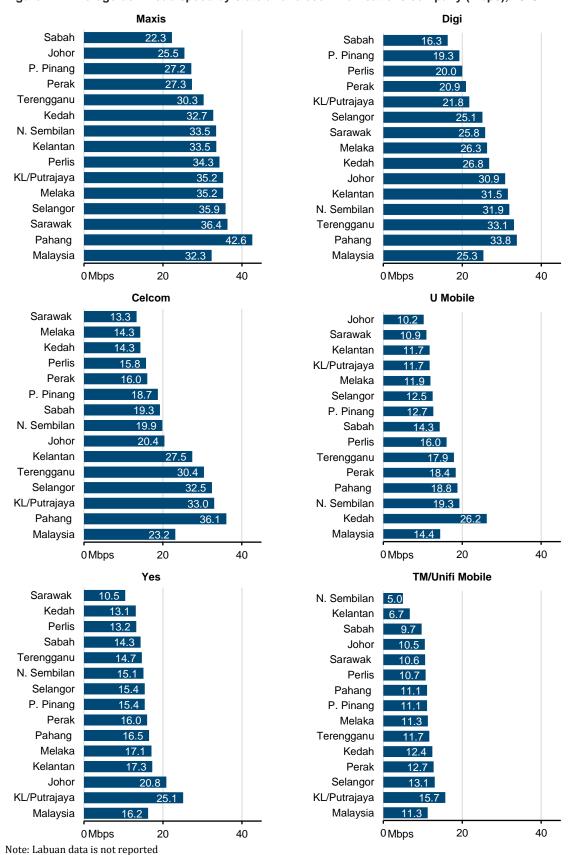
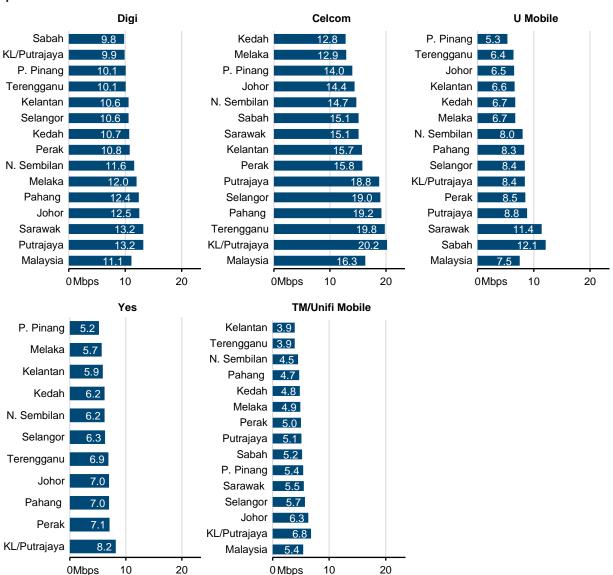


Figure 2.1: Average download speed by state and telecommunications company (Mbps), 2019


Source: MCMC (2020a), rounded to one decimal place

2.2.4. Malaysia Mobile Network Experience Report, September 2019 from Opensignal

In addition to reports from MCMC, studies of mobile broadband services are also published by private entities such as Opensignal. Opensignal obtains data through crowdsourcing via their proprietary application of the same name.

During the period of October 2019 to April 2020, Opensignal reported that the quality of Maxis' mobile broadband service was the best in Malaysia based on data download speeds of 17.7Mbps. This is consistent with the report by MCMC. Based on Figure 2.2, Maxis also recorded the highest download speeds in all states except in WP K. Lumpur/Putrajaya, Terengganu, Selangor and Kelantan (where Celcom has a higher download speed).

Figure 2.2: Average download speed by state and telecommunications companies (Mbps), October 2019 – April 2020

Note: For Yes, data for Sabah, Sarawak and Malaysia are not reported

Source: Opensignal (2020)

2.2.5. Difference in network quality between 4G and 3G

The Opensignal report has download speed data for 3G and 4G networks. In theory, 4G is a more sophisticated network relative to 3G with faster download speed potential. The download speed data of the two networks is presented in Figure 2.3.

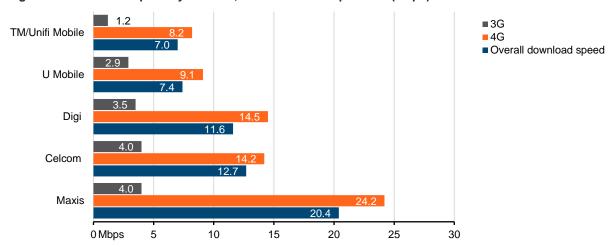


Figure 2.3: Download speed by network, October 2019 - April 2020 (Mbps)

Note: 4G and 3G download speeds are calculated by certain metrics from Opensignal, which are based on 4G and 3G user experiences, so the average 4G and 3G data will not equal the overall download speed. This explanation can be found in the technical notes of the report. The report does not provide data for Yes services.

Source: Opensignal (2020)

The difference between download speeds of 4G versus 3G networks is noticeable, even for the same company. For example, based on Figure 2.3, Maxis service users enjoyed 24.2Mbps download speed on the 4G network but only 4Mbps speed on the 3G network.

Service quality can also be evaluated by seeing how long a user can be connected to a faster network. The indicator used by Opensignal is the availability of 4G network by each company at any one time, where a higher percentage indicates more 4G coverage for their users.

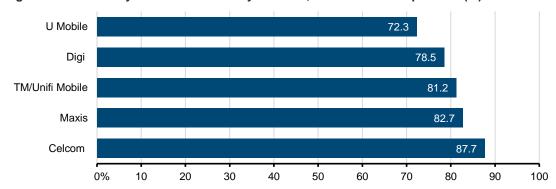
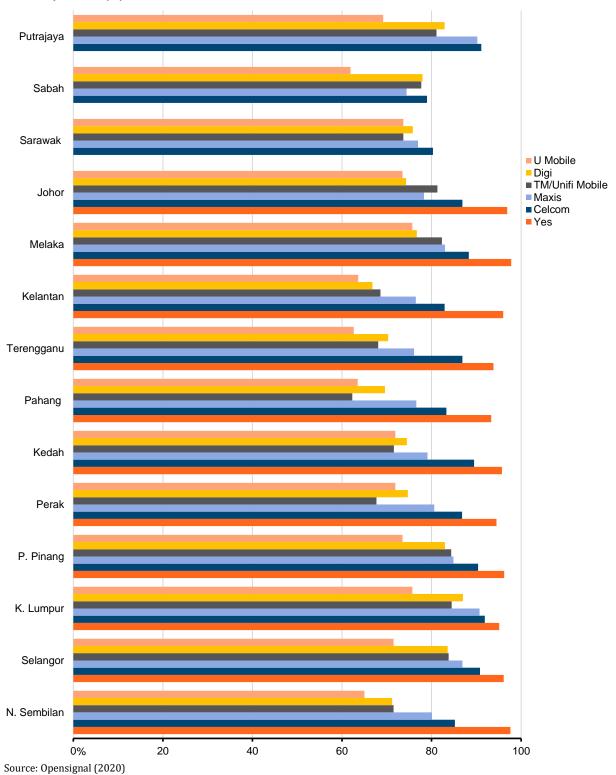



Figure 2.4: Availability of 4G network at any one time, October 2019 - April 2020 (%)

Note: 4G network availability is calculated by looking at how long users can remain connected to the network. Users must have devices that are compatible with that particular network. Services from Yes are only reported at state level. Source: Opensignal (2020)

Based on Figure 2.4, Celcom has the highest availability of 4G networks in Malaysia, with a wider coverage relative to their competitors. But, based on Figure 2.5 below, in some states, Yes has the highest availability rates. The 4G availability rate for Yes was between 93.8% to 97.8%.

Figure 2.5: 4G network availability at any one time by state and telecommunications companies, October 2019 – April 2020 (%)

2.2.6. Analysis of the disparity between MCMC and Opensignal reports

Difference in download speeds between the two reports

The download speeds indicated in the MCMC report is much higher than in the Opensignal report. For example, the MCMC reported average Maxis download speed in Malaysia at 32.3Mbps but the data recorded by the Opensignal report indicates instead a figure of 17.7Mbps.

These differences may be due to data collection methods. Opensignal data is crowdsourced by users based on the actual speed they experienced. The Opensignal app operates when activated by users or while other applications are in use with the permission from the app developers⁸⁹. Most of the data was taken when users were indoors, reflecting regular internet use. Their measurements did not involve the use of special software or equipment such as radio frequency devices⁹⁰.

In contrast, the data provided by MCMC was based on self-reporting by telecommunication companies in accordance with testing guidelines provided by MCMC⁹¹. These guidelines involved testing in at least 15 locations across the country based on several criteria including user feedback as well as the specific configuration of specific testing equipment at predetermined test locations⁹².

Inconsistent download speeds dependent on location

Based on the MCMC report, the quality of service is highly dependent on user location even when subscribing to the same telecommunications company. For example, a Celcom customer enjoying a high-speed average of 36.1Mbps in Pahang may not enjoy the same speed in Melaka, since the average speed in Melaka is only 14.28Mbps, which is over 50% slower than in Pahang. Similar circumstances can be gleaned from the Opensignal report. Users who wish to access high internet speeds anywhere in the country may need to subscribe to more than one network by different companies. This, of course, would entail a hefty cost to the average consumer.

It is a common perception that network service is superior in urban areas compared to rural areas due to the higher consumer demand and thus higher returns from investment on infrastructure development in urban areas⁹³. From this, it is intuitive to assume that the quality of network service in the city especially in the Klang Valley would be better due to the presence and constant development of telecommunication infrastructure.

⁸⁹ Opensignal (2019)

⁹⁰ Opensignal (2019)

⁹¹ MCMC (2016)

⁹² MCMC (2016)

⁹³ MCMC (2006)

However, there are some states outside the Klang Valley region recording higher download speeds for certain companies. Opensignal data shows the fastest data download speed for U Mobile networks are in Sabah and Sarawak. Studies show that the percentage of internet users of the city is growing and on average tend to be users of mobile broadband of this can cause a drastic uptick of internet traffic in urban areas and contribute to the decline in the quality of network services there.

Even though consumers are covered by a 4G network, download speeds are not necessarily high

Based on Opensignal, Yes leads the 4G network availability in most states (see Figure 2.5), ahead of key industry players, namely Maxis, Celcom and Digi. However, based on Figure 2.2, the download speed enjoyed by Yes users in any state does not exceed 10Mbps. The 4G speed enjoyed by Yes users is only slightly higher than the 3G network speed of other companies.

As discussed earlier, 4G services need to be supported by the development of reliable infrastructure including fibre optic base stations. This raises the question of whether the potential of 4G network by Yes and other companies remains distorted due to such technical limitations. Moreover, the term 4G itself consists of multiple versions with different technical aspects and capabilities. Generally, it can be divided into 4G LTE and 4G LTE-A as discussed, with LTE-A having better speed than LTE. However, the Opensignal data does not report on these types of 4G networks in any detail.

More specific data at the local level is needed to better reflect the reality of network service

In terms of analysis, speed data from both MCMC and Opensignal are only down to the state level. Moreover, the MCMC report does not isolate data for WP Kuala Lumpur and Putrajaya. There is a need to monitor the quality of network services at more specific localities such as at the district, city and neighbourhood level. Service outages can occur even within buildings or in high density areas even with good network coverage.

Such data will further reflect the reality of quality of service that users enjoy, and more accurate analysis can be made. Based on the MCMC report, the best telecommunication company in Malaysia in 2019, Maxis, recorded an average download speed of 32.32Mbps but in Sabah the company recorded only 22.27Mbps. Is the quality of the already low average speed felt equally across all areas in the state, or do some areas have it worse?

⁹⁴ MCMC (2019b)

⁹⁵ MCMC (2020c)

2.3 **Download speed test**

2.3.1. Background of the download speed test

As discussed, data in the MCMC and Opensignal report is limited to the state level. Neither have information on services at more local levels such as individual districts, towns or neighbourhoods. Such data requirements can better reflect the quality of broadband service that consumers enjoy.

To investigate this, a small-scale download speed test was conducted together with a group of mobile broadband service users. The objective of this test was to assess the quality of service enjoyed by users of mobile broadband services in different locations. There were 10 participants in the test. All of them used broadband services from the same company as well as the same plan. Other information about this test can be referred to in Table 2.1.

Table 2.1: Information on the download speed test

Information		
Network service	4G	
Date and time	7 June 2020 Session 1: 9am – 11am Session 2: 4pm – 5pm Session 3: 9pm – 10pm	
Number of participants	10 participants	
Location	Participants respective residences and locations	
Application used to assess quality	Opensignal	
Quality of service indicator	Download speed (Mbps) Upload speed (Mbps) PING RTT Note: Indicators above are shown by the application, but only the download speed indicator will be discussed in this chapter	

It should be noted that the results of this test may not be representative of the experiences of all users in a location due to the small sample size. The objective of this test was only to observe whether users always achieve the download speed promised by service providers and to determine how download speed in different locations differ.

2.3.2. Observation 1: Download speeds are significantly better early in the day

Test results showed download speeds in the morning were faster than in the afternoon and evening. More than half of the participants (6/10) recorded an average to high download speed reading in the morning.

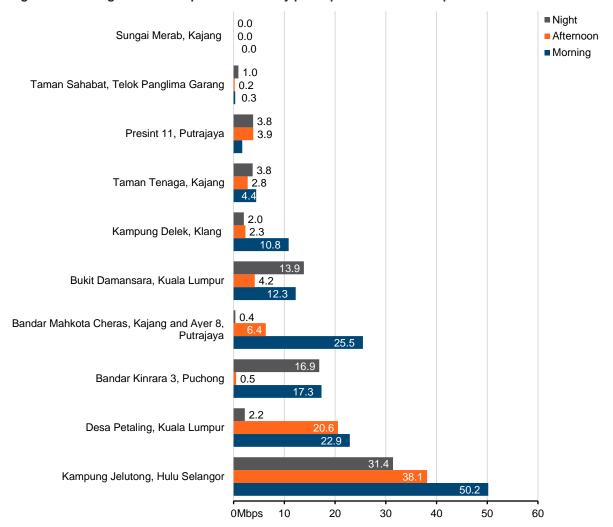


Figure 2.6: Average download speed recorded by participants from their respective locations

Note: The reading for the participant located in Sungai Merab could not be completed even after three attempts. The participant was also unable to receive any network service from their location. Because of this, OMbps was recorded as the download speed for the participant.

Based on Figure 2.6, significant download speed differences were observed even on the same day. Download speed in Bandar Kinrara 3, Puchong in the morning was recorded at 17.34Mbps which decreased to 0.52Mbps by evening. The participant in Kampung Jelutong, Hulu Selangor enjoyed an average download speed of 50.20Mbps in the morning which then dropped to 38.14Mbps in the afternoon and further to 31.42Mbps at night. Since increased data traffic can result in a reduction in download speed, it is possible that the number of broadband users in the morning is fewer than at other times of the day.

2.3.3. Observation 2: The quality of service in urban areas requires further attention

Generally, urban areas with many users are thought to have more telecommunications infrastructure due to higher demand and a higher return on investment potential. Companies are thought to be more interested in providing networks there which indirectly contributes to a gap in telecommunication infrastructure between urban and rural areas⁹⁶. Thus, the general assumption is that the network quality in urban areas is good by default. However, observations from the test conducted highlights that this assumption is not necessarily true.

Table 2.2: Average download speeds recorded by participants within and outside Klang Valley

		Download speed (Mbps))
Participant	Location	Morning	Evening	Night	Daily average
Participant 1	Kampung Jelutong, Hulu Selangor	50.20	38.14	31.42	39.92
Participant 2	Desa Petaling, Kuala Lumpur	22.90	20.58	2.21	15.23
Participant 3	Bandar Kinrara 3, Puchong	17.34	0.52	16.88	11.58
Participant 4	Bandar Mahkota Cheras, Kajang and Ayer 8, Putrajaya	25.49	6.36	0.35	10.73
Participant 5	Bukit Damansara, Kuala Lumpur	12.26	4.16	13.87	10.10
Participant 6	Kampung Delek, Klang	10.85	2.32	2.04	5.07
Participant 7	Taman Tenaga, Kajang	4.45	2.78	3.75	3.66
Participant 8	Presint 11, Putrajaya	1.72	3.90	3.84	3.15
Participant 9	Taman Sahabat, Telok Panglima Garang	0.32	0.22	0.97	0.50
Participant 10	Sungai Merab, Kajang	0.00	0.00	0.00	0.00

Note: Download speed data presented is taken from an average of five tests per session. The data in grey shaded rows are from participants within Klang Valley. Participant 4 was in Ayer 8, Putrajaya in the afternoon.

The results of the tests in Table 2.2 above demonstrate that participants who were in the Klang Valley area received varying levels of service quality. For example, as a daily average, Participant 8 in Precinct 11, Putrajaya received only a download speed of 3.15Mbps, but the speeds recorded by Participant 5 in Bukit Damansara was significantly higher at 10.1Mbps.

2.3.4. Observation 3: The lowest recorded speeds were below the minimum standard

In Malaysia, service companies need to ensure the minimum mobile broadband download speed of 1Mbps almost all the time⁹⁷. Table 2.3 compares the 1Mbps speed requirement with the average speed experienced by the test participants.

⁹⁶ MCMC (2006)

⁹⁷ MCMC (2020a)

Table 2.3: Average download speeds recorded by participants below the minimum standard

		Download speed (Mbps))
Participant	Location	Morning	Evening	Night	Daily average
Participant 1	Kampung Jelutong, Hulu Selangor	50.20	38.14	31.42	39.92
Participant 2	Desa Petaling, Kuala Lumpur	22.90	20.58	2.21	15.23
Participant 3	Bandar Kinrara 3, Puchong	17.34	0.52	16.88	11.58
Participant 4	Bandar Mahkota Cheras, Kajang and Ayer 8, Putrajaya	25.49	6.36	0.35	10.73
Participant 5	Bukit Damansara, Kuala Lumpur	12.26	4.16	13.87	10.10
Participant 6	Kampung Delek, Klang	10.85	2.32	2.04	5.07
Participant 7	Taman Tenaga, Kajang	4.45	2.78	3.75	3.66
Participant 8	Presint 11, Putrajaya	1.72	3.90	3.84	3.15
Participant 9	Taman Sahabat, Telok Panglima Garang	0.32	0.22	0.97	0.50
Participant 10	Sungai Merab, Kajang	0.00	0.00	0.00	0.00

Note: Download speed data presented is taken from an average of at least five tests per session. Data in grey shaded rows are participants who experience download speeds below 1 Mbps during at least on one session.

Two participants experienced speeds below 1Mbps on average per day, namely Participant 9 located in Taman Sahabat, Teluk Panglima Garang and Participant 10 at Sungai Merab, Kajang. As mentioned in the notes for Figure 2.6, Participant 10 was unable to complete an entire speed test session due to network issues and was automatically recorded in this study as 0Mbps. In addition, two participants (3 and 4) had download speeds below 1Mbps in at least one of the sessions.

These speed differences can be caused by various factors such as the distance of the participants from the telecommunication towers or base stations. It is not impossible that these areas are still lacking in basic infrastructure. It is also possible that low speeds are caused by path loss that occurs when participants are inside their home, which is a common problem in high-rise units. If path loss is indeed a major factor, it may indicate that alternative infrastructure may be needed.

2.3.5. Observation 4: No participant recorded download speeds above 100Mbps, even with the best network coverage

Another concerning observation was the maximum download speed or peak download speed of 100Mbps. The maximum download speed indicates whether or not users enjoy the benefit of the 4G network technology. According to the MCMC report, a maximum download speed above 100Mbps can be obtained in areas that have LTE Advanced (LTE-A) network through smartphones that are compatible with the network⁹⁸.

⁹⁸ MCMC (2020a; 2019c)

Based on the test conducted, none of the participants recorded an average download speed of 100Mbps or higher. Even for individual reading, no participant recorded a reading of 100Mbps or higher. There were participants who achieved 4G LTE-A coverage but their highest download speeds seemed to fall short of 100Mbps. 4G LTE-A coverage can be determined by a 4G+ signal symbol on the participant's phone screen.

Table 2.4: Download speed recorded by network type

			Download speed (Mbps)		
Participant	Location	Signal Symbol	Lowest	Highest	Daily Average
Participant 1	Kampung Jelutong, Hulu Selangor	4G	12.00	68.20	39.92
Participant 2	Desa Petaling, Kuala Lumpur	4G+	0.35	40.90	15.23
Participant 3	Bandar Kinrara 3, Puchong	H+	0.00	20.10	11.58
Participant 4	Bandar Mahkota Cheras, Kajang and Ayer 8, Putrajaya	4G+	0.00	35.70	10.73
Participant 5	Bukit Damansara, Kuala Lumpur	4G	0.17	68.20	10.10
Participant 6	Kampung Delek, Klang	4G+	0.88	14.50	5.07
Participant 7	Taman Tenaga, Kajang	4G+	1.12	5.88	3.66
Participant 8	Presint 11, Putrajaya	H+	0.00	6.34	3.15
Participant 9	Taman Sahabat, Telok Panglima Garang	4G+	0.10	1.46	0.50
Participant 10	Sungai Merab, Kajang	NA	0.00	0.00	0.00

Note: Data in grey shaded rows represent participants with access to a 4G LTE-A network.

It should be acknowledged that indoor signal degradation may be the potential cause for the poor speed of the LTE-A network. However, this raises the question of whether the situation should simply be ignored when users are left with a quality of service that is unstable and much poorer than is marketed by service providers? Because of this, official data is needed not only on 4G and 4G LTE coverage but also 4G LTE-A as a basic indicator for monitoring digital infrastructure development policies. For the record, the MCMC reported that Malaysia had an 82.2% 4G LTE network coverage rate in populated areas as of 2019⁹⁹ but coverage for the 4G LTE-A is not stated.

2.4 Conclusion and discussion on key policies

This section discusses the quality issues of mobile broadband services based on data from reports published by MCMC and Opensignal as well as observations from a small-scale test conducted for this chapter.

⁹⁹ MCMC (2020e)

Both MCMC and Opensignal reports indicate that download speeds are inconsistent and heavily dependent on location, even for the same service. Download speed data shows that there are still issues in the quality of mobile internet services including those in urban areas, with some states outside the Klang Valley recording better download speeds. Although users get 4G network coverage, they do not necessarily enjoy higher speeds than what 3G networks offer.

Moreover, existing reports lack download speed data in more detailed localities such as at the neighbourhood, city and district level. More granular data would allow better analysis on the quality of service that users experience in reality.

In addition to the two reports, a download speed test was conducted to review and evaluate the quality of service that users enjoy. Observations from the test conducted found that the download speeds were inconsistent throughout the day. Moreover, users who are in cities do not necessarily enjoy better quality than those outside cities. There are also users who experienced broadband speed below the minimum standards. In fact, no user enjoyed a download speed of more than 100Mbps even with 4G LTE-A.

The reports and test reflect the need for improvement in the quality of mobile broadband services in Malaysia through infrastructure development in all locations. This is important because societal dependence on the use of mobile phones and mobile internet for their daily activities is not limited to communication and entertainment alone. There are many economic opportunities and social benefits from internet use such as carrying out online business and online learning. Thus, there are several key policies that need to be implemented when it comes to providing infrastructure, telecommunications facilities and the Internet.

2.4.1. Key policy 1: Provide a high quality network service in all locations

Every user should be entitled to a high quality service regardless of the location whether in a rural area or in a city. This is because internet is becoming a basic necessity at par with water and electricity. Ideally, the 4G LTE-A network standards should be the minimum available to consumers nationwide. This is to ensure that consumers get the best consistent coverage and quality of service no matter where they are.

The commitment to 4G infrastructure development should continue to be supported alongside the development of 5G network. Every residence should be guaranteed access to the internet especially the mobile broadband coverage through the provision of cellular towers, satellite coverage or other appropriate measures. In this context, the government should ideally provide incentives and facilitate telecommunications companies in providing the best infrastructure possible, including in areas deemed unprofitable.

The National Fiberisation and Connectivity Plan (NFCP), launched in early 2019, is a commitment by the Malaysian government to provide sustainable, comprehensive, high quality and affordable digital connectivity for the population¹⁰⁰. The NFCP has several targets and the five-year plan is estimated to cost RM21.6 billion¹⁰¹. In terms of mobile broadband targets, the NFCP still declares 3G as the minimum network level in some parts of the country. This should be reconsidered in the NFCP because 3G networks have been rendered relatively obsolete in terms of internet download speeds. Industry players may also be less interested in continuing to commit to service improvements for 'outdated' technology.

However, since the Covid-19 pandemic showed how urgently internet upgrades are needed, the NFCP targets have been improved through the National Digital Network (JENDELA)¹⁰². JENDELA targets 100% 4G coverage in residential areas. It also aims to end 3G network by 2021 and replace it entirely with 4G network. While 4G coverage extension, especially 4G LTE-A, is important, equally important is ensuring consumers can actually enjoy the promised benefits of 4G network.

The JENDELA plan has outlined the principle of blanket approval from local authorities and state governments for the construction of internet infrastructure and making it a public utility¹⁰³. These two measures would have tremendous impact on national development planning, especially in residential planning. For example, housing developers would need to ensure stable broadband access in each of their residential units just like they do with other utilities such as water and electricity. It is hoped that these measures will also assist in cutting through bureaucratic red tape when it comes to infrastructure development and upgrading.

In tandem with the plan, the existing mandatory standards should also be renewed to be more relevant to current needs. Is the minimum download speed still enough to cover the use of data intensive activities such as working from home and online learning? Are existing standards in line with the effort to get 4G coverage in full? How should new factors such as 4G LTE-A coverage rate and signal degradation be taken into consideration?

2.4.2. Key policy 2: A pre-emptive approach in strategically developing communications infrastructure

Most internet users in Malaysia rely on mobile broadband service and data usage will likely only increase over time. Getting the most advanced network coverage is no guarantee of good service. Network quality can be disrupted due to signal degradation and increased data traffic, such as in buildings and in densely populated areas. Download speed can also be impacted by a surge in internet usage as during the MCO.

¹⁰⁰ MCMC (n.d)

¹⁰¹ MCMC (2019d)

¹⁰² PMO (2020)

¹⁰³ MCMC (2020f)

Indeed, throughout the Covid-19 pandemic, tales abound of Malaysians struggling to gain internet access. In Sabah, a student was forced to climb a tree for better connectivity to sit for an examination¹⁰⁴. In the same state, there have been news reports of students falling from a hanging bridge while trying to gain internet access¹⁰⁵. In Kelantan, a man had to build a tent on a hill so his son could sit there while attending online classes as it was the only spot where they could get stable access to internet¹⁰⁶. Even in 'smart cities' like Cyberjaya, there are still internet quality problems making it necessary for some users to hang their internet connection devices outside high-rise residential units¹⁰⁷.

Therefore, industry players and the government need to act appropriately to prevent similar outcomes in the future whether caused by a pandemic or other calamities. Signal degradation and internet traffic surge can be expected and measures to mitigate such risks should be in place.

Although mobile broadband infrastructure requires fibre optic connections, less than half of telecommunication towers are integrated with the appropriate technology, and as a result, some are not yet capable of delivering 4G network¹⁰⁸. Through the blanket approval principle, it is hoped that the infrastructure upgrading work to solve service quality issues can be simplified.

In addition, the government should provide incentives for companies to remain committed to improving and maintaining infrastructure already in place. This includes monitoring infrastructure reliability, signal degradation problems and data traffic, and allocating the spectrum strategically. It would be undesirable for infrastructure built to be left poorly maintained to the extent that it negatively impacts the quality of service. In addition, emergency plans and redundant infrastructure should be available and put in place in the event of natural disasters or maintenance work that could potentially impact the quality of service.

2.4.3. Key policy 3: Wider and more strategic use of funds

The bulk of the costs of the NFCP and JENDELA is funded by the Universal Service Provision (USP), with the rest coming from government funds. Prior to these two plans, the USP was also used to fund the National Broadband Initiatives (NBI) Plan launched in 2010. The NBI was the government's initial commitment to expand high-speed broadband services.

The USP is a fund collected from 6% of the net revenue of Malaysian telecommunications companies. It aims to implement initiatives that can bridge the digital divide between urban and rural areas, to balance the tendency of telecommunication companies to only develop infrastructure in areas with commercial returns¹⁰⁹. Most initiatives through the USP fund are carried out in rural areas, including the construction of telecommunication towers and community internet centres.

¹⁰⁴ BBC (2020)

¹⁰⁵ Mikail (2020)

¹⁰⁶ Rohana Idris (2020)

¹⁰⁷ Buletin TV3 (2020)

¹⁰⁸ TV3MALAYSIA Official (2020)

¹⁰⁹ MCMC (n.d)

However, this fund can also be expanded to upgrade urban infrastructure to address quality issues. This should be done in strategic partnership between industry players and the government so that the use of USP funds does not neglect the development of rural areas. The development includes realising various aspects of the digital inclusion agenda such as providing access to digital devices, building technologically-literate communities and improving digital services (such as government, health and financial services)¹¹⁰.

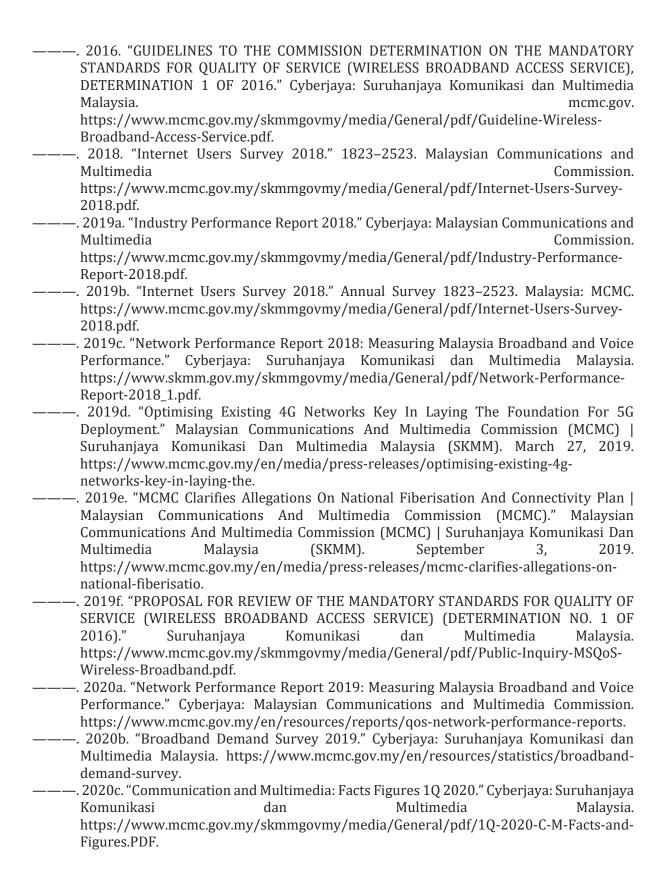
At the same time, the government should be cautious in funding programmes in cooperation with the private sector which allows for complete autonomy in managing internet programmes. This is not only a matter of investment returns but also about mitigating unintended impacts on society. For example, the Indian government has rejected Facebook's Free Basics program that limits user access and disproportionately benefits certain platforms over others¹¹¹.

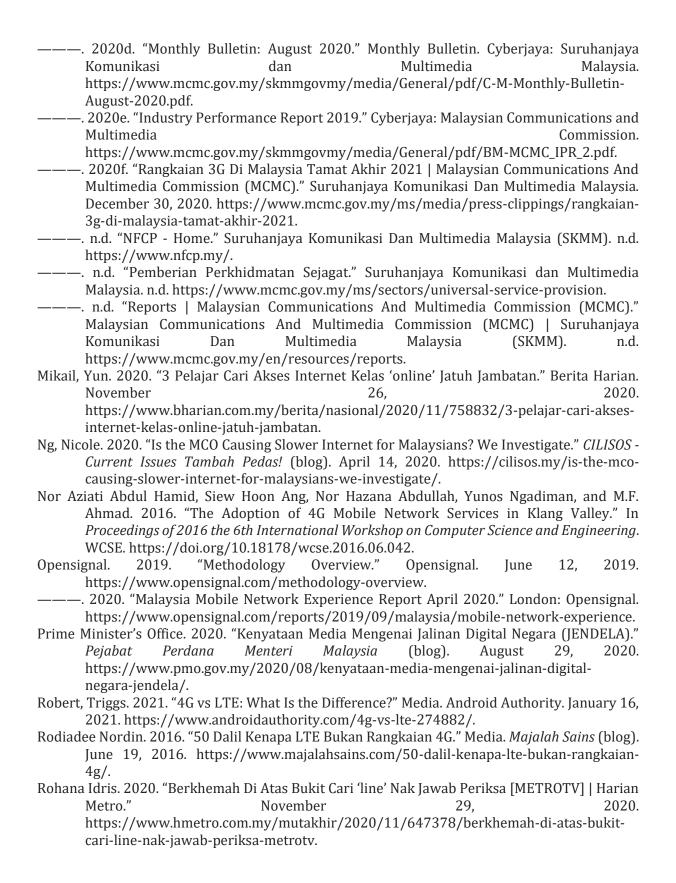
It is hoped that with these core policies, building digital infrastructure can be undertaken efficiently and with no one left behind.

¹¹⁰ Gong (2020)

¹¹¹ Gong (2020)

Appendix 2.1: The method of conducting the download speed test


- 1. The test was carried out during the implementation of the Conditional Movement Control Order (CMCO) in Malaysia to control the spread of the Covid-19.
- 2. All participants used post-paid plan from the same telecommunication company.
- 3. The test was conducted in three sessions, namely in the morning, afternoon and evening to test the stability of service quality throughout the day.
- 4. Each session required at least five repetitions by each participant. This means there are at least 15 readings from each participant.
- 5. The readings were then recorded by the author based on screenshots supplied by the participants.
- 6. The network tested was 4G, which theoretically should be better than 3G network.


Table A2: Steps in carrying out the download speed test via the Opensignal application

Step	Description
1	Participants begin by downloading the Opensignal app from the Google Store
2	The network is set to 4G/auto
3	At the time of the experiment, participants activate the Opensignal app to carry out the test
4	The test is repeated at least five times
5	Results and data are shared by participants via screenshots of their cell phone screens.
6	Participants also shared their location in the following ways: Current location or residence, postal code, city or district, state
7	In order to ensure the speed test was not impacted by the condition or the quality of the cell phones used, a speed test was also carried out by participants in the same location on the 20 th of July 2020, at 12.30pm.

References

- BBC. 2020. "Malaysian Student Sits Exams in a Tree to Access Wifi." *BBC News*, June 18, 2020, sec. News from Elsewhere. https://www.bbc.com/news/blogs-news-from-elsewhere-53079907.
- Bernama. 2020. "PROJEK DEMONSTRASI 5G KEJAYAAN BESAR UNTUK SKMM," January 19, 2020. https://www.penerangan.gov.my/japenv2/index.php/2020/01/19/projekdemonstrasi-5g-kejayaan-besar-untuk-skmm-gobind/.
- Buletin TV3. 2020. MASALAH INTERNET | Ganggu Produktiviti, Susah Bekerja. https://www.youtube.com/watch?v=FXU3MJ2rwYk.
- Carpenter, Tom. n.d. "Mobile and Optical Fiber the Need to Work Together." n.d. https://www.ppc-online.com/blog/mobile-and-optical-fiber-the-need-to-work-together.
- CAS Dataloggers. 2016. "The Basics of Signal Attenuation," November, 9.
- CFM. 2019. "ADUAN RANGKAIAN DAN HARGA PERKHIDMATAN JALUR LEBAR BERKELAJUAN TINGGI (HSBB) CATAT PENINGKATAN BAGI TAHUN 2018 -." consumerinfo (blog). March 28, 2019. https://consumerinfo.my/aduan-rangkaian-dan-harga-perkhidmatan-jalur-lebar-berkelajuan-tinggi-hsbb-catat-peningkatan-bagi-tahun-2018/?lang=ms.
- ———. 2020. "BANCIAN CFM: TIGA DARIPADA LIMA RAKYAT MALAYSIA TIDAK MENDAPAT KELAJUAN INTERNET SEPERTI YANG DIJANJIKAN -." September 25, 2020. http://www.consumerinfo.my/bancian-cfm-tiga-daripada-lima-rakyat-malaysia-tidak-mendapat-kelajuan-internet-seperti-yang-dijanjikan/?lang=ms.
- Gong, Rachel. 2020. "Digital Inclusion: Assessing Meaningful Internet Connectivity in Malaysia." Kuala Lumpur: Khazanah Research Institute. http://www.krinstitute.org/assets/contentMS/img/template/editor/20200907%20Inclusion%20v4.0.pdf.
- GSMArena. n.d. "Network Coverage in Malaysia 2G/3G/4G Mobile Networks." n.d. https://www.gsmarena.com/network-bands.php3?sCountry=Malaysia.
- Hawati, Abdul Hamid, and Romadan Khalidi Jarud. 2020. "Covid-19 and Unequal Learning." Kuala Lumpur: Khazanah Research Institute. http://krinstitute.org/assets/contentMS/img/template/editor/20200426_Covid_Education_v3.pdf.
- ITU. 2015. "Broadband Situation in Rural and Remote Areas." International Telecommunication Union and United Nations Education, Scientific and Cultural Organization. https://www.itu.int/en/ITU-D/Technology/Documents/RuralCommunications/Broadband_Situations_in_Rural_and_Remote_Areas_Full.pdf.
- Kugan. 2019. "OpenSignal: Malaysia 4G Internet Speed Faster than Indonesia & Thailand." MalaysianWireless. March 2, 2019. https://www.malaysianwireless.com/2019/03/opensignal-malaysia-4g-speeds/.
- MCMC. 2006. "Universal Service Provision Annual Report 2006." Cyberjaya: Suruhanjaya Komunikasi dan Multimedia Malaysia. https://www.mcmc.gov.my/skmmgovmy/files/00/00617ae4-133a-4657-b8b2-a953edef6c64/files/assets/basic-html/page-29.html.

- Sevia Mahdaliza and Mohd Ariff Bin Arifin. 2008. "3G Telecommunication Technology in Malaysia. In: Wireless Communication Technology In Malaysia." In Wireless Communications Technology in Malaysia, 12. Johor Bahru: Penerbit UTM. http://eprints.utm.my/id/eprint/14290/.
- Shahrul Yusof. 2019. "Apakah perbezaan di antara 4G dan LTE." *Harian Teknologi* (blog). March 14, 2019. https://hteknologi.com/blog/beza-antara-4g-dan-lte/.
- Talal Abu Ghazali. 2004. "A Brief Insight on ICT Development." Speech presented at the The Arab ICT Regulators Forum, Jordan, March 21. https://media.tagorg.com/UploadFiles/Speeches/2004/A%20_BRIEF%20_INSIGHT%20_ON%20_ICT%20_DEVELOPMENT_%20ROLE.pdf.
- TV3MALAYSIA Official. 2020. *Pelan Jalinan Digital Negara (JENDELA) | Soal Rakyat (Sabtu, 24 Oktober 2020)*. https://www.youtube.com/watch?v=dp28gP_T_mc.
- WCC and UTM. 2017. "Perspectives on Malaysia Broadband Development 2020." Wireless Communication Centre and Universiti Teknologi Malaysia. https://www.malaysianwireless.com/wp-content/uploads/2017/08/UTM_Perspective-on-Malaysia-Mobile-Broadband-Development-2020.pdf.

CHAPTER

03

DIGITAL PLATFORM WORK: HOW DIGITAL ACCESS AND COMPETENCIES AFFECT JOB-SEEKING

Introduction	67
	68
0 1	69
Data and methods	70
The eRezeki platform	70
Caveats and limitations	72
Data and hypotheses	72
Findings	76
Digital platform job-seekers in Malaysia are predominantly women, young and highly educated	76
Degree holders are the most active digital platform job-seekers	76
Fixed broadband and computer access are crucial for job-seeking	78
Email and digital payment skills indicate high job-seeking activity	78
Young job-seekers, women, and non-degree holders benefit most from digital access and digital competencies	79
	Findings Digital platform job-seekers in Malaysia are predominantly women, young and highly educated Degree holders are the most active digital platform job-seekers Fixed broadband and computer access are crucial for job-seeking Email and digital payment skills indicate high job-seeking activity Young job-seekers, women, and non-degree holders benefit most from digital access and digital

3.6 Policy discussion	82
3.6.1 Policy improvement 1: Increasing digital access	83
3.6.2 Policy improvement 2: Making digital skills training accessible	84
3.6.3 Policy improvement 3: Strengthening portable social protection	85
3.7 Conclusion	86
References	88

CHAPTER 3

DIGITAL PLATFORM WORK: HOW DIGITAL ACCESS AND COMPETENCIES AFFECT JOB-SEEKING¹¹²

By Tan Zhai Gen and Rachel Gong

"The gig economy could create opportunity for some people, but it could also amplify the same problems that made the world of work terrifying in the first place; insecurity, increased risk, lack of stability, and diminishing workers' rights..."

Sarah Kessler¹¹³

3.1 Introduction

Movement restrictions and closure of public places and shops during the Covid-19 pandemic have led to a boom in sales and services purchases through online platforms, such as food and groceries delivery apps. These online platforms rely on informal short-term workers¹¹⁴ to supply these services, which also provide incomes for workers who have lost their jobs due to the economic downturn. While some of these workers may choose to go back into formal employment as the economy recovers, a growing group of them is likely to remain in this new economy.

The rise of these temporary workers is enabled by improvements in digital platform technologies matching workers to tasks, thus increasing the variety and volume of tasks available due to greater access to the internet and remote work opportunities. These tasks can range from complex digital work (for example, designing a website) to repetitive digital micro-tasks (for example, labelling images) to tasks that are digitally-enabled but not done digitally (for example, food delivery). Digital platform technologies have allowed workers to find tasks and incomes locally and globally.

This chapter examines the demographics of digital platform job-seekers in Malaysia and the factors that influence their job-seeking activity in the digital job market. Demographics here refer to the age, gender and education level of these job-seekers and factors influencing job-seeking activity consist of digital access and digital competencies. In addition to increasing understanding of digital platform workers in emerging countries like Malaysia, this chapter also identifies policy areas that can enable workers to enjoy the benefits of digital platforms while mitigating the risks from lack of social protection.

¹¹² An earlier version of this chapter authored by Tan Zhai Gen and Rachel Gong was published by KRI on 20 January 2021 as a Discussion Paper titled "<u>Digital Platform Work: How digital access and competencies affect job-seeking</u>".

¹¹³ Kessler (2018)

¹¹⁴ Nur Thuraya Sazali and Tan (2019)

3.2 Technological progress and the future of work

The advancement of digital and communication technologies has led to the unbundling of the economy, no longer requiring talent and human capital crucial for the core business to be located close to the site of business and essentially allowing the decentralisation of work to various places around the world¹¹⁵. Core services, such as product design and project management, can be performed and even outsourced through accessible high-speed internet connections and capable tele-conferencing software. This has been accelerated by the Covid-19 pandemic which severely limited face-to-face interactions and international travel.

Digital platform companies have used these technologies to create tools and platforms to enable communication and task organisation between companies and workers, including organising tasks to be performed by freelancers and contingent workers. The levels of centralisation and agency that workers have depend on the nature of the task and the business process—workers in some platforms do not have much control over choosing the task that is algorithmically distributed to them, while workers in other platforms may have a lot more control over the task they pick to do.¹¹⁶.

Despite the differences in how workers are organised, these platforms allow firms and employers to tap into talent pools from all around the world while saving on some of the cost of employment. Digital platform workers, who are frequently informal and non-standard workers, are able to earn income from anywhere in the world and work flexibly. In particular, high-skill workers in developing nations are able to use their skills to complete tasks offered globally and earn significantly higher income due to exchange rate differences, especially when the demand for their skills may be low locally¹¹⁷.

Globally, workers in the digital platform economy have rapidly increased in the last decade. In 2015, the number of global microtask platform workers was estimated to be at 48 million, of which 10% were estimated to be active¹¹⁸. These workers have also been increasing at a rate of 14% per year¹¹⁹. Traditional surveys found that as many as 11% of the total workforce earned income through digital platform work in the United Kingdom (UK), with at least 3% doing it at least weekly¹²⁰, while roughly 0.5% of the United States (US) labour force was employed by online labour platforms¹²¹.

¹¹⁵ Baldwin (2019)

¹¹⁶ Sutherland and Jarrahi (2018); Ticona, Mateescu, and Rosenblat (2018)

¹¹⁷ Berg et al. (2018); Gurumurthy et al. (2019)

¹¹⁸ Kuek et al. (2015)

¹¹⁹ Kässi and Lehdonvirta (2018)

¹²⁰ Huws and Joyce (2016)

¹²¹ Katz and Krueger (2016)

A global survey on digital microtask platform workers carried out between 2015 and 2017 by the International Labour Organization (ILO) found that workers were mainly from urban areas, where four out of five workers are from urban or suburban communities¹²². In developing countries, these workers were younger compared to developed countries, with more men than women. The workers were well-educated, with 37% holding degrees and 20% holding post-graduate degrees. In Asia, nearly 80% of workers had bachelor's degrees or higher. Looking at the five largest microtask platforms in 2015, it was found that software development and technology were the most sought-after skills, comprising a third of all vacancies¹²³—possibly a reason for the large proportion of highly-skilled workers on these platforms.

3.3 Benefits and risks of digital platform work

One of the main attractions of digital platform work is the flexibility to choose which tasks to complete and when to complete them, benefiting full time digital platform workers, part-time digital platform workers who already have full-time jobs and those who have important carework to perform¹²⁴. For workers in developing countries, this is an opportunity to use their skills and talents globally, especially when the demand for their skills is low or non-existent locally¹²⁵. Income from developed countries is also typically higher compared to local income due to exchange rate differences. Digital platforms also allow the rise of the "passion economy", which enables entrepreneurship among those who exploit the digital platform technology to only work on tasks that they are interested in¹²⁶.

From a policy standpoint, digital platform work can reduce "brain drain" by allowing highly-skilled workers in developing countries to work remotely for higher wages than they would otherwise earn locally, with some scholars considering this a "silver bullet" for development. There are also job opportunities that do not require high skills, allowing non-specialist workers to participate in platform work in developing countries¹²⁷. Thus, some governments place high value on digital platform work as a source of employment¹²⁸.

However, workers venturing into digital platform work are also exposed to new vulnerabilities. The nature of this work is informal and the workers are part of informal employment—the work is temporary and workers are seen as contract workers and not permanent employees of the digital platform or the firm that pays them for the completion of tasks¹²⁹. This means workers lack the various employer-linked protections that safeguard the current and future well-being of the workers, such as health insurance, as these protections are typically only provided for formal employees.

```
122 Berg et al. (2018)
```

¹²³ Kässi and Lehdonvirta (2018)

¹²⁴ Berg et al. (2018)

¹²⁵ Kessler (2018); Berg et al. (2018)

¹²⁶ Davidson (2020)

¹²⁷ Schriner and Oerther (2014)

¹²⁸ Lehdonvirta et al. (2018)

¹²⁹ Bloodworth (2019); Kessler (2018); Berg et al. (2018); Ticona, Mateescu, and Rosenblat (2018); Graham, Hjorth, and Lehdonvirta (2017); Nur Thuraya Sazali and Tan (2019)

Some digital platforms do not provide basic workplace safety protections, exposing workers to physical and mental harm, especially in countries where basic occupational health and safety protection regulations and implementation are weak, or exclude contract or temporary workers. For example, microtask digital platform workers hired to evaluate social media posts for violent content have been exposed to horrific photos and videos as part of their work, without being given mental health support. Workers on care work platforms may also lack occupational support, especially when meeting potentially abusive clients or clients in dangerous areas¹³⁰.

The algorithmic control of workers on some digital microtask platforms has also led to the dehumanisation of workers, leading to workers being compelled to constantly be on-call by their clients to remain "competitive" on these platforms¹³¹. Because these workers are not hired directly by the digital platforms, they do not receive benefits such as health insurance and retirement funds. Not having these benefits increases their vulnerability when economic shocks happen¹³².

Many workers also found that work on these digital microtask platforms provided few opportunities for skills training and upgrading, as the nature of work on the platforms did not challenge workers to upskill and did not incentivise upskilling¹³³. In fact, there is potential for these workers to experience de-skilling, especially when the digital microtask work is repetitive and does not require the higher level skills the workers may already possess. On the other hand, there have also been reports of some workers in developing countries who improved their English language skills through digital platform work¹³⁴.

3.4 Data and methods

3.4.1. The eRezeki platform

To study the demography of digital platform workers in Malaysia and the factors that influence job-seeking amongst digital platform workers, we analysed data from eRezeki. eRezeki¹³⁵ is a task aggregating digital platform hosted by the Malaysia Digital Economy Corporation (MDEC), a key government agency in charge of supporting the digital economy development in Malaysia. eRezeki was set up in the 2015, aimed at increasing job and income opportunities for Malaysians in the platform economy¹³⁶. Table 3.1 shows some of the indicators on the participants and partner digital platforms of eRezeki. The platform targets blue collar workers, individuals from B40 households (households in the bottom 40% of the country's income distribution), unemployed individuals, pensioners, veterans and individuals with disabilities. MDEC actively recruits users to the eRezeki platform in rural areas, leveraging on existing telecentre facilities, and through polytechnics and universities in the different parts of the country.

¹³⁰ Ticona, Mateescu, and Rosenblat (2018)

¹³¹ Kessler (2018)

¹³² Hawk (2018)

¹³³ Berg et al. (2018)

¹³⁴ Kuek et al. (2015), Berg et al. (2018)

¹³⁵ MDEC (n.d)

¹³⁶ Frost & Sullivan (2020)

Table 3.1: Summary of eRezeki performance as of 31 December 2018

Indicators	2016	2017	2018	Cumulative (2016 – 2018)
Number of B40 community members registered	105,808	154,872	107,314	367,994
Income received by B40 community (RM m)	17.70	95.6	217.02	330.32
Total number of local partners	17	68	86	86
Total number of global partners	5	6	24	24

Source: Frost & Sullivan (2020)

The eRezeki platform filters tasks from partner digital platforms to registered eRezeki job-seekers based on their stated interests and capabilities. Job-seekers can view a variety of tasks sourced from partner digital platforms, and are directed to the partner digital platform site after clicking on the task they are interested in.

Tasks are split into three groups: **digital microtasks**, **digital work** and **digitally-enabled work** platforms. **Digital microtasks** are work done digitally and are more repetitive in nature, such as data entry or image labelling. **Digital work** is complex work done on a computer, such as coding, app development or graphic design. **Digitally-enabled work** is work not necessarily done on a computer, but enabled through digital means, such as app-based delivery services, ride-hailing or plumbing services. Digital microtasks and digital work come from both global and local sources while digitally-enabled work is done and paid locally.

The level of digital skills, competencies and qualifications required for each group of tasks can differ greatly. Digital microtasks such as image labelling require no special skills. Digital work such as app development require highly technical and specialised skills. Skills requirements can even vary within each group of tasks. While some digitally-enabled work such as that offered via ride-hailing platforms require only a driving license, other digitally-enabled work such as electrical work and care work requires workers to have official certificates, such as Sijil Kemahiran Malaysia – Level 3. Some platforms also require workers to complete mandatory training sessions with qualified trainers before being listed on the platforms, such as workers to help with car battery maintenance.

The eRezeki user database analysed in this chapter contains data on job-seekers who registered in the system in 2017 and 2018. It includes their demographic details, namely gender, age and education level. The database also contains self-reported language skills, digital access (such as broadband access and computers), basic digital competencies and the tasks that job-seekers are interested in doing. The system records the date of account creation, date of last login and, most importantly, the number of jobs viewed and clicked on up until 31 December 2019. However, it does not categorise job seekers by groups of tasks, thus we were not able to distinguish these in our analysis.

3.4.2. Caveats and limitations

Another important caveat is that the system only detects clicks made in the eRezeki platform, and does not include data on whether the job was actually assigned and completed on the partner platform site. Nor does the database contain information on what type of job was viewed or clicked on—only the number of jobs per user. Job-seekers could click at the job link on the eRezeki site and land on the partner platform site, but not actually take the task at the partner platform site.

The eRezeki platform is not representative of the Malaysian labour force or even the Malaysian digital platform job market. However, to the best of our knowledge, it is the only comprehensive database of digital platform job-seekers that provides information on job-seekers' demographics, skills and job-seeking activity. Digital platform workers can be difficult to survey due to the nature of their mobile and ad-hoc work, so the eRezeki database is a valuable consolidated data set of digital job-seekers across the country.

Thus, despite its limitations, analysis of the eRezeki user database gives an important glimpse into the demographics of digital platform job-seekers in Malaysia. The eRezeki user database contains data on job-seekers over a wide range of digital platforms as it includes job-seekers interested in different types of digital tasks both locally and globally. We do not expect the behaviour of eRezeki job-seekers to be significantly different from the general labour force or the digital labour force.

3.4.3. Data and hypotheses

We seek to understand the factors influencing job-seekers' job-seeking activity in the digital job market. In the absence of a variable that measures job success, we use a proxy to measure how actively a person is looking for a job in the eRezeki platform. Our assumption is that, given the variety of digital work available, more active job-seekers are likely to be more successful at finding jobs than less active job-seekers, all other things being equal.

The eRezeki system offers us a way to measure job-seeking activity; it tracks the number of jobs a user views and clicks on. The outcome variable is the average number of clicks per month in the database. The average number of clicks is used instead of the absolute number of clicks to enable comparison across job-seekers regardless of when they joined the platform.

For this analysis, we used a cleaned subset of eRezeki data that includes only users with complete profiles. User demographics in this cleaned dataset are proportionally similar to the full, precleaned dataset, e.g. women make up 54.2% of the cleaned dataset and 53.8% in the full dataset.

Table 3.2 shows the different characteristics of job-seekers analysed in this chapter. We see how demographic differences are reflected in the average number of clicks per month. Additionally, digital access and digital competencies also influence how active job-seekers are on eRezeki.

Digital access refers to the availability of devices (smartphone and computer) and data (mobile or fixed broadband). Digital competencies refer to basic abilities in using programs and digital tools. The digital competencies recorded in the eRezeki system include experience in using emails regularly, ability to upload and create videos on YouTube, experience in using and creating Facebook pages and accounts, experience in using digital payment systems like PayPal and experience in using multiple browsers.

It follows that better access to computers and broadband internet gives job-seekers better job opportunities while better digital competencies allow for better communication and transactions. Given that the literature suggests that digital platform workers are more likely to be young men with degrees¹³⁷, we use the eRezeki data to test two hypotheses about digital platform job-seekers.

Hypothesis 1: Men, young job-seekers, and degrees holders are more active on eRezeki than women, older job-seekers, and non-degree holders.

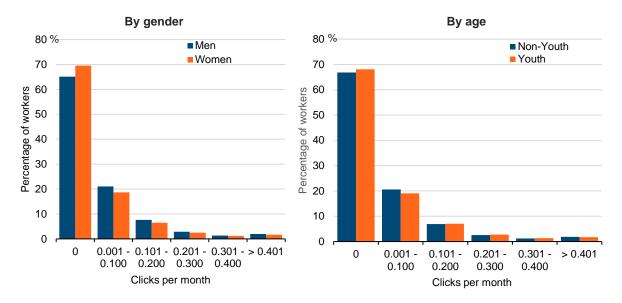
Hypothesis 2: Higher levels of digital access and digital competencies are associated with higher activity on eRezeki.

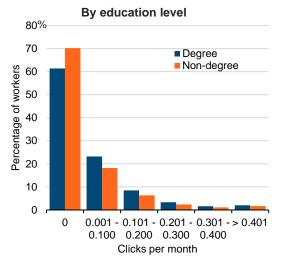
Table 3.2: Summary statistics of characteristics of job-seekers on eRezeki

Characteristics of job-seekers	Percentage	Average number of clicks per month
Gender		
Women	54.2	0.0413
Men	45.9	0.0485
Age		
Youth (aged 30 and below)	55.7	0.0437
Non-youth (aged above 30)	44.2	0.0458
Education		
Non-degree holder	69.6	0.0413
Degree holder	30.4	0.0522
Digital access		
Has mobile data	99.3	0.0447
Has a smartphone	98.4	0.0447
Has computer access	51.4	0.0476
Has fixed broadband	44.1	0.0517
Digital competencies		
Email	84.9	0.0521
Browser	69.3	0.0541
YouTube	53.8	0.0554
Facebook	48.5	0.0541
Digital payments e.g. PayPal	18.2	0.0614

Source: Authors' calculations based on MDEC data (N = 96,051)

¹³⁷ Berg et al. (2018)


The modal eRezeki user, contrary to observed global trends, is young (i.e. aged 30 and below) but more likely to be a woman and a non-degree holder. This is expected given that eRezeki is targeted at underserved populations of the regular job market. However, when it comes to job-seeking activity, we see that on average non-youths are more active than youths, men are more active than women, and degree holders are more active than non-degree holders. These trends reflect the typical labour market dynamics in Malaysia¹³⁸.


The distribution of the average number of clicks per month for these platforms is typical of many digital platforms, where a majority of job-seekers are inactive. This may not actually reflect low activity as some job-seekers may prefer not to use eRezeki to access the partner platforms and instead interact directly with the partner platforms.

The distribution of average number of clicks shown in Figure 3.1 reinforces the findings from Table 3.2, namely that higher percentages of youths, women and non-degree holding job-seekers are less active compared to non-youths, men and degree-holding job-seekers, respectively.

¹³⁸ KRI (2019); (2018)

Figure 3.1: Distribution of average number of clicks per month, by demographics

Source: Authors' calculations based on MDEC data

3.5 Findings

3.5.1. Digital platform job-seekers in Malaysia are predominantly women, young and highly educated

We first compare the demographics of digital job-seekers using the eRezeki platform to the demographics of digital platform workers globally. Compared to global microtask platform workers where only 20% of workers from developing countries are women while slightly less than 50% of workers in developed countries are women¹³⁹, 54% of job-seekers on eRezeki are women. The share of Malaysian job-seekers on eRezeki also differs from the Malaysian labour force, where around 39% of the total labour force are women and 61% of the total labour force are men¹⁴⁰.

The age distribution of eRezeki job-seekers is skewed towards younger workers, the median age of job-seekers being 29 while the mean age of job-seekers is 30 years old.

In terms of education, 69.6% of eRezeki job-seekers do not have university degrees¹⁴¹, while 30.4% of job-seekers have university degrees or higher. In 2019, around 12.7% of the national labour force had degrees or higher¹⁴². This indicates that job-seekers on eRezeki have a higher education level in general compared to the Malaysian workforce. Globally, 37% of workers have degrees and 20% have post-graduate degrees. These proportions are higher for Asia, where 80% of workers have degrees and better, much higher than the eRezeki workforce¹⁴³.

These discrepancies are to be expected, given eRezeki's original aim of providing sources of supplementary income rather than full-time jobs. Initially, jobs on the platform were primarily digital microtasks but the evolution of work in the platform economy led to an increase in digitally-enabled tasks and digital work which might change the demographics of the digital labour force. For example, women who need to prioritise care work may prefer to do digital microtasks which do not take much time, while degree holders may prefer to do digital work that is more time-consuming.

As discussed earlier, our data do not allow us to separate these three types of digital platform work, but future research could investigate these to determine the growth trajectories of these different types of work as well as the demographics of job-seekers interested in each.

3.5.2. Degree holders are the most active digital platform job-seekers

Using average number of clicks per month as a comparable measure across demographic groups, we see that degree holders have the highest average number of clicks per month at 0.0522 clicks, while non-degree holders have the lowest number of clicks per month at 0.0413 clicks. In other words, degree holders on average are 1.3 times more active on eRezeki than non-degree holders (Table 3.3).

¹³⁹ Berg et al. (2018)

¹⁴⁰ DOS (2020a)

¹⁴¹ Job-seekers who have university degrees refer to job-seekers with education levels of Bachelor degree and above.

¹⁴² DOS (2020a)

¹⁴³ Berg et al. 2018

Studies using global surveys have found that most workers on global digital platforms have university degrees¹⁴⁴. This is due possibly to the high-skilled nature of work on these platforms, such as coding, that require skills associated with degrees. Degree holders in developing countries use digital platforms to access tasks which match their skills but may not be available in their own country. Thus, degree-holding job-seekers in Malaysia may have more opportunities than non-degree-holding job-seekers to tap into the global market for digital tasks.

Table 3.3: Average clicks per month, by demographics

Demographics	Average clicks per month	Relative ratio
Gender		
Women	0.0413	1.0
Men	0.0485	1.2
Age		
Youth	0.0437	1.0
Non-youth	0.0458	1.0
Education Level		
Non-degree	0.0413	1.0
Degree	0.0522	1.3

Source: Authors' calculations based on MDEC data

However, while women in Malaysia are more likely to have degrees than men¹⁴⁵, women still have a lower average number of clicks per month compared to men, suggesting that gender may affect job-seeking activity more than education. In fact, women job-seekers with degrees have average clicks per month higher than men without degrees but still lower than men with degrees (Table 3.4).

Table 3.4: Average number of clicks per month, by demographics

Characteristics of ish cookers	Ge	nder
Characteristics of job-seekers —	Men	Women
Education		
Degree holder	0.0538	0.0511
Non-degree holder	0.0465	0.0364

Source: Authors' calculations based on MDEC data

¹⁴⁴ Berg et al. 2018

¹⁴⁵ DOS (2020a)

3.5.3. Fixed broadband and computer access are crucial for job-seeking

Digital access also affects job-seeking activity rates on eRezeki. In particular, job-seekers with fixed broadband access have the highest average number of clicks per month, while job-seekers without computers have the lowest average number of clicks (Table 3.5). The biggest difference in the average number of clicks is between those with computer access and those without: job-seekers with computer access are 1.5 times more active than those without computer access.

Table 3.5: Average clicks per month, by digital access availability

Digital access	Average clicks per month	Relative ratio
Has computer access		
No	0.0318	1.0
Yes	0.0476	1.5
Has fixed broadband		
No	0.0390	1.0
Yes	0.0517	1.3
Has mobile data		
No	0.0383	1.0
Yes	0.0447	1.2
Has smartphone		
No	0.0358	1.0
Yes	0.0447	1.2

Source: Authors' calculations based on MDEC data

The large differences resulting from the availability of fixed broadband and computers highlight the importance of digital access in tapping into higher value digital work, especially international digital work which requires a stable internet connection and a computer instead of more unstable mobile data and a smartphone. Computers enable workers to perform more complex tasks, while a stable broadband connection enables seamless communication and allows workers to perform tasks that require continuous internet access.

3.5.4. Email and digital payment skills indicate high job-seeking activity

In terms of digital competencies, job-seekers with experience in using email and digital payments are more active on eRezeki. Job-seekers with experience in digital payment systems like PayPal have the highest average number of clicks per month, while job-seekers who are not familiar with email have the lowest average number of clicks. Job-seekers with experience using email have the greatest advantage, where job-seekers who are familiar with email are 1.8 times more active than those who are not (Table 3.6).

Email is fundamental for digital communication. However, 15.1% of eRezeki job-seekers are not familiar with email. On the other hand, only 18.2% are familiar with digital payment systems. Thus, a majority of job-seekers are likely to face difficulties using secure systems to obtain payments, especially from international clients.

Table 3.6: Average clicks per month, by digital competencies

Digital competencies	Average clicks per month	Relative ratio
Experienced using email		
No	0.0366	1.0
Yes	0.0521	1.8
Experienced in using browser		
No	0.0406	1.0
Yes	0.0541	1.5
Experienced in digital payments		
No	0.0473	1.0
Yes	0.0614	1.4
Experienced in YouTube		
No	0.0433	1.0
Yes	0.0554	1.4
Experienced in Facebook		
No	0.0459	1.0
Yes	0.0541	1.2

Source: Authors' calculations based on MDEC data

3.5.5. Young job-seekers, women, and non-degree holders benefit most from digital access and digital competencies

Thus far, we have examined how different aspects of digital access and digital competencies are associated with increased levels of job-seeking activity on eRezeki by job-seekers as a whole. Specifically, we have seen the value of having fixed broadband and access to a computer, and of skills with email and digital payment systems. The following tables show how these aspects of access and skills affect different demographic groups, suggesting that young job-seekers, women and non-degree holders see greater increases in job-seeking activities corresponding to increases in digital access and digital competencies compared to non-youth job-seekers, men and degree holders.

Table 3.7 shows how fixed broadband access affects job-seeking activity levels for different demographic groups. Among young job-seekers, having fixed broadband is associated with 1.4 times more activity than when not having fixed broadband. Among non-youth job-seekers, the corresponding ratio is only 1.3 times. Similarly, women with fixed broadband were 1.4 times more active than women without fixed broadband, while men with fixed broadband were only 1.3 times more active than men without. Finally, non-degree holders with fixed broadband were 1.4 times more active than without compared to degree holders with broadband who were only 1.1 times more active than if they did not have fixed broadband.

Despite the larger relative increase for women and non-degree holders, men and degree holders with fixed broadband access were still more active than women and non-degree holders with fixed broadband access.

Table 3.7: Average number of clicks per month, availability of fixed broadband access

	Average clicks per month		
Demographics	No broadband available	Broadband available	 Relative increase due to availability of broadband
Age			
Youth	0.0379	0.0518	1.4
Non-youth	0.0406	0.0515	1.3
Gender			
Women	0.0360	0.0488	1.4
Men	0.0430	0.0547	1.3
Education Level			
Non-degree	0.0361	0.0502	1.4
Degree	0.0498	0.0537	1.1

Source: Authors' calculations based on MDEC data

Table 3.8 shows how having access to a computer affects job-seeking activity levels for different demographic groups. Among young job-seekers, having computer access is associated with 1.6 times more activity than when not having access to a computer. Among non-youth job-seekers, the corresponding ratio is only 1.5 times more. Similarly, women with computer access were 1.6 times more active than women without computer access, while men with computer access were only 1.4 times more active than men without. Finally, non-degree holders with computer access were 1.5 times more active than non-degree holders without, compared to degree holders with computer access who were only 1.2 times more active than if they did not have computer access.

Despite the larger relative increase for women and non-degree holders, men and degree holders with computer access were more active than women and non-degree holders with computer access.

Table 3.8: Average number of clicks per month, availability of computer

	Average clicks per month		Relative increase due to
Demographics	No computer available	Computer available	availability of computer
Age			
Youth	0.0296	0.0466	1.6
Non-youth	0.0336	0.0490	1.5
Gender			
Women	0.0273	0.0446	1.6
Men	0.0367	0.0512	1.4
Education Level			
Non-degree	0.0305	0.0449	1.5
Degree	0.0455	0.0525	1.2

Source: Authors' calculations based on MDEC data

Table 3.9 shows how digital payment systems skills affects job-seeking activity levels for different demographic groups. Among young job-seekers, having digital payment systems skills is associated with 1.4 times more activity than when not having digital payment systems skills.

Among non-youth job-seekers, the corresponding ratio is only 1.3 times more. Similarly, women with digital payment systems skills were 1.4 times more active than women without digital payment systems skills, while men with digital payment systems skills were only 1.3 times more active than men without. Finally, non-degree holders with digital payment systems skills were 1.5 times more active than without compared to degree holders with digital payment systems skills who were only 1.1 times more active than if they did not have digital payment systems skills.

Despite the larger relative increase for women, men with digital payment system skills were still more active in absolute terms than women with digital payment system skills.

Table 3.9: Average number of clicks per month, availability of digital payment skills

	Average clicks per month		Relative increase due to
Demographics	No experience in digital payments	Experience in digital payments	experience in digital payments
Age			
Youth	0.0408	0.0583	1.4
Non-youth	0.0434	0.0549	1.3
Gender			
Women	0.0387	0.0545	1.4
Men	0.0459	0.0586	1.3
Education Level			
Non-degree	0.0385	0.0586	1.5
Degree	0.0514	0.0543	1.1

Source: Authors' calculations based on MDEC data

Table 3.10 shows how email experience affects job-seeking activity levels for different demographic groups. Among youth job-seekers, having email experience is associated with 1.7 times more activity than when not having email experience. Among non-youth job-seekers, the corresponding ratio is 1.9 times. Women with email experience were 2.2 times more active than women without email experience, while men with email experience were only 1.5 times more active than men without. Finally, non-degree holders with email experience were 1.8 times more active than without compared to degree holders with email experience who were only 1.3 times more active than if they did not have email experience.

Despite the larger relative increase for women and non-degree holders, men and degree holders with email experience were still more active than women and non-degree holders with email experience.

Table 3.10: Average number of clicks per month, experienced in email

	Average clicks per month		Relative increase due to
Demographics	No experience in email	Experience in using emails	experience in using emails
Age			
Youth	0.0268	0.0466	1.7
Non-youth	0.0259	0.0493	1.9
Gender			
Women	0.0204	0.0452	2.2
Men	0.0344	0.0508	1.5
Education Level			
Non-degree	0.0254	0.0453	1.8
Degree	0.0401	0.0526	1.3

Source: Authors' calculations based on MDEC data

We interpret these findings to mean that not only is having increased digital access and digital competencies associated with increased digital job-seeking activity, and thus greater chances of finding a digital job, but also that the increase in activity is generally larger for young job-seekers, women and non-degree holders. Job-seekers in these demographics may benefit more from increased digital access and improving their digital competencies.

An alternative explanation suggests that these benefits might be limited to informal, digital platform work and not apply to other areas in the digital economy or reflect the labour market as a whole. Our data do not allow us to test these explanations further, but further research is warranted to assess the value of digital access and digital competencies in the platform economy and the labour market.

3.6 **Policy discussion**

Digital access and digital competencies can improve job-seeking activities in the digital platform economy, especially for the more disenfranchised groups of workers in the Malaysia labour force, including young workers, women and non-degree holders. Women have a lower labour force participation rate, while non-degree holders have lower average wages than degree holders. Youth unemployment is also higher than the non-youth unemployment 146. The digital platform economy can potentially provide job opportunities and higher wages for these workers, and be an important tool to reduce inequalities between these groups of workers and their respective counterparts in the labour force.

¹⁴⁶ DOS (2020a), (2020b)

There are several existing programmes aimed at encouraging women to re-join the labour force (e.g. Career Comeback Programme¹⁴⁷) and to help fresh graduates find jobs (e.g. Graduates@Work) as well as provide general skills training (e.g. Let's Learn Digital¹⁴⁸). Additional policy improvements can be made to ensure that job opportunities within the platform economy can reduce, not increase, inequalities. We propose three such improvements below.

3.6.1. Policy improvement 1: Increasing digital access

Our findings indicate that digital access, specifically access to fixed broadband and computers, increases job-seeking activity in the platform economy. Digital infrastructure and devices are fundamental to ensuring reliable, high quality connectivity that enables the platform economy to run, from the perspectives of both the platforms and the workers. Ensuring basic internet access via a smartphone is good; providing means to access higher quality, more reliable fixed broadband on computers is better.

Increased provision of affordable fixed broadband and computers could be crucial to growing the platform economy, especially for digital work that depends on a stable internet connection and a device with higher processing power. In 2019, only 51.4% of Malaysian households had laptops¹⁴⁹, while only 8.6% individuals had fixed broadband access¹⁵⁰. Our analysis indicates that a lower share of non-degree holders has access to fixed broadband and computers compared to degree holders. This is possibly a consequence of having lower wages and being unable to afford computers and broadband, and likely leads to lower participation in the platform job market, which could perpetuate the problem.

The government has recognised the importance of high quality broadband connectivity and has introduced the National Digital Network Plan (JENDELA) aimed at improving mobile broadband service. This is important, as is improving fixed broadband infrastructure and service. Increasing fixed broadband access and take-up across the country is key to increasing participation in digital work in the platform economy, especially for non-urban workers and non-degree holders.

Another policy approach we have previously advocated is to consider subsidising not just fixed broadband subscriptions but also subsidising devices, including computers¹⁵¹. Research has found that increasing access to internet-enabled devices such as computers is more effective than reducing mobile data prices in increasing broadband access—thus, subsidising both broadband and computer devices can both encourage job-seeking activity¹⁵².

¹⁴⁷ Talent Corp (n.d)

¹⁴⁸ MDEC (2020)

¹⁴⁹ DOS (2020c)

¹⁵⁰ Gong (2020); ITU (2019)

¹⁵¹ Gong (2020)

¹⁵² Schriner and Oerther (2014)

3.6.2. Policy improvement 2: Making digital skills training accessible

Digitally enabled work that is managed via platforms, such as food delivery and household services, is rapidly growing. The global platform economy is projected to increase by 17% on average each year between 2019 to 2023 to a gross size of USD455 billion¹⁵³. In Malaysia, the sharing economy was estimated to have grown from RM394 million in 2016 to RM949 million in 2018, an increase of 2.4 times over three years¹⁵⁴. Also increasing is the demand for digital work, such as programming, design and creative content development. Our findings indicate that increased digital competencies are associated with increased job-seeking activity in these job markets.

Therefore, incentivising and enabling training for workers in this area is important for young workers, women and degree holders who stand to gain more from developing their digital competencies, as shown in our analysis.

Furthermore, training is a crucial safeguard for the future of the labour market in general when technological change will radically change the nature of jobs and needed skills in the future ¹⁵⁵. Without continual skills development and training, workers, especially those performing routine or semi-skilled tasks, can quickly become obsolete.

However, digital platform workers who are not classified as employees may not have access to training opportunities as they are excluded from the core business of the platforms and their clients¹⁵⁶. This reduces their ability to learn new digital competencies, resulting in jobs being quickly taken up by the few who do have the necessary skills, and leaving them unable to catch up because they do not have the funding or guidance to upskill themselves.

Budget 2020 introduced Digital Social Responsibility (DSR), a commitment by the business sector to enhance the future workforce capacity with digital skills training and funding for communities in need, with private sector contributions to DSR activities being tax exempted¹⁵⁷. This was followed by the "GigUp" programme announced in the Digital Economy Blueprint, providing subsidies for online skills training platforms for companies to train the gig workers they employ, including digital platform workers¹⁵⁸. This policy could be further expanded given how it could help workers, especially under difficult circumstances caused by the pandemic, to take advantage of digital platform work opportunities. This includes expanding training to digital platform workers who are not tied to any formal companies and in-person training courses¹⁵⁹.

¹⁵³ Mastercard and Kaiser Associates 2019

¹⁵⁴ MDEC (2019)

¹⁵⁵ KRI (2017); Frey and Osborne (2017); Kochan and Dyer (2019)

¹⁵⁶ Graham, Hjorth, and Lehdonvirta (2017)

¹⁵⁷ MOF (2019)

¹⁵⁸ EPU (2021)

¹⁵⁹ Tan Zhai Gen and Dr Rachel Gong (2021)

A gap in Malaysia has been the lack of digital skills training opportunities for digital platform workers. Training has typically been organised by employers as part of improving business productivity¹⁶⁰. Thus, it is unavailable for digital platform workers who are considered freelancers and contract workers by digital platforms and also by the clients of digital platforms. Government funds to incentivise skills training, such as Human Resource Development Fund (HRDF), are available only to employers, leaving out self-employed workers and digital platform workers.

Programmes such as MDEC's Digital Skills Training Directory¹⁶¹ in collaboration with the Social Security Organisation (SOCSO) under the PENJANA Hiring Initiative provide digital skills training to job candidates, but only if they are selected by SOCSO-registered employers.

Decoupling training provision from the notion that it is the responsibility and prerogative of only employers is an important step to creating a more inclusive skills training system for the whole labour force. A general training provision programme that directly assists workers in the changing labour market is needed, established in collaboration with formal employers, digital platforms, community colleges, unions and public training programmes¹⁶². In particular, subsidising more training partnerships like MDEC's Let's Learn Digital between employers or government agencies and education providers such as local community colleges could make training more affordable for a wider segment of the workforce, including non-degree holders.

For digital platform workers, stakeholders in the platform economy (e.g. digital platform companies, employers who use these digital platforms and skills training institutions) should work together to improve the digital competencies of workers to improve productivity. Training should be inclusive and not focus on degree holders to the detriment of non-degree holders. As illustrated in our analysis, training on basic network and computing skills like using digital payment systems can potentially contribute to greater participation in the job market.

Financial incentives and vouchers are an important policy mechanism in putting training into the hands of the workers themselves instead of their employers¹⁶³. For example, the Singaporean government provides SGD200 each year to workers to join training courses which are accredited by the government in a scheme called SkillsFuture. The scheme also provides guidance on the skills and trainings tailored to the worker's specific training needs.

3.6.3. Policy improvement 3: Strengthening portable social protection

The vulnerability of digital platform workers to shocks also has to be addressed, given the informal status of their work, as social protection in Malaysia, as in many other countries, is built around standard employment relationships¹⁶⁴. Social protection ranges from occupational hazard protection to health insurance and retirement funds, which traditionally have been provided by employers.

¹⁶⁰ KRI (2017)

¹⁶¹ Digital News Asia (2020)

¹⁶² Autor, Mindell, and Reynolds (2020)

¹⁶³ KRI (2017)

¹⁶⁴ Nur Thuraya Sazali and Tan (2019); Kochan and Dyer (2019)

In the absence of clear terms of employee classifications and rights, allowing platform workers to advocate for their own needs and social protection would require the cooperation of government, employers, platforms and unions, whose interests may not always align¹⁶⁵. Nonetheless, labour unions in Germany and the US, for example, have opened up their doors to freelancers and informal workers to provide a way to organise and bargain for health insurance through these unions. Grab, a ride-hailing platform, has worked with the Singaporean government by contributing to drivers' Medisave, the Singaporean national health insurance, commensurate with distance driven. Malaysia's Self-Employment Social Security Scheme provided by SOCSO is a step forward to protect the self-employed, beyond the traditional direction of the agency to provide employment security via employer contributions.

Given the rise of digital platform work, informalisation of work in general and workers switching jobs more frequently throughout their lives, an improvement to social protection policy would see social protection tied to the worker instead of tied to an employer¹⁶⁶. These "portable benefits" would balance the flexibility of modern jobs with the security of traditional employment. For example, Malaysia's Employee Provident Fund (EPF) is tied to workers themselves, and has introduced new schemes that allow for self-contribution from self-employed workers.

However, the precarious nature of platform work can disincentivise workers from voluntarily contributing to such social protection programmes. Programmes that supplement or match worker contributions to a pension fund could help to incentivise voluntary contributions ¹⁶⁷. Greater cooperation from all stakeholders will be important to educate workers regarding the importance of social protection as insurance against shocks. Government assistance and appropriate contributions from digital platforms will be needed to fund such programmes, at least initially. At the very least, a form of occupational hazard insurance is necessary to ensure continuity of income for platform workers who might sustain injuries while on the job.

3.7 Conclusion

As advancement in digital technology continues, digital platforms will be an increasingly viable mechanism for firms to obtain temporary workers—both formal and informal—all around the world, while workers can earn incomes from outside their local area. This provides exposure for workers, while expanding opportunities for flexible part-time jobs and additional incomes. In some developing countries, workers with skills that are not in much demand in the local economy may be able to remain in their local area while working remotely, reducing out-migration and the "brain drain" in these countries.

However, there are important issues which need to be addressed—the informal and transient nature of digital platform work typically implies a lack of social protection and limited skills-upgrading opportunities for workers. The lack of employment-related protection, such as worker health and safety protection also increase workers' vulnerabilities.

¹⁶⁵ Kochan and Dyer (2019)

¹⁶⁶ KRI (2017); Kochan and Dyer (2019)

¹⁶⁷ Hinz et al. (2013)

CHAPTER 3

DIGITAL PLATFORM WORK: HOW DIGITAL ACCESS AND COMPETENCIES AFFECT JOB-SEEKING

What factors affect job-seeking for digital platform work? Degree holders are more active on eRezeki compared to non-degree holders. Digital access, in terms of fixed broadband and computer access, increases job-seeking activity. In terms of digital competencies, experience in using email and digital payment systems is important in increasing job-seeking activity. The increased activity associated with digital access and competencies is greater for disenfranchised workers in the workforce, namely, women, youth and non-degree holders.

This chapter discussed three areas for improving labour policy with respect to digital platform work. First, increasing fixed broadband and computer access for digital platform workers can increase job-seeking activity, especially among the less active segments of the labour force. Second, incentivising training programmes for digital platform workers and decoupling training from employers can benefit independent workers and job-seekers. Third, extending portable social protection to digital platform workers can reduce the precarious nature of digital platform work, requiring collaboration between digital platforms, government agencies and unions.

References

- Autor, David, David Mindell, and Elisabeth Reynolds. 2020. "MIT Work of the Future Task Force." Cambridge, MA: MIT.
- Baldwin, Richard. 2019. *The Globotics Upheaval: Globalization, Robotics, and the Future of Work.*New York, NY: Oxford University Press.
- Berg, Janine, Marianne Furrer, Ellie Harmon, Uma Rani, and S. Silberman. 2018. "Digital Labour Platforms and the Future of Work: Towards Decent Work in the Online World." *International Labour Organization*, 135.
- Bloodworth, James. 2019. *Hired: Six Months Undercover in Low-Wage Britain*. Main Edition. Atlantic Books.
- Davidson, Adam. 2020. *The Passion Economy: The New Rules for Thriving in the Twenty-First Century*. New York: Knopf.
- Digital News Asia. 2020. "MDEC Launches Training Directory to Assist Malaysians with Learning New Digital Skills." Digital News Asia. October 19, 2020. https://www.digitalnewsasia.com/digital-economy/mdec-launches-training-directory-assist-malaysians-learning-new-digital-skills.
- DOS. 2020a. "Labour Force Survey Report, Malaysia, 2019." Department of Statistics Malaysia. https://newss.statistics.gov.my/newss-portalx/ep/epFreeDownloadContentSearch.seam?cid=687720.
- ——. 2020b. *Salaries and Wages Survey Report 2019*. Putrajaya: Department of Statistics Malaysia.
- ———. 2020c. "Households Income and Basic Amenities Survey Report 2019." Annual Survey. Malaysia: Department of Statistics Malaysia.
- EPU. 2021. "Malaysia Digital Economy Blueprint." Policy Paper. Putrajaya: Economic Planning Unit, Prime Minister's Department. https://www.epu.gov.my/sites/default/files/2021-02/Malaysia-digital-economy-blueprint.pdf.
- Frey, Carl Benedikt, and Michael A. Osborne. 2017. "The Future of Employment: How Susceptible Are Jobs to Computerisation?" *Technological Forecasting and Social Change* 114 (January):254–80. https://doi.org/10.1016/j.techfore.2016.08.019.
- Frost & Sullivan. 2020. "A Study on the Impact of the ERezeki Programme to Targeted Communities in Malaysia." Frost and Sullivan.
- Gong, Rachel. 2020. "Digital Inclusion: Assessing Meaningful Internet Connectivity in Malaysia." Kuala Lumpur: Khazanah Research Institute. http://www.krinstitute.org/assets/contentMS/img/template/editor/20200907%20Inclusion%20v4.0.pdf.
- Graham, Mark, Isis Hjorth, and Vili Lehdonvirta. 2017. "Digital Labour and Development: Impacts of Global Digital Labour Platforms and the Gig Economy on Worker Livelihoods." *Transfer: European Review of Labour and Research* 23 (2). SAGE Publications Ltd:135–62. https://doi.org/10.1177/1024258916687250.
- Gurumurthy, Anita, Deepti Bharthur, Nandini Chami, Jai Vipra, and Ira Anjali Anwar. 2019. "Platform Planet: Development in the Intelligence Economy." India: IT for Change. https://itforchange.net/platformpolitics/wp-content/uploads/2019/06/Platform-Planet-Development-in-the-Intelligence-Economy_ITfC2019.pdf.
- Hawk, Steve. 2018. "What an Economist Is Learning by Driving for Uber." Stanford Graduate School of Business. February 16, 2018. https://www.gsb.stanford.edu/insights/whateconomist-learning-driving-uber.

- Hinz, Richard, Robert Holzmann, David Tuesta, and Noriyuki Takayama. 2013. "Matching Contributions for Pensions." Washington DC: World Bank. http://documents1.worldbank.org/curated/en/106841468177233641/pdf/Matching-contributions-for-pensions.pdf\.
- Huws, Ursula, and Simon Joyce. 2016. "Size of the UK's 'Gig Economy' Revealed for the First Time." CROWD WORKING SURVEY. http://englishbulletin.adapt.it/wp-content/uploads/2016/02/crowd-working-surveypdf1.pdf.
- ITU. 2019. "State of Broadband Report 2019." Geneva: International Telecommunication Union and United Nations Education, Scientific and Cultural Organization. https://www.broadbandcommission.org/Documents/StateofBroadband19.pdf?mc_cid=ba1bfdab1d&mc_eid=e546476035.
- Kässi, Otto, and Vili Lehdonvirta. 2018. "Online Labour Index: Measuring the Online Gig Economy for Policy and Research." *Technological Forecasting and Social Change* 137 (December):241–48. https://doi.org/10.1016/j.techfore.2018.07.056.
- Katz, Lawrence F, and Alan B Krueger. 2016. "The Rise and Nature of Alternative Work Arrangements in the United States, 1995-2015." Working Paper 22667. National Bureau of Economic Research. https://doi.org/10.3386/w22667.
- Kessler, Sarah. 2018. *Gigged: The End of the Job and the Future of Work.* New York: St. Martin's Press.
- Kochan, Tom, and L Dyer. 2019. *Shaping the Future of Work*. Updated for 2nd edition. Cambridge, MA: MITxPress.
- KRI. 2017. *An Uneven Future: An Exploration of the Future of Work in Malaysia*. Kuala Lumpur: Khazanah Research Institute.
- ———. 2018. *The School-to-Work Transition of Young Malaysians*. Kuala Lumpur: Khazanah Research Institute.
- ———. 2019. *The State of Households 2018: Different Realities*. Kuala Lumpur: Khazanah Research Institute.
- Kuek, Siou Chew, Cecilia Paradi-Guilford, Toks Fayomi, Saori Imaizumi, and Panos Ipeirotis. 2015. "The Global Opportunity in Online Outsourcing (English) | The World Bank." Working Paper ACS14228. http://documents.worldbank.org/curated/en/138371468000900555/pdf/ACS14228-ESW-white-cover-P149016-Box391478B-PUBLIC-World-Bank-Global-OO-Study-WB-Rpt-FinalS.pdf.
- Lehdonvirta, Vili, Otto Kässi, Isis Hjorth, Helena Barnard, and Mark Graham. 2018. "The Global Platform Economy: A New Offshoring Institution Enabling Emerging-Economy Microproviders:" *Journal of Management*, August, 567–99. https://doi.org/10.1177/0149206318786781.
- Malaysia Digital Economy Corporation. 2019. "Malaysia's Experience in Crowd Labour and Sharing Economy." presented at the Crowdsourcing Week Global 2019.
- MDEC. 2020. "Let's Learn Digital." MDEC. April 29, 2020. https://mdec.my/digital-economy-initiatives/for-the-people/talent-development/lets-learn-digital/.
- ——. n.d. "ERezeki | Now Everyone Can Benefit from the Digital Economy." ERezeki. n.d. https://erezeki.my/.
- MOF. 2019. "Budget 2020 Speech." https://www.treasury.gov.my/pdf/budget/speech/bs20.pdf. Nur Thuraya Sazali, and Zhai Gen Tan. 2019. *The Demise of Formal Employment? A Literature Update on Informality*. Kuala Lumpur: Khazanah Research Institute.
- Schriner, Andrew, and Daniel Oerther. 2014. "No Really, (Crowd) Work Is the Silver Bullet." *Procedia Engineering*, Humanitarian Technology: Science, Systems and Global Impact 2014, HumTech2014, 78 (January):224–28. https://doi.org/10.1016/j.proeng.2014.07.060.

- Sutherland, Will, and Mohammad Hossein Jarrahi. 2018. "The Sharing Economy and Digital Platforms: A Review and Research Agenda." *International Journal of Information Management* 43 (December):328–41. https://doi.org/10.1016/j.ijinfomgt.2018.07.004.
- Talent Corp. (n.d). "Career Comeback Programme Initiatives | TalentCorp Malaysia." (n.d). https://www.talentcorp.com.my/initiatives/career-comeback-programme.
- Tan Zhai Gen, and Dr Rachel Gong. 2021. "Gig Workers' Training Must Be Inclusive | The Star." March 1, 2021. https://www.thestar.com.my/opinion/letters/2021/03/01/gigworkers-training-must-be-inclusive.
- Ticona, Julia, Alexandra Mateescu, and Alex Rosenblat. 2018. "Beyond Disruption: How Tech Shapes Labor Across Domestic Work & Ridehailing." New York, NY, Atlanta, GA, and Washington, DC: Data & Society. https://datasociety.net/wp-content/uploads/2018/06/Data_Society_Beyond_Disruption_FINAL.pdf.

CHAPTER

04

DIGITALISATION OF FIRMS: CHALLENGES IN THE DIGITAL ECONOMY

4.1	Introduction	92
4.2	4.2 All firms stand to benefit from digitalisation	
4.3 Challenge #1: Inadequate digitalisation by firms of all sizes		
4.4 Challenge #2: A digital divide between firms		
4.5	Inclusive competition or exclusive domination?	96
4.5.1 Platforms: The new giants of the digital economy		96
4.6	The way forward	98
4.6	6.1 Reduction in the costs of digitalisation	98
4.6.2 Development of worker skills		98
4.6.3 Digitally relevant regulations		99
4.6	6.4 The role of digital governance	99
4.7	Conclusion	100
References		101

CHAPTER 4

DIGITALISATION OF FIRMS: CHALLENGES IN THE DIGITAL ECONOMY¹⁶⁸

By Amos Tong and Rachel Gong

"Economic institutions shape economic incentives: the incentives to become educated, to save and invest, to innovate and adopt new technologies, and so on. It is the political process that determines what economic institutions people live under, and it is the political institutions that determine how this process works".

Daron Acemoglu¹⁶⁹

4.1 Introduction

Malaysians use digital technologies widely, but digital adoption by Malaysian businesses still lags behind the global average; only 29% of businesses had a web presence while a meagre 5.2% of businesses engaged in e-commerce in 2015^{170} .

As more business establishments participate in the digital economy, firms that are left out of this digital revolution will likely struggle to survive, let alone thrive¹⁷¹. While there is little dispute about the net benefits of digitalisation, there are significant challenges to the digitalisation of businesses in Malaysia.

The World Bank's "Malaysia's Digital Economy" report also states that there exists a digital divide among businesses in Malaysia, as "small- and medium-sized establishments [are] less likely than the average business establishment to access and use the internet" and that "businesses engaged in e-commerce tend to be much larger than the average establishment" 172.

Malaysia's digital economy faces at least two challenges: (i) inadequate digitalisation by firms of all sizes and (ii) a digital divide between firms. This could potentially result in Malaysian firms not keeping pace with the demands of a global digital economy with small and medium-sized enterprises (SMEs) being left behind. This chapter discusses these challenges in the digital economy and suggests potential research and policy considerations to address them.

¹⁶⁸ An earlier version of this chapter authored by Amos Tong and Rachel Gong was published by KRI on 5 October 2020 as a Views piece titled "<u>Digitalisation of Firms: Challenges in the Digital Economy</u>".

¹⁶⁹ Acemoglu and Robinson (2013)

¹⁷⁰ WBG (2018a)

¹⁷¹ Digital Marketing Institute (2018)

¹⁷² WBG (2018a)

4.2 All firms stand to benefit from digitalisation

For large firms, the rationale behind digitalisation is clear: digitalisation improves efficiency, competitiveness and economies of scale. Firms can use complex technologies such as the automation of production processes and data-driven quality control processes to reduce costs and increase profit margins.

However, the case for digitalisation among SMEs is not as clear. Digitalisation is perceived as complex, costly and unnecessary. But digitalisation does not necessarily mean expensive equipment and total automation. There are at least five areas of digitalisation that benefit firms of all sizes, as shown in Table 4.1.

Table 4.1: Key areas for digitalisation

Key Area	Definition and Explanation
Procurement and inventory	Digital procurement software and inventory management systems reduce costs and streamline business operations as they reduce the manpower required to manually check and update inventory. For example, inventory restocking can be automated using analytical models that predict price fluctuations and customer demand.
Accounting and taxes	Digital accounting software record transactions accurately and instantly without human intervention, significantly reducing accounting errors that are commonly associated with manual bookkeeping.
Digital marketing	Digital marketing campaigns can reach a wider customer base more efficiently, effectively and cheaply than traditional advertising. For example, platforms such as Facebook, Instagram, or YouTube enable firms to promote their businesses via digital advertising with flexible pricing plans.
E-commerce	E-commerce (e.g. via platforms such as Lazada and Shopee) helps firms overcome geographical limitations and lowers the cost of entry for entrepreneurs and SMEs, allowing them to compete with established firms.
Electronic Point of Sale (ePOS) and contactless payment systems	ePOS is a system that records sales, manages payments and monitors inventory, enabling accurate, up-to-date information on business operations. The system enables businesses to engage in data analytics (e.g. by generating reports on product popularity), thus optimising business performance. Contactless payment systems, such as digital wallets, can reduce transaction time, increase security and improve customer experience.

Source: Adapted from MDEC (2020a)

It is clear that digitalisation is not size- or sector-specific and that all firms can increase productivity by digitalising multiple aspects of business operations.

4.3 Challenge #1: Inadequate digitalisation by firms of all sizes

Between 2010 and 2016, Malaysia's digital economy grew by 9% annually in value-added terms; it is estimated to make up 20% of the economy in 2020. E-commerce alone is expected to exceed RM110 billion—nearly 40% of the digital economy¹⁷³—in 2020. However, efforts by businesses to digitalise and join the digital economy are not keeping pace with this growth. The first challenge in Malaysia's digital economy is with respect to widespread digitalisation of firms of all sizes.

Businesses in Malaysia are not adopting digital technologies as readily as the Malaysian government and general population. Asia IoT Business Platform found that only about one in three businesses in Malaysia have implemented digital transformation strategies, while fewer than one in four businesses have a dedicated digital strategy team¹⁷⁴. Malaysia also has "fewer businesses with websites and fewer secure servers than per capita income would predict"¹⁷⁵ compared to other countries. As at 2017, only 37.8% of establishments in Malaysia have a web presence¹⁷⁶.

A survey of 28 top publicly listed corporations also found that large firms in Malaysia do not digitalise as rapidly as those of other countries. Among these 28 corporations, only five digitally track their inventories in real-time, while 16 assess internal performance with data analytics. When taken as a whole, top firms in Malaysia recorded a Digital Performance Index (DPI) of 1.7 as opposed to United States' 2.5¹⁷⁷.

The Managing Director of Microsoft Malaysia, K. Raman, highlighted two reasons why Malaysian businesses may find it challenging to embrace digital transformation: a lack of technology knowledge and organisational silos¹⁷⁸. First, firms committed to digitalisation face myriad challenges, such as not knowing where to start, how to implement their digital strategies, or where to find technologically skilled employees.

Second, 49% of firms cited organisational silos as a critical challenge in digitalisation¹⁷⁹. Some firms may have organisational structures so rigid that each department is in its own silo, acting independently and lacking coordination. This could be why 55% of Malaysian organisations do not have an integrated enterprise-wide digital transformation strategy¹⁸⁰.

¹⁷³ WBG (2018a)

¹⁷⁴ Sue Yuin Ho (2019)

¹⁷⁵ WBG (2018a)

¹⁷⁶ DOS (2018)

¹⁷⁷ Lim Yin Sern et al. (2017)

¹⁷⁸ Yapp (2020)

¹⁷⁹ Modgil and Ltd (2019)

¹⁸⁰ BusinessToday (2019)

A third challenge to widespread digitalisation among Malaysian firms, especially SMEs, is the costs associated with digitalisation, such as internet connectivity, digital hardware, software subscription fees and worker upskilling. About 50% of SMEs in Malaysia cite funding as a key hindrance to digitalisation¹⁸¹. Accenture reported that among 28 leading Malaysian companies it surveyed, 12 "have digital growth strategies in place", but only two "have announced dedicated budgets to implement these strategies"¹⁸². The World Bank suggested that this problem is compounded by relatively expensive yet low quality broadband connectivity in Malaysia¹⁸³.

4.4 Challenge #2: A digital divide between firms

All firms face challenges digitalising their business operations but SMEs have been found to lag behind larger firms in adopting more complex digital solutions. For instance, although 77% of all digitalised businesses are SMEs, SMEs only make up 25% of businesses achieving advanced digitalisation¹⁸⁴. The World Bank also stated that "large export-oriented firms dominate the digital economy as they adopt e-commerce at higher rates than SMEs"¹⁸⁵.

On the whole, Malaysian SMEs have increased their use of information and communication technologies, with over 80% of businesses using computers and smartphones, and over 70% using the internet in their business operations in 2018^{186} . Malaysia's SMEs also turned to digitalisation at a rapid pace during the Covid-19 pandemic. SMEs registered with Boost, an e-wallet service, recorded a 60% increase in 2020 alone, indicating an accelerating pace of digitalisation among SMEs.

Digital adoption by SMEs is most concentrated in front-end computing devices and connectivity (>85%), and least prevalent in back-end business processes such as inventory management (14%) and order fulfilment software (11%). Furthermore, only 44% and 54% of SMEs use cloud computing and data analytics, respectively¹⁸⁷. For comparison, in 2014, 85% of SMEs in Singapore used cloud computing¹⁸⁸.

¹⁸¹ SME Corp and Huawei (n.d)

¹⁸² Lim et al. (2020)

¹⁸³ WBG (2018b)

¹⁸⁴ Consultancy Asia (2020)

¹⁸⁵ WBG (2018a)

¹⁸⁶ NESDC (2020)

¹⁸⁷ SME Corp and Huawei (n.d)

¹⁸⁸ Yu (2014)

4.5 Inclusive competition or exclusive domination?

Digital technologies were expected to bring down long-standing barriers and empower smaller businesses, which would be "inclusive and rewarding for all"¹⁸⁹. An open internet would theoretically allow all firms equal access to information and markets at greater scale and lower cost, which would benefit smaller business establishments. Achieving this ideal implied a future of perfect competition within the digital economy.

However, the centrality of data in the digital economy means that larger firms that can capture large volumes of data gain an upper hand over smaller businesses. Contemporary economic theories emphasise economies of scale as a factor in minimising cost; the $21^{\rm st}$ century version of economies of scale is big data. Big data is data "that is so large, fast or complex that it's difficult or impossible to process using traditional methods"¹⁹⁰.

Due to their large size and access to capital, large firms are more likely to take advantage of big data. For example, a large firm can build customised in-house digital solutions to complement their digital transformation strategies. A dedicated data analytics department with access to market and customer data could help a firm implement its digital strategy more efficiently and effectively by adjusting the pace and structure of digitalisation according to the firm's needs.

In this way, large firms can optimise their operations and maximise profit margins, effectively shutting out competition. For instance, Amazon was accused of collecting and using data from third-party sellers in order to undercut the competition and boost sales of its own products¹⁹¹. This behaviour may lead to oligopolies, or even monopolies, in the digital economy.

4.5.1. Platforms: The new giants of the digital economy

The digital economy gave rise to a new breed of billion-dollar-corporations—intermediary service providers or platforms—that subverts the conventional direct economic relationship between firms and consumers. These intermediary service providers connect businesses and customers, charging both parties a fee for this service. Ride-hailing behemoth Grab and food delivery service FoodPanda are examples of platforms. These firms can monopolise entire market segments due to *network effects*, their *ability to extract, control and analyse data*, and *path dependency* (refer to Table 4.2).

¹⁸⁹ MDEC (2019)

¹⁹⁰ SAS (2020)

¹⁹¹ Bell (2020)

Table 4.2: How platforms monopolise the market

Term	Definition and Explanation
Network effects	A platform becomes more valuable as more users use it. For instance, if more drivers join the Grab platform, consumers are more likely to find a ride. Thus, drivers can earn more income, which will attract more drivers. This cycle continues, making the platform more and more valuable for both consumers and drivers.
Ability to extract, control and analyse data	As the platforms connect producers and consumers, they are able to extract vast quantities of data, which can be analysed to cut costs, improve advertising and improve their product quality. Furthermore, customer analytics can uncover hidden consumption trends and spending patterns, enabling better pricing strategies.
Path dependency	The costs of switching to an alternative platform increases as consumers use the platform more. Platforms can utilise user data to personalise suggestions, advertising and even build entire social networks that will make it difficult for users to switch to other alternatives.

Source: Adapted from UNCTAD (2019)

These platforms could further entrench their positions as market leaders by expanding their data extraction infrastructure and engaging in anti-competitive behaviour such as predatory pricing, which aims to destroy competition in the market. Furthermore, due to their sheer financial size, these digital economy giants could venture into other sectors such as finance, insurance, hospitality and tourism to diversify their business operations. This could increase the risk of anti-competitive mergers and acquisitions through which large firms could diversify their business operations and dominate multiple sectors concurrently.

Large platforms can gradually build super-apps that encompass a multitude of services, as Grab is already doing in Southeast Asia. As of 2019, Grab has more than 60% of the ride-hailing market share in Southeast Asia and 26.8% of e-wallet market share in Malaysia, making it the dominant player in both industries¹⁹².

Grab's dominant market position has indeed been scrutinised. After Grab's purchase of Uber's Southeast Asia operations, it was fined RM86 million by the Malaysia Competition Commission (MyCC) for "distorting competition" and "creating barriers to entry and expansion for Grab's existing and future competitors"¹⁹³. The general concern for large platforms is that, left unchecked, platforms could monopolise and dismantle competition in their sectors, neutralising SMEs' ability to compete in the digital economy.

¹⁹² Trefis Team (2019); Nathan (2018)

¹⁹³ Al Jazeera (2019)

4.6 The way forward

Given these challenges, policies could be developed to encourage universal digitalisation by businesses and to bridge the digital divide between firms in the digital economy. The goal of such policies is to build an inclusive digital economy so that all parties can reap the benefits of the digital age. We suggest the following areas for research and policy consideration:

4.6.1. Reduction in the costs of digitalisation

As described earlier, approximately 50% of business establishments in Malaysia cited cost as a big challenge to digitalisation. The Malaysian government could consider reducing the barriers to digitalisation by collaborating with technology solution providers to introduce lower pricing packages for SMEs. Moreover, temporary tax incentives could be introduced for newly digitalised SMEs to offset the initial financial investment.

The PENJANA economic recovery plan allocated RM700 million to eligible SMEs to defray digitalisation costs¹⁹⁴. Two key programmes under this plan are the SME Digitalisation Matching Grant totalling RM100 million in partnership with telecommunications companies and the SME Technology Transformation Fund totalling RM500 million in loans. Take-up rates for these programmes are not yet available.

MDEC runs a wide variety of programmes intended to spur digitalisation among firms, such as the SME Business Digitalisation Grant, the SMART Automation Grant, the Digital Transformation Acceleration Programme and the Malaysia Tech Entrepreneur Programme¹⁹⁵. However, some of these programmes have restrictions. For instance, the SME Business Digitalisation Grant is limited to 100,000 SMEs¹⁹⁶. This means that only 11% of the 907,195 SMEs¹⁹⁷ in Malaysia can benefit from this initiative. Admittedly the take up rate of these programmes may be low as many SMEs may be unaware of or uninterested in such programmes, a topic worth further investigation. Nonetheless, the government could expand these programmes to all interested SMEs.

The SME Business Digitalisation Grant also partnered with Boost to improve digitalisation among SMEs. This partnership provides SMEs with digital payments, advertising and other marketing services through Boost. However, this matching grant means that SMEs have to pay a minimum of RM1,000 upfront, an amount many SMEs may find expensive²⁹.

4.6.2. Development of worker skills

Almost 50% of SMEs in Malaysia cited employee skill set as a significant barrier to digitalisation. For instance, 65% of SMEs said that their employees require training in IT-related technical skills³⁰.

¹⁹⁴ EPU (2020)

¹⁹⁵ MDEC (2020b)

¹⁹⁶ MDEC (2020a)

¹⁹⁷ NESDC (2020)

To overcome the digital skills mismatch faced by firms, the government could also aim to improve the technical skills of the workforce. Existing training and upskilling programmes for workers could be tailored towards specific digital and technical skills useful for digitalisation, such as database management or digital marketing.

Training may be required not just in terms of developing competitive technical skills, but also in business management in order to effectively implement digital technologies across different sectors. For example, research has shown that addressing the skills mismatch is a key component of addressing graduate unemployment¹⁹⁸. Further research is needed to identify and prioritise the development of skills relevant to the digital economy.

4.6.3. Digitally relevant regulations

There is a need for more research to determine if and/or which regulations need to be reviewed and updated in the context of the digital economy. A combination of competition and data protection regulations may help close the digital divide between firms.

Some platforms may offer their services for free but extract user information extensively. This may not be considered anti-competitive in contemporary competition legislation. However, as seen in the case of Amazon described earlier, platforms with a large user base and thus with access to a large volume of data have a significant advantage over their competitors. Further research is warranted on the extent of this phenomenon, which could be a form of predatory pricing in the digital age. As some have already argued, the extraction and use of data by businesses for commercial purposes should be regulated 199.

A review of mergers and acquisitions of firms in the digital economy may also be warranted. Firms in the digital economy may acquire smaller competing firms to accelerate the expansion of their businesses and reduce competition. This behaviour should be strictly regulated to restrict the abuse of market position by large oligopolies and monopolies in the digital economy.

4.6.4. The role of digital governance

Two critical components of the digital economy are infrastructure and data.

High quality digital infrastructure is necessary to support the increasing requirements of data processing and data transfer involved in digitalisation. Government standards, such as the Mandatory Standards for Quality of Service, have a key role to play in ensuring that reliable infrastructure exists to support the digital economy and the digitalisation of firms. Further research on these standards and current demand could help set minimum standards that are appropriate for different locales and sectors of the economy.

¹⁹⁸ KRI (2018)

¹⁹⁹ Khan (2016); Zuboff (2019)

Data analytics can uncover consumption patterns, optimal pricing strategies and hidden consumer preferences. Access to market research and proprietary user data may give larger firms an advantage in the digital economy. Allowing open access to government data, such as population demographics and geographical price trends, may allow SMEs to engage in data analytics without the high overhead costs of proprietary market research. Research suggests that open data benefits academic research²⁰⁰; additional research could assess the impact of open data on the digitalisation of firms.

4.7 Conclusion

The digital economy presents an abundance of opportunities for Malaysia, but also brings to surface tough challenges. Firms of all sizes across all sectors stand to benefit from digitalisation by increasing productivity and becoming more efficient and competitive. Nonetheless, lack of technical knowledge, organisational silos and costs remain barriers to digitalisation.

Digitalisation can provide increased opportunities for small businesses to expand their markets or it can lead to a consolidation of the market in the hands of a few big companies. In a best case scenario, increased competition could lower prices and increase product quality. But without proper government oversight and regulation, monopolistic firms could arbitrarily set prices and gain unfettered access to user data. By extracting user information and engaging in anti-competitive activities, platforms could dominate the digital economy, leaving SMEs behind.

Thus, it is crucial that inclusive policies and anti-monopoly regulations be put in place to encourage digitalisation by firms of all sizes and to close the digital divide between firms in Malaysia. The Malaysian Digital Economy Blueprint launched in February 2021 aims to facilitate digitalisation in firms of all sizes, proposing a "Digital Compass" to help guide firms through the digitalisation process according to their skills and needs²⁰¹. The Blueprint also calls for improved digital training for senior managers, an agile regulatory approach and pro-competition measures that include a review of competition laws by 2023. If effectively implemented, these strategies could be instrumental in helping firms, especially SMEs, navigate the challenges of digitalisation.

²⁰⁰ Ashraf (2020)

²⁰¹ EPU (2021)

References

- Acemoglu, Daron, and James Robinson. 2013. Why Nations Fail.
- Al Jazeera. 2019. "'Distorting Competition': Malaysia Fines Ride Hailing Firm Grab." Al Jazeera. March 10, 2019. https://www.aljazeera.com/economy/2019/10/3/distorting-competition-malaysia-fines-ride-hailing-firm-grab.
- Ashraf, Shaharudin. 2020. "Open Government Data for Academic Research." Working Paper. Kuala Lumpur: Khazanah Research Institute. http://www.krinstitute.org/Working_Paper-@-Open_Government_Data_for_Academic_Research.aspx.
- Bell, Karissa. 2020. "The Antitrust Case against Amazon Just Got Stronger." Engadget. June 30, 2020. https://www.engadget.com/amazon-antitrust-hearing-third-party-sellers-201126053.html.
- BusinessToday. 2019. "Most Malaysian Companies Lack Integrated Digital Transformation Strategy Business Today." Https://Www.Businesstoday.Com.My/ (blog). 2019. https://www.businesstoday.com.my/2019/09/18/the-digital-transformation-blueprint-software-defined-enterprises-in-asia-pacific/.
- Consultancy Asia. 2020. "Malaysia's Digital Economy Now Contributes One Fifth to GDP." July 7, 2020. https://www.consultancy.asia/news/3370/malaysias-digital-economy-now-contributes-one-fifth-to-gdp.
- Department of Statistics Malaysia. 2018. "Usage of IT and E-Commerce by Establishment 2018." Annual Survey. Malaysia. https://www.dosm.gov.my/v1/uploads/files/2_Censuses%26Surveys/Services/ICTeC/2018/Panduan%20KP411_ICTeC_2018_Eng.pdf.
- Digital Marketing Institute. 2018. "What's the Cost of Not Going Digital For a Business? | DMI."

 Digital Marketing Institute. June 17, 2018. https://my.digitalmarketinginstitute.com/blog/what-is-the-cost-of-not-going-digital-for-a-business.
- EPU. 2020. "Short Term Economic Recovery Plan (PENJANA)." Booklet. Putrajaya: Economic Planning Unit. https://penjana.treasury.gov.my/pdf/PENJANA-Booklet-En.pdf.
- ——. 2021. "Malaysia Digital Economy Blueprint." Policy Paper. Putrajaya: Economic Planning Unit, Prime Minister's Department. https://www.epu.gov.my/sites/default/files/2021-02/Malaysia-digital-economy-blueprint.pdf.
- Khan, Lina M. 2016. "Amazon's Antitrust Paradox." Yale Law Journal 126 (3):710-805.
- Khazanah Research Institute. 2018. The School-to-Work Transition of Young Malaysians. Kuala Lumpur: Khazanah Research Institute.
- Lim, Vanessa W, Rachel L Lim, Yi Roe Tan, Alexius SE Soh, Xuan Tan, Norhudah Bte Othman, Sue Borame Dickens, et al. 2020. "Government Trust, Perceptions of COVID-19 and Behaviour Change: Cohort Surveys, Singapore." Bulletin of the World Health Organization, October, 18.
- Lim Yin Sern, Teh Wee Vien, Loganantha Esparan, Bobby James, and Karyn Chua Su Yin. 2017. "Accenture, Faster Than Ever." Digital Performance Index. Ireland: Accenture. Accenture. https://www.accenture.com/_acnmedia/PDF-63/Accenture-Faster-Than-Ever-Infographic.pdf%23zoom=50.
- MDEC. 2019. "Who We Are." MDEC. June 12, 2019. https://mdec.my/about-mdec/who-we-are/.
 ——. 2020a. "SME Business Digitalisation Grant." MDEC. February 17, 2020. https://mdec.my/digital-economy-initiatives/for-the-industry/sme-digitalisation-grant/.
- ——. 2020b. "SMEs Digitalisation." MDEC. February 17, 2020. https://mdec.my/digitaleconomy-initiatives/for-the-industry/sme/.

- Modgil, Shweta, and People Matters Pte Ltd. 2019. "49% of C-Suite Executives in Malaysia See Organizational Silos as Key Challenge: Report." People Matters. July 22, 2019. https://www.peoplemattersglobal.com/news/c-suite/49-of-c-suite-executives-in-malaysia-see-organizational-silos-as-key-challenge-report-22428.
- Nathan, Lydia. 2018. "E-Wallet Users See Rapid Growth in M'sia." The Malaysian Reserve. December 21, 2018. https://themalaysianreserve.com/2018/12/21/e-wallet-users-seerapid-growth-in-msia/.
- NESDC. 2020. "SME Annual Report 2018/2019." Annual Report. SME Annual Report.
- SAS. 2020. "Big Data: What It Is and Why It Matters." 2020. https://www.sas.com/en_my/insights/big-data/what-is-big-data.html.
- SME Corp, and Huawei. n.d. "Accelerating Malaysian Digital SME's: Escaping the Computerisation Trap." Policy Paper. Kuala Lumpur: SME Corp and Huawei. Huawei. https://www.huawei.com/minisite/accelerating-malaysia-digital-smes/img/sme-corp-malaysia-huawei.pdf.
- Sue Yuin Ho. 2019. "5 Key Opportunities for Digitalization in Malaysia Asia IoT Business Platform." Asia IoT Business Platform. February 26, 2019. http://iotbusiness-platform.com/blog/5-key-opportunities-for-digitalisation-in-malaysia/.
- Trefis Team. 2019. "How Much Is Grab Worth?" Forbes. October 1, 2019. https://www.forbes.com/sites/greatspeculations/2019/01/10/how-much-is-grab-worth/.
- UNCTAD. 2019. Digital Economy Report 2019: Value Creation and Capture: Implications for Developing Countries. https://unctad.org/system/files/official-document/der2019_en.pdf.
- World Bank Group. 2018a. "Malaysia's Digital Economy: A New Driver of Development." Washington, DC: World Bank.
- ——. 2018b. "Malaysia Economic Monitor, June 2018: Navigating Change." Washington DC: World Bank. https://openknowledge.worldbank.org/handle/10986/29926.
- Yapp, Edwin. 2020. "Malaysia's Digital Transformation Efforts Progress." ComputerWeekly.Com. March 16, 2020. https://www.computerweekly.com/feature/Malaysias-digital-transformation-efforts-progress-amid-challenges.
- Yu, Eileen. 2014. "Singapore SMBs to Spend \$415M on Cloud." ZDNet. September 3, 2014. https://www.zdnet.com/article/singapore-smbs-to-spend-415m-on-cloud/.
- Zuboff, Shoshana. 2019. The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power. Public Affairs.

CHAPTER

05

OPEN GOVERNMENT DATA IN MALAYSIA: PRINCIPLES, BENEFITS, CHALLENGES AND THE WAY FORWARD

5.1 Introduction	104
5.2 Features of open government data	105
5.3 Benefits of open government data	106
5.3.1 Economic potential	106
5.3.2 Government transparency, accountability and effectiveness	108
5.3.3 Knowledge generation	111
5.4 Open government data global evaluations	112
5.5 Government data ecosystem in Malaysia	113
5.5.1 Laws related to government information	113
5.5.2 Current open government data policy in Malaysia	114
5.5.3 Open government data governance	116
5.6 Open government data challenges in Malaysia	117
5.6.1 Supply-side challenges	117
5.6.2 Demand-side challenges	120

5.7 The way forward for Malaysia	121
5.7.1 Right to Information law	121
5.7.2 Streamlining government data policy	122
5.7.3 Data privacy and security protection	125
5.7.4 Inclusive and meaningful use of government data	127
5.8 Conclusion	130
References	131

CHAPTER 5

OPEN GOVERNMENT DATA IN MALAYSIA: PRINCIPLES, BENEFITS, CHALLENGES AND THE WAY FORWARD²⁰²

By Ashraf Shaharudin

"[T]he three branches of the Government—the legislature, the executive and the judiciary—should ensure that the means of obtaining information is made available to the people, so that they can play a meaningful role in the participation of an open Government [and] an open Government must be the hallmark of a truly democratic country."203

HRH Sultan Azlan Shah, the Ninth Yang Dipertuan Agong and the former Lord President of the Federal Court

5.1 Introduction

As Covid-19 raged across the whole world, disrupting every aspect of society, the enormous value of data became clear, as did how ill-equipped most countries are to collect, integrate, analyse and communicate data. Unfortunately, countries that lacked data infrastructure and competency prepandemic are struggling to get the best of out of data during the pandemic, with resources and decision-making capacity channelled to areas deemed more urgent. Thus, the Covid-19 crisis has been a wake-up call for governments to accelerate the improvement in data policy, infrastructure and competency.

The advancement of digital technology brings forth a great volume and a wide range of data. Digital data superseded analogue data in 1998 and in 2014 amounted to 4.8 zettabytes (48 billion trillion bytes)²⁰⁴, equivalent to the data consumed by 16 trillion two-hour HD movies. Meanwhile, telecommunications capacity, measured in kilobits per second (kbps), has grown exponentially²⁰⁵. With this development, potentials for policymakers, private sector and researchers to generate economic and social value as well as to solve local and global challenges with data are aplenty.

In May 2013, the then-United States (US) President Obama signed an executive order asserting open and machine-readable data as the new default for government information to strengthen democracy, promote the delivery of efficient and effective public services, and contribute to economic growth²⁰⁶.

²⁰² This chapter is based on three papers authored by Ashraf Shaharudin, published by KRI titled "<u>Open Government Data: Principles, Benefits and Evaluations</u>", "<u>Open Government Data for Academic Research</u>" and "<u>Open Government Data in Malaysia: Landscape, Challenges and Aspirations</u>".

²⁰³ Sultan Azlan Shah (2004)

²⁰⁴ World Bank (2016)

²⁰⁵ World Bank (2016)

²⁰⁶ White House, Office of the Press Secretary (2013)

Soon after, in June 2013, the Group of Eight (G8)—composed of France, Germany, Italy, the United Kingdom, Japan, the US, Canada and Russia—signed the Open Data Charter that lays out five strategic principles including releasing government data openly by default and increasing the quality, quantity and re-use of published data²⁰⁷. Malaysia started the open government data initiative in 2014 with the launch of the Public Sector Open Data Portal²⁰⁸.

5.2 Features of open government data

Open government data is a concept that encompasses the best practices for government datasharing, appropriate for a digital age, to generate the maximum possible value from the data. In theory, open government data is digital government data that is free from legal and technical constraints to be used by anyone at anytime from anywhere²⁰⁹. Government data is any information that is collected by the government either through direct responses such as census and survey or through remote observation enabled by technology such as satellite imagery and sensors²¹⁰.

Table 5.1 lists the salient features of open data gathered from three references, namely the Sunlight Foundation, the International Open Data Charter and the Open Knowledge Foundation.

Table 5.1: Salient features of open government data

Feature	Aspects	References
Completeness	All data is open by default, unless with valid justifications for closure such as privacy and security concerns. Permanence, i.e. data available online should remain online. Comprehensive metadata included. Initiative to digitise non-electronic data such as physical artefacts is encouraged.	SF, IODC
Granularity	Highest possible level of granularity. If possible, data is provided in its original and unmodified form.	SF, IODC
Timeliness	Data is made available as quickly as possible.	SF, IODC
Accessibility	Open license. Free of charge. Downloadable via the Internet. No legal/technical barrier.	SF, IODC, OKF
Machine processability	Data in a form readily processable by a computer	SF, IODC, OKF
Non-proprietary	Data is available in a format in which no entity has exclusive control.	SF, OKF

Note: SF: Sunlight Foundation; IODC: International Open Data Charter; OKF: Open Knowledge Foundation.

Source: Open Knowledge Foundation (2013), International Open Data Charter (n.d.) and Sunlight Foundation (2010)

²⁰⁷ G8 (2013)

²⁰⁸ MAMPU (n.d.)

²⁰⁹ Synthesised in Ashraf (2020b) based on Open Knowledge Foundation (2013), International Open Data Charter (n.d.) and Sunlight Foundation (2010)

²¹⁰ Loosely following the definition taken by World Bank (2020). It is worth clarifying that this paper uses data and information interchangeably for reasons discussed in Ashraf (2020b).

5.3 Benefits of open government data

5.3.1. Economic potential

Data is a valuable yet non-exhaustible commodity. Data needs to be used for its value to be realised. Merely collecting data, without using it, does not generate any value. The use of data by a user does not reduce its availability for other users. In fact, data generates more (private or public) value with greater use²¹¹, a scenario termed "the *comedy* of the commons"²¹². This stands in contrast to common-pool resources such as fishery and forest resources, where their consumption (in a non-sustainable way) will eventually reduce their availability, a scenario called "the tragedy of the commons".

Estimating the economic value of open government data is challenging, as it includes direct values such as investment and market value as well as indirect values such as wider social and economic benefits²¹³. When more data is made open, more people (citizens, companies, researchers, etc.) are given access to these non-exhaustible resources, generating more value²¹⁴. Making data open circumvents the issues of information asymmetry on at least two levels.

First, governments would not have to "pick winners" especially since they may not have full information of which organisation/individual could generate value²¹⁵. For example, there are around 600 consumer and analytics applications used by around 42% of Londoners that are powered by Transport of London (TfL)'s data since TfL made its data open over a decade ago. This saved TfL from having to produce apps in-house. The use of TfL data by companies is estimated to generate between GBP70m and GBP90m in gross value added (GVA) per year while supporting around 500 high-value jobs²¹⁶.

The Spanish government launched the Aporta Initiative in 2009 to "promote the opening of public information and development of advanced services based on data" In 2016, there were 662 companies in the *infomediary* sector In Spain, generating EUR1.7b and employing 19,347 people. Three main areas within the sector are geographic information (23%), market research (23%), and economics and finance $(21\%)^{219}$.

A study by Koski (2011) found that between 2000 and 2007, architectural and engineering-related firms in countries where fundamental geographical information (GI) is provided free or at marginal cost have grown on average about 15% more per year than firms in countries in which GI is priced according to cost-recovery (average cost) principles²²⁰.

²¹¹ Nevertheless, while data can be used to generate either private or public value, the challenge is to reap the most public value possible from government data while also allowing government data to be used for private gain.

²¹² Rose (1986)

²¹³ Gruen, Houghton, and Tooth (2014)

²¹⁴ Value can be non-market/non-traded value such as better policies, environment and mental health.

²¹⁵ Frischmann (2006)

²¹⁶ Deloitte (2017)

²¹⁷ datos.gob.es (n.d.)

²¹⁸ The sector that uses public and private data to create value-added products and services

²¹⁹ datos.gob.es (2018)

²²⁰ For simple understanding, average cost is usually higher than marginal cost since average cost includes fixed cost.

The European Union (EU) Open Data Portal (ODP) compiles applications developed by the EU institutions and third parties that use the portal's open data. There are 115 web applications, 13 mobile applications and two desktop applications listed in the portal so far, offering various functions such as data visualisation and analysis, covering a wide range of topics including Covid-19, economics, environment, agriculture and international aid.

Second, an organisation/individual would not be restricted by limited information to generate the highest possible value. A large volume of data is needed to maximise the potential of emerging technologies such as big data and machine learning. For example, a farm-analytics firm Climate Corp., which is owned by Monsanto, one of the world's largest agribusiness companies, used 60 years of crop yield data and 14 terabytes of information on soil types provided freely by the US Department of Agriculture to price crop insurance²²¹.

Sense-T, a partnership between the University of Tasmania, Commonwealth Scientific and Industrial Research (CSIRO) and several Tasmanian authorities, brings researchers and industry players to use data, sensing and telemetry technologies, and data analytics to solve problems on the ground²²². Past projects have mainly addressed issues in agriculture and aquaculture. Examples include developing tools to help vineyards avoid disease and make better management decisions and giving Tasmanian regulators real-time data about environmental conditions around shellfish farms²²³. They are also working in other areas such as health, tourism, financial services and logistics.

TradeData International and Sirca are two data-based business units of Australian higher education institutions that have expanded to serve many private sector players and international organisations since their establishment in 1997²²⁴. TradeData International provides international trade data analytics services using mostly data from countries' customs clearance documentation for imports and export declarations²²⁵. Meanwhile, Sirca offers financial market data analytics services to the financial industry as well as regulators²²⁶. The growth of these two business units demonstrates the demand for better data-driven business insights in the private sector.

With the growth of the solar industry in South Korea, a company called Haezoom uses data provided by several Korean ministries, the National Academy of Sciences, and the Korean Meteorological Administration to provide an impartial cost-benefit analysis of solar panel installation to consumers. It also suggests credible manufacturers to purchase solar panels from. The service allows consumers to make an informed decision in installing solar panels²²⁷.

²²¹ Kesmodel (2013)

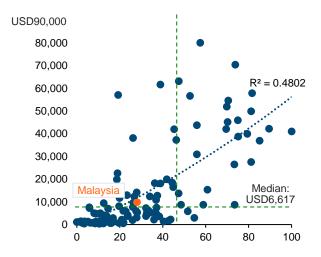
²²² Sense-T (n.d.b)

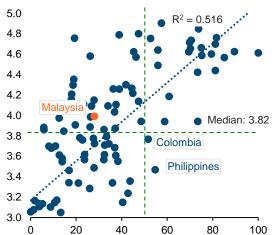
²²³ Sense-T (n.d.a)

²²⁴ Gruen, Houghton, and Tooth (2014)

²²⁵ TradeData International (2015)

²²⁶ SIRCA (n.d.)


²²⁷ Center for Open Data Enterprise (n.d.)


Countries that have higher gross domestic product (GDP) per capita have higher Open Data Barometer (ODB)²²⁸ scores as shown in Figure 5.1 and Figure 5.2. While the relationship does not necessarily imply causality, it indicates open government data as a likely feature of a developed country.

It is worth noting that based on the level of GDP per capita, Malaysia is one of the underperforming countries in open government data. Even though Malaysia's GDP per capita is above the global median, Malaysia's ODB score is below half of the full ODB score. On the other hand, Colombia and the Philippines are two countries with GDP per capita below the global median but with ODB scores above 50.

Figure 5.1: GDP per capita (current prices in USD) versus Open Data Barometer (ODB) score, 2016

Figure 5.2: Log-transformed GDP per capita (current prices in USD) versus Open Data Barometer (ODB) score, 2016

Source: World Bank (n.d.b); World Wide Web Foundation (2017)

5.3.2. Government transparency, accountability and effectiveness

With open government data, information related to government activities, such as government spending and contracting, is accessible to the public. This allows better checks and balances and well-informed policy advocacy, as well as holding public officials more accountable. It is widely recognised that strong and inclusive institutions are key to economic prosperity²²⁹.

²²⁸ Open Data Barometer is one of the global open government data evaluations. The score ranges between 0 and 100, where a higher score indicates a higher level of open data. The latest edition, published in 2018, was The Leaders edition that looks specifically into 30 countries that have made commitments to open data either by adopting the Open Data Charter or signing up for the G20 Anti-Corruption Open Data Principles. Malaysia is not in the 2018 edition.

²²⁹ Acemoglu and Robinson (2012)

Fundar, a Mexican civil society organisation, has persuaded the Mexican Ministry of Agriculture to open its data related to the Programme for Direct Assistance in Agriculture (PROCAMPO) and discovered that 57% of the subsidy went to only the wealthiest 10% of recipients²³⁰. Fundar maintains a website which publishes regularly updated information on the agricultural support programmes in Mexico to promote accountability in subsidy delivery²³¹.

The US Federal Reserve publishes full documentation of the FRB/US model including model equations, coefficients and data. The FRB/US model is a large-scale model of the US economy that contains all major components of the product and income sides of the US national accounts²³². It is used by the US government for forecasting and conducting analysis of monetary and fiscal policies. The open documentation of the model allows anyone to use the model for their own forecasting as well as to conduct checks and balances.

The Ministry of Finance of Timor-Leste with support from the governments of Japan, Australia and the US, together with the Asian Development Bank maintains the Aid Transparency Portal (ATP), which contains all aid information in Timor-Leste. The objective is to improve aid transparency, accuracy and predictability and to ensure that the assistance provided is efficient and effective²³³.

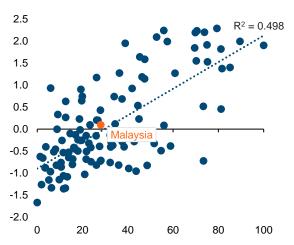
The Opentender platform²³⁴ provides comprehensive public procurement information from 33 jurisdictions (28 EU member states, Norway, the EU Institutions, Iceland, Switzerland and Georgia) free of charge in an easy-to-use format to increase market transparency, decrease transaction costs and facilitate government accountability²³⁵.

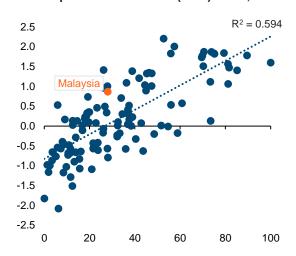
A higher level of open government data is correlated with better governance indicators (i.e. control of corruption, government effectiveness, regulatory quality, and voice and accountability) as shown in Figure 5.3 – Figure 5.6. The direction of causality could be either way or both—open government data improves governance and/or good governance implements open government data.

²³⁰ World Bank (2016)

²³¹ FUNDAR (2010)

²³² The Federal Reserve (2018)

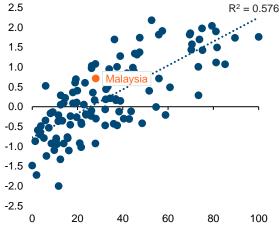

²³³ ATP (n.d.)

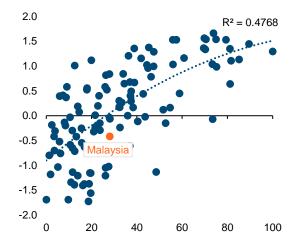

²³⁴ Opentender platform is part of the DIGIWHIST project, funded by the European Union (EU) to empower society to combat public sector corruption. Source: DIGIWHIST (n.d.b)

²³⁵ DIGIWHIST (n.d.a)

Figure 5.3: Control of corruption estimate versus Open Data Barometer (OBD) score, 2016

Figure 5.4: Government effectiveness estimate versus Open Data Barometer (OBD) score, 2016


Note:


- ODB scores are scaled scores (i.e. maximum = 100)
- All governance indicators range from -2.5 (very bad) to 2.5 (excellent)
- Control of corruption: perceptions of the extent to which public power is exercised for private gain
- Government effectiveness: perceptions of the quality of public services, the quality of the civil service and the degree of its independence from political pressures, the quality of policy formulation and implementation, and the credibility of the government's commitment to such policies

Source: World Bank (n.d.c); World Wide Web Foundation (2017)

Figure 5.5: Regulatory quality estimate versus Open Data Barometer (ODB) score, 2016

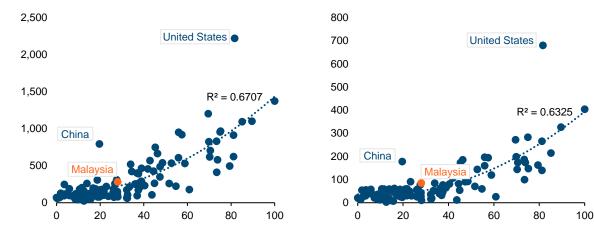
Figure 5.6: Voice and accountability estimate versus Open Data Barometer (ODB) score, 2016

Note:

- ODB scores are scaled scores (i.e. maximum = 100)
- All governance indicators range from -2.5 (very bad) to 2.5 (excellent)
- Regulatory quality: perceptions of the ability of the government to formulate and implement sound policies and regulations that permit and promote private sector development
- Voice and accountability: perceptions of the extent to which a country's citizens are able to participate in selecting their government, as well as freedom of expression, freedom of association, and a free media

Source: World Bank (n.d.c); World Wide Web Foundation (2017)

5.3.3. Knowledge generation


Open data allows society to harness collective intelligence in generating knowledge. Detailed, timely and good quality data is a valuable resource for both fundamental and applied research in the natural and social sciences. Researchers could save time and costs by utilising existing open data instead of collecting their own data to conduct research. Open data, instead of privately collected data, could also facilitate greater collaborations and replications among researchers in different institutions.

Open government data is one way of achieving open science. The United Nations Educational, Scientific and Cultural Organization (UNESCO) defines open science as "the movement to make scientific research and data accessible to all"²³⁶. The objectives of open science include allowing a more accurate verification of scientific findings through peer-review and replication, reducing duplication in collecting data and promoting citizens' engagement in science²³⁷. The Covid-19 pandemic has demonstrated the importance of open science to foster scientific collaboration and accelerate public health response²³⁸. While open science requires efforts from various stakeholders especially from the research community, governments have a big role in encouraging open science including by making government data open.

Countries that have a higher level of open government data produce a higher number of and more impactful academic publications (Figure 5.7 and Figure 5.8). Controlling for other variables such as the level of economic development, research and development expenditure and the number of researchers, open government data is found to be a significant driver of academic publications²³⁹. Although the empirical analysis is done on academic research, it highlights the importance of open data to research in general, including non-academic research.

Figure 5.7: H-index (all field) versus Open Data Barometer (OBD) score, 2016

Figure 5.8: H-index (social science) versus Open Data Barometer (OBD) score, 2016

Note: Country's h-index is the country's number of articles (h) that have received a least h citation based on Scopus database Source: Scimago Lab (2020); World Wide Web Foundation (2017)

²³⁶ UNESCO (2017)

²³⁷ UNESCO (2017), OECD (n.d.; 2015).

²³⁸ See Ashraf (2020a) on the role of open science in responding to the Covid-19 crisis.

²³⁹ Ashraf (2020c)

Around the world, several initiatives have been carried out to open up data for crowdsourcing knowledge. For instance, New Zealand's Land, Air, Water Aotearoa (LAWA) is a web-based platform that provides a large amount of scientific data on land, air and water in the country²⁴⁰. It is an initiative by New Zealand's 16 regional councils, the Cawthron Institute and the Ministry for the Environment supported by the Tindall Foundation and Massey University.

InfoAmazania combines governments and satellite data to provide rich datasets of the endangered Amazon region. It is supported by the Earth Journalism Network, the International Center for Journalists, the Amazon Conservation Team and Dejusticia. The public is also encouraged to share data with the platform²⁴¹.

Pulse Lab Jakarta, a joint initiative between the United Nations and the Ministry of National Development Planning Indonesia, uses data from various sources including government datasets to generate policy-relevant insights and visualisation tools. Past projects include designing an interactive geospatial mapping tool of various financial services points and conducting a port network analysis for maritime development policy in Indonesia²⁴².

5.4 Open government data global evaluations

Malaysia did not perform well in multiple global evaluations of open government data (Table 5.2). In the latest²⁴³ Open Data Barometer (ODB), Global Open Data Index (GODI) and Open Data Inventory (ODIN), Malaysia was behind the Philippines, Singapore and Indonesia, as well as many other developing countries. Malaysia ranked eighth from the bottom out of 94 places in the 2016/17 Global Open Data Index (GODI). Malaysia's scores in the Open Data Barometer (ODB) and the Open Budget Index (OBI) have also not improved significantly over the years²⁴⁴, reflecting very little progress in making government data more open.

Table 5.2: Open government data evaluations ranking, selected countries

ODB 2016 (/115	ODB 2016 (/115) GODI 2016/17 (/94) ODIN 2018/19 (/178)		/178)	OBI 2019 (/118)			
Mexico	11	Brazil	8	Singapore	1	South Africa	2
Brazil	18	Mexico	11	Mexico	22	Mexico	4
Philippines	22	Singapore	17	Philippines	41	Brazil	6
Singapore	23	India	32	Indonesia	49	Philippines	10
India	33	South Africa	43	India	55	Indonesia	18
Indonesia	38	Turkey	45	Brazil	56	Thailand	30
Turkey	40	Thailand	51	South Africa	65	Turkey	46
South Africa	46	Philippines	53	MALAYSIA	69	India	53
MALAYSIA	53	Indonesia	61	Turkey	74	MALAYSIA	55
Thailand	53	MALAYSIA	87	Thailand	126	Singapore	N/A

Note:

- ODB: Open Data Barometer; GODI: Global Open Data Index; ODIN: Open Data Inventory; OBI: Open Budget Index
- · Numbers in the brackets in the top row are the number of countries/places evaluated for each ranking

Source: World Wide Web Foundation (2017), Open Knowledge Foundation (2016), Open Data Watch (2019), International Budget Partnership (2020) as compiled in Ashraf (2020b)

²⁴⁰ LAWA (n.d.)

²⁴¹ InfoAmazonia (n.d.)

²⁴² UN Global Pulse (n.d.)

 $^{^{243}\,\}mbox{At}$ the time when Ashraf (2020b) was written.

²⁴⁴ Ashraf (2020b)

5.5 Government data ecosystem in Malaysia

5.5.1. Laws related to government information

Official Secrets Act 1972

Except for the Official Secrets Act 1972²⁴⁵, Malaysia does not have any other overarching law for government data. The Official Secrets Act provides broad and decentralised authority to individual government bodies to declare information as restricted, confidential, or secret²⁴⁶. As opposed to a Right to Information (RTI) law—which Malaysia currently does not have at the national level—that sets openness as the normative approach towards government information sharing, the Official Secrets Act implies circumspectness. It is therefore logical for public servants to practice restraint in releasing government data when confronted with legal uncertainty²⁴⁷, especially when there is no competing or superseding law that compels disclosure.

Statistics Act 1965

Meanwhile, the Statistics Act 1965 deals with the role of the Department of Statistics (DOS) and the Chief Statistician²⁴⁸. The Statistics Act confers broad authority to DOS to "collect and interpret" data related to any field necessary for public policy. However, the Act does not provide DOS with the mandate to manage or direct the national statistical system²⁴⁹. Hence, individual agencies²⁵⁰ can and do collect their own data, administered by their own governance structure with devolved data sharing authority protected under the Official Secrets Act.

In September 2020, the Malaysian government announced its plan to revise the Statistics Act to strengthen the role of DOS to "develop a systematic mechanism for coordination, reach and cooperation in data sharing"²⁵¹. The Minister in the Prime Minister's Department, Datuk Seri Mustapa Mohamed, admitted that government data is presently scattered across different databases held by various agencies. Therefore, the plan is to streamline data coordination between government agencies under one agency. The Cabinet has approved the formation of a National Statistics and Data Council, which will be the highest agency with regard to national data and analysis²⁵².

A reform to the Statistics Act is timely. However, one question remains: how are decisions to share government data to stakeholders outside the government made? Under the current Statistics Act, DOS has the power to share its data with anyone outside the government "where they consider it in the public interest". This essentially means that the Chief Statistician has broad discretion to determine what data can be shared with the public. If the proposed coordination of government data management comes to pass, depending on the form of the coordination and in the absence of any other law on access to government data, it may imply granting substantial and concentrated power to an individual to determine what government data can be shared.

```
<sup>245</sup> Government of Malaysia (2006)
```

²⁴⁶ World Bank (2017a)

²⁴⁷ World Bank (2017a)

²⁴⁸ Government of Malaysia (1989)

²⁴⁹ World Bank (2017b)

²⁵⁰ In this chapter, "agencies" refer to federal government ministries, agencies and state government offices.

²⁵¹ Nur Hanani (2020)

²⁵² Syahirah (2020)

Personal Data Protection Act 2010

With regard to personal data, Malaysia is one of the first countries in Southeast Asia²⁵³ to enact a Personal Data Protection Act (PDPA) in 2010²⁵⁴. However, this Act does not apply to the federal government and state governments, only to commercial transactions. Aside from the PDPA and professional regulations such as the Malaysian Medical Council (MMC)'s Code of Professional Conduct, there are no other laws that protect data privacy in Malaysia. The non-applicability of the federal and state governments under the PDPA means the privacy of government data is not protected by any law. With the increasing amount of data collected by governments, especially in digital form and during the Covid-19 pandemic, it is pertinent for Malaysia to explore ways to fix this gap in personal data protection.

5.5.2. Current open government data policy in Malaysia

Eleventh Malaysia Plan 2016 – 2020

The 11th Malaysia Plan seeks to enhance service delivery with citizens at the centre. One of the strategies explicitly outlined is to leverage data by "proliferating open data among agencies, encouraging cross-agency data sharing, and leveraging big data analytics (BDA)". In this respect, the plan aims to strengthen the role of the Malaysian Administrative Modernisation and Management Planning Unit (MAMPU), an agency under the Prime Minister's Department, to spearhead the modernisation of the public sector²⁵⁵.

The Malaysian Administrative Modernisation & Management Planning Unit (MAMPU)

As the agency responsible for open government data initiative in Malaysia, MAMPU manages the Malaysia Open Data Portal (data.gov.my), a one-stop portal for government data in Malaysia²⁵⁶. In 2015, MAMPU distributed a General Circular: Public Sector Open Data Implementation to all federal and state government agencies as well as local authorities to guide the implementation of open government data. MAMPU defines open data as "data that can be used freely, can be shared and reused by citizens, government and private agencies for any purposes"²⁵⁷.

Under the Public Sector Information and Communication Technology (ICT) Strategic Plan 2016 – 2020, MAMPU underlines a data-driven government as one of the plan's cores²⁵⁸. The plan outlines five programmes under two strategies related to government data (Table 5.3).

²⁵³ World Bank (2017b)

²⁵⁴ Government of Malaysia (2010)

²⁵⁵ EPU (2015)

²⁵⁶ MAMPU (n.d.). Open government data is not only published in the Malaysia Open Data Portal (data.gov.my). Many ministries and agencies publish data in their own website, and some have their own open data portal such as eStatistik by DOS.

²⁵⁷ Prime Minister's Department (2015)

²⁵⁸ MAMPU (2016)

Table 5.3: Strategic core 2 (data-driven government) in the Public Sector ICT Strategic Plan 2016 - 2020

Strategy	Objective	Programme
Utilisation of government data		Expansion of the public sector open data initiative
	Optimising the use and realising the value of public sector data	Acceleration of public sector big data initiative
		Government service delivery transformation with data analytics
Managing and coordinating public sector data	Managing public sector data	Development of public sector data governance
	efficiently and holistically	Development of data sharing and management hub

Source: MAMPU (2016)

There is an obvious hurdle in implementing strategies outlined in the Public Sector ICT Strategic Plan. While MAMPU can initiate efforts to coordinate government data management and encourage data sharing, it does not have a legal mandate to enforce those efforts.

The Department of Statistics Malaysia (DOS)

The Department of Statistics Malaysia (DOS) Transformation Plan 2015 – 2020 expresses the department's commitment to improving accessibility to its data²⁵⁹. DOS has bilateral memoranda of understanding (MOU) with at least 12 universities for data sharing²⁶⁰. As previously mentioned, although DOS is the national statistical agency, the department's authority including its open data policy is limited to the data it collects.

The Ministry of Communications and Multimedia (KKMM)

The Ministry of Communications and Multimedia (KKMM) identified open data as one of the key areas in the Communications and Multimedia Blueprint 2018 – 2025²⁶¹. On the surface, KKMM's open data agenda focuses on data from the private sector. However, while the blueprint listed programmes specifically for data from the private sector, it also suggests "strengthen[ing] the quality and coverage of open *government* data by reinforcing policy guidelines on open data performance"²⁶². It is unclear how open data initiatives by MAMPU and KKMM fit together.

The Ministry of Science, Technology and Innovation (MOSTI)

The National Policy on Science, Technology and Innovation 2021 – 2030 under the Ministry of Science, Technology and Innovation (MOSTI) also highlights open data as one of its strategies²⁶³. The focus of this policy is research data. In 2019, MOSTI (previously known as the Ministry of Energy, Science, Technology, Environment and Climate Change) established the Malaysia Open Science Platform (MOSP) to advance open science by formulating policy, nurturing capacity building and developing infrastructure²⁶⁴. However, one aspect that is perhaps overlooked by MOSTI is access to government data for research²⁶⁵.

²⁵⁹ DOS (2015)

²⁶⁰ World Bank (2017b)

²⁶¹ KKMM (2018)

²⁶² KKMM (2018)

²⁶³ MOSTI (2021a)

²⁶⁴ MOSP (2020)

²⁶⁵ Ashraf (2020c) discusses the value of government data for research and issues faced by academic researchers in accessing government data

Training for public servants

The Public Service Department (JPA) and the National Institute of Public Administration (INTAN) started to institutionalise digital government training for public servants in 2016. Six new areas of training have been introduced: (i) strategic digital management, (ii) big data service management, (iii) digital government management, (iv) infrastructure management, (v) security and privacy management, and (vi) quality and regulation. Inclusive of eight ICT areas introduced previously, there are now 14 areas of training related to ICT competency²⁶⁶. This training, however, is only for public servants managing ICT (Grade F in the public service classification)²⁶⁷. In the Malaysia Digital Economy Blueprint launched in February 2021, the government announced plans to expand digital training for public servants across all grades and schemes²⁶⁸.

5.5.3. Open government data governance

Since government data management in Malaysia is highly decentralised with every agency having the authority to decide what data can be shared, open government data governance is also decentralised (Figure 5.9).

Public Sector Modernisation and Digitalisation Committee Chaired by the Chief Secretary to Jawatankuasa Pemodenan dan Pendigitalan Sektor Awam the Government of Malaysia **Public Sector Open Data Coordination Committee** Chaired by the Director General of MAMPU Jawatankuasa Penyelarasan Data Terbuka Sektor Awam **Public Sector Open Data Coordination Committee Public Sector Open Data Working Group** Ministry/State Government/Agency Jawatankuasa Penyelarasan Data Terbuka Sektor Awam Pasukan Keria Data Terbuka Sektor Awam Kementerian/Kerajaan Negeri/Agensi Public Sector Open Data Working Group Ministry/State Government/Agency Pasukan Kerja Data Terbuka Sektor Awam Kementerian/Kerajaan Negeri/Agensi Agency-level Governance

Figure 5.9: Open government data structural organisation in Malaysia

Source: Prime Minister's Department (2015) and personal communication with MAMPU in January 2021

²⁶⁶ JPA and INTAN (2016)

²⁶⁷ Personal communication with MAMPU in January 2021

²⁶⁸ EPU (2021)

At the central government level, the highest committee looking after the open government data initiative is the Public Sector Modernisation and Digitalisation Committee, chaired by the Chief Secretary to the Government of Malaysia. Under said committee is the Public Sector Open Data Coordination Committee, chaired by the Director General of MAMPU. In general, the Coordination Committee carries out strategic planning and policy advisory roles. MAMPU has a Public Sector Open Data Working Group under the committee. This group mainly handles the Public Sector Open Data Platform, identifies potential datasets to be made open and provides advisory services to government agencies.

Every ministry and government agency has its own Public Sector Open Data Coordination Committee chaired by its respective Chief Information Officer or Chief Technology Officer and its own Public Sector Open Data Working Group. The Coordination Committee devises an open data strategy for the organisation and approves datasets that can be made open based on the recommendation from the working group. In most ministries and agencies, the Public Sector Open Data Coordination Committee comprises the same members as the ICT Development Committee (Jawatankuasa Pemandu ICT)²⁶⁹.

5.6 Open government data challenges in Malaysia

5.6.1. Supply-side challenges

Supply-side challenges refer to the challenges faced by government agencies in supplying open government data. These challenges can be grouped into three inter-related broad categories: policy, infrastructure and human resource, and culture.

Overarching policy

The biggest supply-side challenge in implementing open government data is the absence of an overarching and clear policy framework. Since the Official Secrets Act accords each agency the prerogative to decide what data can be shared, and with no law compelling disclosure, open government data initiatives rely largely on each agency's leadership. Implementing open government data is likely the lowest priority when there are other duties and issues that these agencies may deem more important and urgent.

Moreover, the current process of releasing data is not very simple as it has to be recommended by the Public Sector Open Data Working Group and approved by the Public Sector Open Data Coordination Committee at the agency level, which is often the same committee that has to handle other ICT matters. Internal data management regulations are not always consistent; for example, repeated requests for the same or similar data do not usually lead to by-default approval²⁷⁰.

 $^{^{269}}$ Prime Minister's Department (2015) and personal communication with MAMPU in January 2021 270 World Bank (2017a)

MAMPU, through the Public Sector Open Data Coordination Committee at the central government level, can only encourage and facilitate government agencies to implement open government data. It does not have an overriding power to dictate the individual agency's open data policy. For example, on a case-by-case basis, DOS provides access to its microdata, but such access is subject to several constraints such as only a third of the indicators or the sample requested by data users being released²⁷¹. MAMPU has no say on this policy.

Many matters that are important to ensure successful and safe implementation of the open data initiative such as data privacy and security are regulated at the agency level²⁷². Agencies also determine fees for their data²⁷³. Depending on their financial autonomy, the revenues collected are either (partially) kept by the agencies or transferred to the Consolidated Fund controlled by the Ministry of Finance²⁷⁴.

Integration of databases held by different agencies is still sparse²⁷⁵. For example, databases maintained by the Ministry of Human Resources and the Ministry of Home Affairs are not necessarily easily harmonised²⁷⁶. Inter-agency data sharing is decided on a case-by-case basis with senior managerial approval necessary for most cases²⁷⁷. Even data inventories that catalogue what data an agency holds are not accessible by other agencies except with management authorisation on a case-by-case basis²⁷⁸. The same issue happens between federal agencies and state agencies²⁷⁹.

Currently, there is no mechanism to assess the implementation of open government data, even though the Public Sector Open Data Coordination Committee at both the central and agency level is supposed to monitor its progress²⁸⁰. This is not a unique problem; lack of monitoring and evaluation is noted as a common issue in the implementation of government ICT initiatives²⁸¹.

²⁷¹ World Bank (2017a)

²⁷² World Bank (2017a)

²⁷³ World Bank (2017a) and personal communication with MAMPU in January 2021

²⁷⁴ For example, according to the Companies Commission of Malaysia Act 2001, "the Commission shall pay to the Federal Consolidated Fund an amount not exceeding thirty per cent out of the current annual surplus of the Commission at such time". Hence, some portion of the revenue collected through data fees are kept by the Companies Commission. Source: Government of Malaysia (2018)

²⁷⁵ World Bank (2017a)

²⁷⁶ World Bank (2017b)

²⁷⁷ World Bank (2017a)

²⁷⁸ World Bank (2017a) and personal communication with MAMPU in January 2021

²⁷⁹ World Bank (2017b)

²⁸⁰ Personal communication with MAMPU in January 2021

²⁸¹ Sudirman and Yusof (2017)

Infrastructure and human capital

Implementing open government data involves mobilising digital infrastructure and human resources that in most governments are already scarce²⁸². It involves more work having to deal with legacy systems such as data format that requires modification²⁸³. In Malaysia, many agencies indicate that they have a small ICT team²⁸⁴. Meanwhile, MAMPU also has limited capacity to reach out to and support every government agency, with fewer than five management and professional level staff responsible for the open data initiative²⁸⁵.

The quality of open government data varies widely across agencies, which, aside from reflecting the priority of the agency and its organisational culture, partly indicates differences in data infrastructure and human capital across agencies. However, there is no systematic competency framework to track and measure ICT skill levels among public servants²⁸⁶. It is not known whether there is a framework to assess the adequacy of digital infrastructure across agencies. Without a systematic assessment of the current status and actual needs of digital infrastructure and human capital across agencies, it is uncertain how resources are allocated appropriately to each agency to achieve the government's ICT aspirations.

Public sector awareness and culture

There is low intrinsic motivation among Malaysian public servants to implement open government data²⁸⁷. This is not surprising as there is no overarching policy that institutionalises open government data as an essential public service as opposed to merely being a "nice-to-have" public offering. Some public servants may view making data open an additional burden imposed by MAMPU²⁸⁸. Some think that data published by the government is enough, given that it is not widely used by the public²⁸⁹.

There is also the fear of misinterpretation, manipulation and misuse of government data among public servants²⁹⁰. Some are also concerned that foreign parties may appropriate a bigger advantage over local stakeholders as the result of open government data²⁹¹. These concerns are not trivial. They must be properly addressed to ensure not only buy-in from public servants but also inclusive and safe use of government data.

²⁸² Barry and Bannister (2014); Ruijer and Meijer (2020); Martin (2014)

²⁸³ Barry and Bannister (2014) and personal communication with MAMPU in January 2021

²⁸⁴ World Bank (2017a)

 $^{^{285}}$ Mustapa, Hamid, and Nasaruddin (2019) and personal communication with MAMPU in January 2021 $\,$

²⁸⁶ World Bank (2017a)

²⁸⁷ World Bank (2017a)

²⁸⁸ Based on general sentiment assessed during Malaysia Open Data User Group forum in December 2020, which was attended by representatives from government agencies

 $^{^{289}}$ World Bank (2017a) and based on observations gathered during a Malaysia Open Data User Group forum in December 2020

²⁹⁰ World Bank (2017a)

²⁹¹ World Bank (2017a)

5.6.2. Demand-side challenges

Demand-side challenges are challenges faced by data users in accessing and using government data. These challenges can be the result of shortcomings of data users or data providers.

Latent demand for data

Latent demand refers to the "demand for a product or service that a consumer cannot satisfy because they do not have enough money, because the product or service is not available, or because they do not know that it is available"²⁹². Latent demand is a major demand issue when it comes to government data. An argument that there is no demand for government data, hence there is no necessity to publish data, is rather untenable when the supply of the right data, i.e. data that is useful and needed, is not accessible or when potential data users do not know what data they can demand.

In Malaysia, civil society groups and researchers noted that granular, complete, timely and historical data is not accessible²⁹³ and some data is not free²⁹⁴. Moreover, a lot of data published on agency websites is not in an open format, for example in PDF instead of a machine-processable format. Additionally, most government agencies do not publish data inventories²⁹⁵, making it difficult for the public to know what data can be requested if it is not publicly available.

Furthermore, the process to request publicly unavailable data from government agencies is not clear. Many external stakeholders consider requesting data an unpredictable and inefficient process²⁹⁶. Many agencies do not publish the standard procedure for data requests on their website.

Digital skills

Coursera, a popular massive open online course (MOOC) provider, conducts benchmark assessments of skills proficiency around the world called the Global Skills Index (GSI)²⁹⁷. In its latest and second edition published in 2020, the index evaluated 60 countries in 11 fields of study in business, technology and data science. The GSI is not necessarily representative of a country because it only reflects Coursera learners. That said, the findings are still insightful as Coursera learners are mostly those who want to learn a new skill or enhance their skills by their own initiative. The GSI adopts proficiency measurements based on a machine learning method called the Glicko algorithm to assess how proficient each learner is in each competency and how challenging each assessment is.

Skills in the technology domain include computer networking, databases, human-computer interaction, operating systems, security engineering and software engineering. Skills in the data science domain include data management, data visualisation, machine learning, mathematics, statistical programming and statistics.

²⁹² Cambridge English Dictionary (n.d.)

²⁹³ Ashraf (2020c); World Bank (2017a)

²⁹⁴ World Bank (2017a)

²⁹⁵ World Bank (2017a) and personal communication with MAMPU in January 2021

²⁹⁶ World Bank (2017a)

²⁹⁷ Coursera (2020)

In the technology domain, Malaysia ranked 49 out of 60 countries and is behind the Philippines, Thailand, Singapore, Indonesia and Vietnam. In the data science domain, Malaysia ranked 43 and is behind Thailand, the Philippines and Singapore. As mentioned, the GSI is not representative of the entire population but the fact that Malaysia is behind many countries including neighbouring and other developing countries is a call for action. In the context of open government data, users without the right skills will not be able to utilise government data for meaningful change. In a broader context, the lack of technology and data skills may become a hindrance for Malaysia to develop high-value industries and catch up with global technological advancement.

5.7 The way forward for Malaysia

5.7.1. Right to Information law

A Right to Information (RTI) law, which is also referred to by different names such as Freedom of Information (FOI) law and Public Information Disclosure law, is a law that formalises the right of the people to access information held by public bodies. It typically provides clear processes and requirements for people to request information and for public bodies to respond to such requests.

As of 2019, 126 out of 193 United Nations member states and two non-member states have an RTI decree, whether in a form of a law or an actionable regulation²⁹⁸. Around 90% of the world's population and 96% of the population in the Asia Pacific live in a country with an RTI law or regulation²⁹⁹. In Southeast Asia, Thailand (since 1997), Indonesia (since 2008), Timor-Leste (since 2016) and Vietnam (since 2016) have an RTI law whereas the Philippines (since 2016) have an actionable RTI regulation³⁰⁰. Malaysia, unfortunately, is among the few countries that still do not have an RTI law or an actionable regulation at the national level. However, Malaysia does have a pending RTI law, with stakeholders' consultation started in 2018³⁰¹. The law was expected to be tabled in the Parliament mid-2020³⁰² but this has yet to occur³⁰³. The states of Selangor and Penang already have state-level RTI laws.

While RTI laws typically operate through reactive disclosure of government information (i.e. ondemand disclosure), open government data calls for proactive disclosure of information. At the heart of open government data is collaboration as opposed to litigation³⁰⁴. In practice, RTI laws are commonly used to obtain data related to the government's operations and accountability. Meanwhile, open government data involves opening up a wider range of data held by the government including socioeconomic and environmental data³⁰⁵.

²⁹⁸ Open Society (2019); Global RTI Rating (n.d.)

²⁹⁹ Article 19 (2018)

³⁰⁰ Open Society (2019)

³⁰¹ Parliament of Malaysia (2019)

³⁰² Kannan and Babulal (2019)

 $^{^{303}}$ At the time of writing

³⁰⁴ Noveck (2017)

³⁰⁵ Noveck (2017)

Despite the different mechanism and approach to government data, open government data and RTI laws are not in conflict; in fact, they complement each other. An RTI law is necessary to compel disclosure³⁰⁶. Although open government data upholds the principle of 'open by default', governments may be reluctant to disclose certain information. This is when an RTI law would come into the picture to demand disclosure and provide legal recourse. Therefore, a policy framework that blends the two can create a more effective system of government data-sharing that fosters collaboration as well as checks and balances.

5.7.2. Streamlining government data policy

Institutionalised commitment

As discussed, one of the major stumbling blocks in implementing open government data in Malaysia is the absence of a clear legal framework to institutionalise providing access to government data as one of the core services of the government. In 2015, MAMPU distributed a general circular to all agencies on the implementation of open government data. This circular is a good starting point to familiarise agencies with the concept of open government data, but it has weak enforcement power. In this regard, it is time for Malaysia to enact an **RTI law** that is fit for a digital age and that embodies the principles of open government data.

Malaysia should also seal its commitment to open government data by adopting **international partnerships and declarations**. Notably, Malaysia is not a member of the Open Government Partnership (OGP) or the Open Data Charter (ODC). Through the OGP, participating countries work with civil society organisations to co-create two-year open government action plans with concrete commitments to be implemented. Among Southeast Asian countries, only Indonesia and the Philippines are members of the OGP. Meanwhile, the ODC adopters pledge their commitment to publishing timely and comprehensive, accessible and usable, comparable and interoperable government data open by default, for improved governance and citizen engagement and for inclusive development and innovation. In Southeast Asia, the Philippines is the only ODC adopter.

Clear and agile governance framework

Malaysia should consider introducing a **cross-agency leadership role** to oversee the open government data agenda with key functions include carrying out (i) partnerships and community engagement such as with researchers and civil society groups; (ii) internal coordination and agencies engagement; (iii) data audit and ethics, value and risk assessment; (iv) dissemination and communication of data; and (v) data collaboratives including with the private sector³⁰⁷.

³⁰⁶ Noveck (2017)

³⁰⁷ Inspired by Verhulst et al. (2020) with modifications

In the spirit of collaboration of open government data, the government could consider forming a **consultative council** comprising governmental and non-governmental stakeholders representing various government agencies and various segments of society³⁰⁸. The role of the council would be providing recommendations to the government on matters related to the collection, management, publication and use of government data. The main goal of this council is to serve as a platform in ensuring that the open government data policy is inclusive and responsive to fast-changing technological advances³⁰⁹. The premise underlying the establishment of this council is that the public, apart from the government as the data custodian, should have a say on how data about them is collected, used and shared.

Concerns and barriers identified by public servants in implementing open government data need to be addressed rather than dismissed³¹⁰. Some of the concerns are legitimate such as how opening up data may impact the country's standing in international negotiations³¹¹. The considerable work that needs to be put in by public servants and the learning process that needs to take place have to be taken into account in planning the development path of the open government data agenda³¹². The uneven levels of institutional maturity and technical capacity of different agencies to carry out open government data have to be recognised³¹³. In this regard, **differentiated milestones** with specific action plans customised for and negotiated with agencies according to their capacity should be considered.

A clear governance framework also includes proper **decision-making and documentation protocols** to guide and record key decision points impacting data collection, processing, analysis and sharing³¹⁴. This is to ensure accountability of decisions and to identify pain points where improvements could be made. In addition, agencies should also create a mechanism to track data requests and details on how decisions on the data are made to avoid arbitrary denial³¹⁵.

Open government data could be an entry point to strengthen coordination between agencies by facilitating data sharing. **Inter-agency data sharing** avoids redundancy in data handling that could lead to improving productivity and reducing the operating cost of agencies³¹⁶. As the first step to foster inter-agency data sharing, agencies should publish their data inventories and make them accessible to other government agencies. It is also a good first step for agencies to identify data that can be published publicly.

Digital infrastructure and skills

Digital infrastructure and skills across all agencies ought to be improved by increasing investment in technology, reskilling existing public servants and hiring a high-skilled workforce with competence in data management and digital technology.

 $^{^{308}}$ Inspired by Young et al. (2020) with modifications

³⁰⁹ Verhulst and Young (2016)

³¹⁰ Barry and Bannister (2014)

 $^{^{311}}$ Personal communication with MAMPU in January 2021

³¹² Martin (2014)

³¹³ World Bank (2020)

³¹⁴ Verhulst et al. (2020)

³¹⁵ World Bank (2017a)

³¹⁶ Dawes (1996)

One of the initiatives that the Malaysia Open Science Platform (MOSP) has started is providing data stewardship training to existing librarians in public universities to equip them with the skills to manage digital raw research data on the open science platform. MOSP targets to train 200 data stewards by July 2021³¹⁷. This initiative could be an inspiration for the government to carry out a **reskilling initiative** for existing public servants.

Implementation of open government data involves several technical aspects beyond putting data on a website. Apart from ensuring that the privacy and security of the data are protected, to facilitate data integration, data should be **interoperable**. Interoperability is the ability to seamlessly "transfer and render useful data and other information across systems, application or components"³¹⁸. Interoperability requires hardware and systems that are connected and data that can understand each other. It is not enough for interconnected systems to pass bits from one system to another if the data cannot "talk" to each other³¹⁹.

To rapidly expand open government data, innovations to make the process of publishing data easy for public servants should be developed. This includes **automating** the process of inventorying, annotating and classifying data³²⁰. The government should also think of ways to integrate data sourced from traditional means such as surveys and census with **data sourced from "non-traditional" ways** such as satellite and environmental sensors data. This could allow for greater refinement in policies as well as quick estimates for time-sensitive interventions³²¹. However, apart from technical considerations, this sort of integration also requires ethical considerations.

With regard to infrastructure for open government data, some areas that the government could look into further include **procurement policies** to ensure future purchases of information technology (IT) systems support open data and a **strategy to transition all IT systems** in all agencies to comply with open data standards³²².

Monitoring, evaluation and review

Any policy must be properly monitored, evaluated and reviewed to achieve its goals. As noted earlier, currently there is no mechanism to evaluate the implementation of open government data by agencies. There is a risk of "open washing", a scenario whereby governments only publish data that is easy and uncontroversial simply to appear to be implementing open government data³²³. Therefore, to ensure an open government data policy achieves its intended goals, **assessment metrics**³²⁴ should include not only quantitative aspects such as the number of datasets published, but also qualitative elements³²⁵ such as engagement with external stakeholders, human capital development, documentation of decision provenance, and data privacy and security protection.

³¹⁷ Personal communication with MOSP in October 2020

³¹⁸ Gasser (2015)

³¹⁹ Gasser (2015)

³²⁰ Janssen, Charalabidis, and Zuiderwijk (2012); Noveck (2017)

³²¹ World Bank (2020)

³²² Inspired by Government of Ontario (2015)

³²³ Mansell (2020); Noveck (2017)

³²⁴ Government of Ontario (2015)

³²⁵ World Bank (2017a)

In the spirit of transparency that open government data represents, **annual reports on the progress** made by each agency against the previous year's commitments and priorities and goals for the upcoming year should be made publicly available for the legislature and the public to review³²⁶.

5.7.3. Data privacy and security protection

Data privacy and security law

Apart from the Personal Data Protection Act that currently does not cover data collected by the government, Malaysia does not have other data privacy laws. On the contrary, several countries around the world have a privacy law that extends to government data. The South African Protection of Personal Information Act 2000, the Indian Personal Data Protection Bill 2019, and the New Zealand's Privacy Act 2020 (replacing Privacy Act 1993) are some of the data privacy laws that apply to both governments and businesses. Some laws specifically protect the privacy of data held by government agencies such as the Canadian Privacy Act 1985. It is time for Malaysia to consider a **data privacy law that covers government data**. In the Malaysia Digital Economy Blueprint, the government plans to review Personal Data Protection Act³²⁷—this must include considering providing legal protection to government data privacy.

Data privacy and security framework

Beyond having laws, government agencies need a comprehensive framework for assessing and mitigating data privacy and security risks. Some considerations in thinking about the framework are discussed below.

First, shift from output assessment (e.g. "is the data safe?") **to process-oriented standards** (e.g. "have we assessed and acted upon risks at every stage of the data lifecycle?")³²⁸. The process-oriented framework calls for systematic evaluation of risks and mitigation measures that could be employed at every stage of the data lifecycle.

At the collection stage, government agencies need to ask whether a particular piece of information needs to be collected in the first place. Even if the piece of information is intended to never be made public, there is a privacy concern about government holding that information and potentially misusing it³²⁹. Some mechanisms for privacy protection in data collection are governments limiting the use of a particular data for a narrowly-defined specific purpose or setting up an independent privacy oversight board³³⁰.

³²⁶ Inspired by Government of Ontario (2015)

³²⁷ EPU (2021)

³²⁸ Green et al. (2017)

³²⁹ Green et al. (2017)

³³⁰ Altman et al. (2015)

At the transformation and retention stages, standard protocols of private- and public-key encryption may prevent unauthorised actions. In addition, at the retention stage, other mitigation measures could include statutory breach reporting requirements and centralised databases that enable controlled queries across databases maintained by different agencies³³¹. When necessary, retire data stored internally and remove data shared online when large privacy risks surface³³². At the data release stage, there are various technical tools that could be employed such as data aggregation, data anonymisation and fields removal. However, decisions on which tools should be used should consider privacy risks and data utility. To reiterate, data privacy protection should not disproportionately diminish the potential value from the use of the data.

At the post-release stage, one mechanism of privacy protection is criminalising re-identification as done by the Indian Personal Data Protection Bill 2019, which covers data held by government agencies. Data use agreements can also include obligations to secure the data and liability for harm arising from the misuse of data³³³. Aside from protecting privacy, data use agreements can also mitigate concerns that government data would be misrepresented³³⁴.

Second, consider diverse and proportionate measures in deciding the most suitable measure to protect data privacy based on the characteristics and context of the data. This can be done by assessing three aspects: the range of threats to privacy; the vulnerabilities that exacerbate those threats; and the likelihood of disclosure of personal data given those threats and vulnerabilities³³⁵. The goal is to release as much data as possible without compromising privacy.

Imposing restrictions on data access may be better than not disclosing the data at all when the restrictions can adequately address privacy risks³³⁶. For example, the US has a three-tier scheme for data access: public, restricted public and non-public³³⁷. Public data is accessible to anyone without restriction. Restricted public data is only accessible by select researchers under certain conditions because the data contains sufficient granularity or linkages that make it possible to reidentify individuals. Non-public level data is only accessible within the government.

³³¹ Altman et al. (2015)

³³² Green et al. (2017)

³³³ Altman et al. (2015)

³³⁴ Dulong de Rosnay and Janssen (2014)

³³⁵ Modified from Altman et al. (2015). Altman et al. includes a fourth aspect, which is the likelihood, extent, and severity of harms inflicted as the result of personal data disclosure. However, in the author's opinion, the goal of privacy protection is to protect privacy. Whether harms would be inflicted and how severe would they be as the result of the loss of privacy are out of the question.

³³⁶ Borgesius, Gray, and van Eechoud (2015)

³³⁷ Altman et al. (2015)

Third, implement documentation standards of privacy protection practices. The documentation should address privacy handling of datasets with common features as well as datasets with uncommon features³³⁸. This documentation should be publicly accessible when requested, to allow public and legislative scrutiny on privacy decisions. The government should also have internal periodic legal and technical review of privacy practices³³⁹ as well as by third-party auditors³⁴⁰ to ensure that those practices are adequate given that technologies and types of data continue to evolve.

5.7.4. Inclusive and meaningful use of government data

Inclusive data collection

Although discussions on open government data are often framed in the context of providing access to data, it is necessary to also pay attention to the data collection process to ensure the agenda results in equitable outcomes. If data about social and economically disadvantaged groups are either not collected, incomplete, inconsistent or unreliable, open government data may have little benefit to these groups. In fact, the agenda may be detrimental to them. While the subject of 'digital inequality' has shifted from merely digital access to meaningful use, both angles, broadly speaking, are based on active interaction with digital technology. Another angle that we should consider is passive interaction, in particular, passive data contributions. Because the data of digitally disenfranchised groups is not captured, they are considered "digitally invisible" 341.

From a geographical perspective, there is evidence that shows places that are invisible in digital representations are also invisible in practice to many people³⁴². In the context of open government data, we cannot improve the well-being or consider the issues of a group of people if their data simply do not exist. Effectively, these people are invisible. Therefore, the first step to ensure that open government data results in equity is to ensure **inclusive data collection**.

³³⁸ Borgesius, Gray, and van Eechoud (2015)

³³⁹ Green et al. (2017)

³⁴⁰ Altman et al. (2015)

³⁴¹ This term was introduced by Longo et al. (2017) to the best of the author's knowledge. However, Longo et al. conceptualise digitally invisible groups as those who do not leave digital traces from the use of digital devices such as mobile phone and transaction cards. The author extends the definition of the term to generally include groups who have limited digital data representing them regardless of how the data is collected. This includes the type of data that is typically collected through traditional means such as surveys but if the data does not capture certain groups, and subsequently their data is not visible online, they can also be considered digitally invisible.

³⁴² Graham and De Sabbata (2020)

Equal use of data

To be able to use open government data meaningfully, one needs the ability to collect, treat, analyse and communicate data³⁴³. It may even be necessary to belong to a certain social circle to know the availability of particular government data³⁴⁴, especially if data published is not easily findable. As a result, open government data mostly attracts certain groups of professionals such as lawyers, researchers, journalists, civic technologists, consultants and corporate executives. While these actors may play pivotal roles in transforming data to generate public value, it is necessary to increase the diversity of users of open government data to generate more inclusive public value³⁴⁵.

The government could make use of the proposed **consultative council** to foster inclusivity in the open government data agenda by ensuring that permanent members of the council represent various segments of society including the indigenous people of Peninsular Malaysia and Sabah and Sarawak, people with disability, women, agricultural smallholders and civil society organisations working with the underprivileged such as poor communities, migrant workers and homeless people. Ideally, these representatives should advocate not only for the availability of data about groups they represent but also recommend policy to encourage the use of data by these groups or people who advocate for these groups. They could also bring to attention privacy issues impacting their community.

The government should develop educational programmes to increase data literacy targeting public servants, researchers, and civil society organisations. Aside from these targeted groups, the government should also consider integrating data literacy in the school curriculum. Drawing insights from financial literacy education, integrating financial literacy in school's syllabus has a more effective impact than targeted adult education³⁴⁶.

Public versus private value

While open government data reduces information asymmetries³⁴⁷, it may lead to or reinforce asymmetries in power and opportunity³⁴⁸ with privileged groups exploiting data for private value. In the US, the bulk of FOI requests are from corporations who use data for their business interests instead of journalists or civil society organisations³⁴⁹.

While using government data to generate private value is not inherently negative, the role of policymakers is to devise a policy that encourages the use of government data to generate public value as well. This requires policymakers to rethink copyright and intellectual property rights³⁵⁰, among other aspects. For example, the government could consider **waiving claims to intellectual property** for any product that is anchored by government data and ensure that government data is not transferred as intellectual property to a third party³⁵¹.

```
<sup>343</sup> Wessels et al. (2017)
```

³⁴⁴ Barrantes and Matos (2020)

³⁴⁵ Verhulst et al. (2020)

³⁴⁶ World Bank (2020)

³⁴⁷ Ashraf (2020b)

³⁴⁸ World Bank (2020)

³⁴⁹ Noveck (2017)

³⁵⁰ Seward (2020)

³⁵¹ Government of Ontario (2015)

Meaningful impact of open government data

If the public at large and even the public servants see no real value from open government data, they likely see no reason to support it. Over time, the promise of open government data would become less convincing. The government as well as other advocates of open government data should identify opportunities to **demonstrate its value**. For example, in the US, opening the entire corpus of data on food-borne illnesses allowed Chicago's Department of Innovation and Technology to build an algorithm that helped Chicago's Department of Public Health allocate its scarce resources for food safety violation's inspections³⁵². This is an example of how open government data fosters inter-agency collaboration and produces value for public servants.

The government should integrate the open government data initiative with **other government initiatives** to secure its relevancy. For example, MOSTI recently launched the Malaysia Grand Challenge (MCG) that supports quality and high-impact research in ten priority areas including energy, education, smart cities and transportation, and environment and biodiversity³⁵³. Open government data could be one of the core components to support this initiative. In addition, each government agency could identify and support **niche areas** where open government data could be used to create innovations that are in line with the respective agency's strategic priorities.

The government should nurture and foster collaboration with **data intermediaries** among non-profit organisations/individuals (e.g. researchers and civil society organisations) who analyse or transform government data into digestible information for public dissemination or use the data for specific projects. This could empower these non-profits to generate public value from government data, enhance the matching of the supply and demand of data³⁵⁴, and create meaningful impact from the open government data agenda.

Feedback mechanism

As open government data is about collaboration, the agenda does not end with the government sharing information. The government needs to actively solicit **feedback**³⁵⁵ not only with regard to the open government data policy but also other policy areas that the public advocate based on the data made publicly available.

One of the initiatives that the government could explore is to conduct **surveys** on the open government data initiatives to gather general snapshots of users' experience. Nevertheless, surveys tend to lack details and context. Therefore, the government should also conduct more **deliberative methods to collect feedback**³⁵⁶ such as through the consultative council, focus group discussions, and public dialogues. Each government agency should also invite feedback on their respective initiative, particularly on their data portals.

³⁵² Spector (2016)

³⁵³ MOSTI (2021b)

³⁵⁴ Verhulst and Young (2016)

³⁵⁵ Janssen, Charalabidis, and Zuiderwijk (2012)

³⁵⁶ Young et al. (2020)

5.8 Conclusion

A major impediment to open government data in Malaysia is the lack of clarity in the legal framework concerning government data. Without legal clarity, public servants tend to err on the side of caution and choose not to disclose data. It is timely for Malaysia to enact an RTI law to promote transparency and collaboration. The law should be designed for a digital age and consistent with the open government data agenda, particularly by encouraging proactive disclosure of information. Measures that could be introduced include explicitly listing types of information that should be automatically available, requesting every public body to determine the information that should be regularly and automatically disclosed, and imposing automatic public disclosure for information that has been requested either through an RTI request or in Parliament.

Aside from the RTI law, Malaysia should also formulate privacy laws that extend to government data since the Personal Data Protection Act 2010, which is the only privacy law that the country has right now is not applicable to government data. With the proliferation of data collected by the government, especially with the Covid-19 pandemic, a privacy law strengthens public trust. Having such laws in place would compel government agencies to take data privacy and security protection more seriously. Beyond having laws, a comprehensive framework for assessing and mitigating data privacy and security risks need to be developed, taking into account risks at every stage of the data lifecycle and proportionate measures to address those risks.

Apart from the legal framework, Malaysia should streamline the government data management system. Although MAMPU has been the lead agency on the open government data agenda, it has minimal power to direct and implement the open government data initiative in all government agencies. Implementing open government data involves mobilising digital infrastructure and human resources that are already scarce in most government agencies. Therefore, the government should also increase investment in digital infrastructure and skill across all agencies.

To encourage meaningful use of open government data, the government needs to expand data skills training and data literacy education in school. To increase the accessibility of government data, the design of data portals merits attention. The government should also engage with data intermediaries to ensure open government data meaningfully impacts real life.

The advancement of digital technology brings forth a great volume and wide range of data. Malaysia should accelerate the expansion of open government data to generate as much value as possible from government data, especially since the data is collected and managed using public funds. However, while we strive to realise the promise of good governance and improved well-being from open government data, we also have to look out for potential threats. Therefore, a comprehensive government data policy that advances open government data while protecting data privacy is needed. The governance of open government data also has to be agile, taking into consideration fast-evolving technological developments as well as how society interacts with technology.

References

- Acemoglu, Daron, and James A. Robinson. 2012. *Why Nations Fail: The Origins of Power, Prosperity, and Poverty.* 1st ed. New York: Currency.
- Altman, Micah, Alexandra Wood, David R O'Brien, Salil Vadhan, and Urs Gasser. 2015. "Towards a Modern Approach to Privacy-Aware Government Data Releases." *Berkeley Technology Law Journal* 30 (3). JSTOR:1967–2072.
- Article 19. 2018. "Right to Know Day 2018: Progress on Information Access around the World." ARTICLE 19. September 27, 2018. https://www.article19.org/resources/right-to-know-day-2018-progress-on-information-access-around-the-world/.
- Ashraf, Shaharudin. 2020a. "Covid-19: With Data, We Can Respond Better." Kuala Lumpur: Khazanah Research Institute. http://www.krinstitute.org/Views-@-Covid-19-;_With_Data,_We_Can_Respond_Better.aspx.
- ———. 2020b. "Open Government Data: Principles, Benefits and Evaluations." Discussion Paper. Kuala Lumpur: Khazanah Research Institute. http://www.krinstitute.org/Discussion_Papers-@-Open_Government_Data-;_Principles,_Benefits_and_Evaluations.aspx.
- ———. 2020c. "Open Government Data for Academic Research." Working Paper. Kuala Lumpur: Khazanah Research Institute. http://www.krinstitute.org/Working_Paper-@-Open_Government_Data_for_Academic_Research.aspx.
- ATP. 2011. "ATP Public Portal." Aid Transparency Portal. 2011. https://www.aidtransparency.gov.tl/portal/.
- Barrantes, Roxana, and Paulo Matos. 2020. "Who Benefits from Open Models? The Role of ICT Access." In *Making Open Development Inclusive: Lessons from IDRC Research*, 219. MIT Press.
- Barry, Emily, and Frank Bannister. 2014. "Barriers to Open Data Release: A View from the Top." *Information Polity* 19 (1,2). IOS Press:129–52. https://doi.org/10.3233/IP-140327.
- Borgesius, Frederik Zuiderveen, Jonathan Gray, and Mireille van Eechoud. 2015. "Open Data, Privacy, and Fair Information Principles: Towards a Balancing Framework." *Berkeley Technology Law Journal* 30 (3):2073–2131.
- Cambridge English Dictionary. n.d. "Latent Demand Cambridge English Dictionary." n.d. https://dictionary.cambridge.org/dictionary/english/latent-demand.
- Center for Open Data Enterprise. n.d. "East Asia & Pacific." Open Data Impact Map. n.d. https://opendataimpactmap.org/eap.
- Coursera. 2020. "Coursera Global Skills Index 2020." Coursera. https://www.coursera.org/gsi.
- datos.gob.es. 2018. "6th Edition of the ASEDIE Report on the Infomediary Sector." Organization. datos.gob.es. March 2018. https://datos.gob.es/es/noticia/6a-edicion-del-informe-asedie-del-sector-infomediario.
- ——. n.d. "About the Aporta Initiative." Organization. Datos.Gob.Es. n.d. https://datos.gob.es/en/about-aporta-initiative.
- Dawes, Sharon S. 1996. "Interagency Information Sharing: Expected Benefits, Manageable Risks." *Journal of Policy Analysis and Management* 15 (3). [Wiley, Association for Public Policy Analysis and Management]:377–94.
- Deloitte. 2017. "Assessing the Value of TfL's Open Data and Digital Partnerships." Technical Report. London: Deloitte. http://content.tfl.gov.uk/deloitte-report-tfl-open-data.pdf.
- DIGIWHIST. n.d. "About Opentender." Organization. Opentender. n.d. https://opentender.eu/eu/about/about-opentender.
- ——. n.d. "About the Project Digiwhist." Organization. DIGIWHIST. n.d. http://digiwhist.eu/about-digiwhist/.

- DOSM. 2015. "Department of Statistics Malaysia Transformation Plan 2015-2020." https://www.dosm.gov.my/v1/index.php?r=column/cone&menu_id=bWVOVWFVZDd4 VlZqSS9lNVBaTkVzUT09.
- Dulong de Rosnay, Melanie, and Katleen Janssen. 2014. "Legal and Institutional Challenges for Opening Data across Public Sectors: Towards Common Policy Solutions." *Journal of Theoretical and Applied Electronic Commerce Research* 9 (3). Universidad de Talca:1–14.
- EPU. 2015. "Eleventh Malaysia Plan 2016-2020." Economic Planning Unit.
- ——. 2021. "Malaysia Digital Economy Blueprint." Policy Paper. Putrajaya: Economic Planning Unit, Prime Minister's Department. https://www.epu.gov.my/sites/default/files/2021-02/Malaysia-digital-economy-blueprint.pdf.
- Frischmann, Brett M. 2006. "An Economic Theory of Infrastructure and Commons Management." *Minnesota Law Review* 89:917–60.
- FUNDAR. 2010. "Preguntas Frecuentes (Frequent Questions)." Subsidios al campo. 2010. http://subsidiosalcampo.org.mx/acerca-de/faq/.
- G8. 2013. "Policy Paper: G8 Open Data Charter and Technical Annex." GOV.UK. June 18, 2013. https://www.gov.uk/government/publications/open-data-charter/g8-open-data-charter-and-technical-annex.
- Gasser, Urs. 2015. "Interoperability in the Digital Ecosystem." *The Berkman Center for Internet & Society at Harvard University*, Research Publication, , no. 2015–13. https://dx.doi.org/10.2139/ssrn.2639210.
- Global RTI Rating. n.d. "By Country: RTI Rating." Global Right to Information Rating. n.d. https://www.rti-rating.org/country-data/.
- Government of Malaysia. 1989. "Statistics Act 1965 (Act 415) (Revised 1989)." https://www.dosm.gov.my/v1/uploads/files/4_Portal%20Content/1_About%20us/4_L egislation/Statistics_Act.pdf.
- ———. 2006. Official Secrets Act 1972 (Act 88) (Incorporating All Amendments up to 1 January 2006).
- http://www.agc.gov.my/agcportal/uploads/files/Publications/LOM/EN/Act%2088.pdf.
 ——. 2010. "Personal Data Protection Act 2010 (Act 709)."
 http://www.agc.gov.my/agcportal/uploads/files/Publications/LOM/EN/Act%20709%
 2014%206%202016.pdf.
- ——. 2018. "Companies Commission of Malaysia Act 2001 (Act 614)." https://www.ssm.com.my/Pages/Legal_Framework/Document/CCMA%20Act%20614_as%20at%201%20March%202018).pdf.
- Government of Ontario. 2015. "Open by Default A New Way Forward for Ontario." Government of Ontario. December 25, 2015. https://www.ontario.ca/page/open-default-new-way-forward-ontario#section-1.
- Graham, Mark, and Stefano De Sabbata. 2020. "The Geographic Contours of Openness." In *Making Open Development Inclusive: Lessons from IDRC Research*. MIT Press.
- Green, Ben Z., Gabe Cunningham, Ariel Ekblaw, Paul M. Kominers, Andrew Linzer, and Susan Patricia Crawford. 2017. "Open Data Privacy." *Berkman Klein Center for Internet & Society Research Publication*. Berkman Klein Center for Internet & Society. https://dash.harvard.edu/handle/1/30340010.
- Gruen, Nicholas, John Houghton, and Richard Tooth. 2014. "Open for Business: How Open Data Can Help Achieve G20 Growth Target." Lateral Economics. https://www.omidyar.com/sites/default/files/file_archive/insights/ON%20Report_06 1114_FNL.pdf.
- InfoAmazonia. n.d. "Home." InfoAmazonia. n.d. https://infoamazonia.org/en/.
- International Budget Partnership. 2020. "Open Budget Survey 2019." International Budget Partnership. https://www.internationalbudget.org/open-budget-survey.

- International Open Data Charter. n.d. "History." *International Open Data Charter* (blog). n.d. https://opendatacharter.net/history/.
- Janssen, Marijn, Yannis Charalabidis, and Anneke Zuiderwijk. 2012. "Benefits, Adoption Barriers and Myths of Open Data and Open Government." *Information Systems Management* 29 (4). Taylor & Francis:258–68. https://doi.org/10.1080/10580530.2012.716740.
- JPA, and INTAN. 2016. "Pembangunan Modal Insan Dalam Menyokong Era Kerajaan Digital."
- Kannan, Hashini Kavishtri, and Veena Babulal. 2019. "Govt to Draft Freedom of Information Act to Replace Official Secrets Act." *NST Online*, July 18, 2019. https://www.nst.com.my/news/nation/2019/07/505404/govt-draft-freedom-information-act-replace-official-secrets-act.
- Kesmodel, David. 2013. "Monsanto to Buy Climate Corp. for \$930 Million." *The Wall Street Journal*, October 2, 2013. https://www.wsj.com/articles/monsanto-earnings-company-to-buy-climate-corp-for-930-million-loss-widens-1380719533.
- KKMM. 2018. "Communications & Multimedia Blueprint 2018 2025 Digitise and Humanise." Ministry of Communications and Multimedia. https://www.kkmm.gov.my/images/171211_kkmm_blueprint2018_2025.pdf.
- Koski, Heli. 2011. "Does Marginal Cost Pricing of Public Sector Information Spur Firm Growth?" *The Research Institute of the Finnish Economy*, Discussion Paper, , no. 1260 (September):20.
- LAWA. n.d. "Land, Air, Water Aotearoa (LAWA)." Land, Air, Water Aotearoa (LAWA). n.d. https://www.lawa.org.nz/.
- Longo, Justin, Evan Kuras, Holly Smith, David M. Hondula, and Erik Johnston. 2017. "Technology Use, Exposure to Natural Hazards, and Being Digitally Invisible: Implications for Policy Analytics." *Policy & Internet* 9 (1):76–108. https://doi.org/10.1002/poi3.144.
- MAMPU. 2016. "Pelan Strategik ICT Sektor Awam 2016-2020." MAMPU. https://www.mampu.gov.my/ms/penerbitan-mampu/send/2-buku/680-pelan-strategik-ict-sektor-awam-2016-2020-versi-bm-2.
- ——. n.d. "MyGOV Open Government Data Policy, Strategy and Governance Open Data." The Malaysian Administrative Modernisation and Management Planning Unit. n.d. https://www.malaysia.gov.my/portal/content/30024.
- Mansell, Robin. 2020. *Making Open Development Inclusive: Lessons from IDRC Research*. MIT Press. Martin, Chris. 2014. "Barriers to the Open Government Data Agenda: Taking a Multi-Level Perspective." *Policy & Internet* 6 (3):217–40. https://doi.org/10.1002/1944-2866.POI367.
- MOSP. 2020. "What Is Malaysia Open Science Platform? Malaysia Open Science Platform (MOSP)." Malaysia Open Science Platform. 2020. https://www.akademisains.gov.my/mosp/about/what-is-malaysia-open-science-platform/.
- MOSTI. 2021a. "Dasar Sains, Teknologi dan Inovasi Negara 2021-2030." Ministry of Science, Technology and Innovation. https://www.mosti.gov.my/web/dasar-halatuju/.
- ———. 2021b. 08.01.2021- MOSTI LANCAR MALAYSIA GRAND CHALLENGE (MGC) SEBAGAI PEMANGKIN NEGARA BERTEKNOLOGI TINGGI. Youtube Video. MOSTI. https://www.youtube.com/watch?v=IK_kvC8U3QI.
- Mustapa, Mimi Nurakmal, Suraya Hamid, and Fariza Hanum Md Nasaruddin. 2019. "Exploring the Issues of Open Government Data Implementation in Malaysian Public Sectors." *International Journal on Advanced Science, Engineering and Information Technology* 9 (4). Insight Society:1466–73.
- Noveck, Beth Simone. 2017. "Rights-Based and Tech-Driven: Open Data, Freedom of Information, and the Future of Government Transparency." *Yale Hum. Rts. & Dev. LJ* 19. HeinOnline:1.

- Nur Hanani, Azman. 2020. "Statistics Act 1965 to Be Amended." *The Malaysian Reserve*, October 21, 2020, sec. News. https://themalaysianreserve.com/2020/10/21/statistics-act-1965-to-be-amended/.
- OECD. 2015. "Making Open Science a Reality." *OECD Science, Technology and Industry Policy Papers*, no. 25 (October). OECD. https://doi.org/10.1787/5jrs2f963zs1-en.
- ——. n.d. "Open Science." Organisation for Economic Co-Operation and Development (OECD). n.d. https://www.oecd.org/science/inno/open-science.htm.
- Open Data Watch. 2019. "Open Data Inventory 2018/19." https://odin.opendatawatch.com/data/Download.
- Open Knowledge Foundation. 2013. "Defining Open Data." Blogs. Open Knowledge Foundation Blog. October 3, 2013. https://blog.okfn.org/2013/10/03/defining-open-data/.
- ——. 2016. "Global Open Data Index." Portal. Global Open Data Index. 2016. https://index.okfn.org/place/.
- Open Society. 2019. "Countries with ATI Laws." Right2Info.Org. May 2019. https://www.right2info.org/resources/publications/countries-with-ati-laws-1/view.
- Parliament of Malaysia. 2019. "Penyata Rasmi Parlimen Dewan Rakyat, Parlimen Keempat Belas, Penggal Kedua, Mesyuarat Ketiga (7 November 2019)." https://www.parlimen.gov.my/files/hindex/pdf/DR-07112019.pdf#page=13&zoom=100&search=freedom%20of%20information.
- Prime Minister's Department. 2015. "Pekeliling Am Bil. 1 Tahun 2015 Pelaksanaan Data Terbuka Sektor Awam." Prime Minister's Department.
- Rose, Carol. 1986. "The Comedy of the Commons: Custom, Commerce, and Inherently Public Property." *The University of Chicago Law Review* 53 (3):711. https://doi.org/10.2307/1599583.
- Ruijer, Erna, and Albert Meijer. 2020. "Open Government Data as an Innovation Process: Lessons from a Living Lab Experiment." *Public Performance & Management Review* 43 (3). Taylor & Francis:613–35.
- Scimago Lab. 2020. "Scimago Journal & Country Rank." Scimago. 2020. https://www.scimagojr.com/countryrank.php.
- Sense-T. n.d.a. "Past Projects Sense-T from Sensing to Intelligence." Sense-T. n.d.a. https://www.sense-t.org.au/projects-and-research/past-projects.
- ——. n.d.b. "The Sense-T Journey Sense-T from Sensing to Intelligence." Sense-T. n.d.b. https://www.sense-t.org.au/about/the-sense-t-journey.
- Seward, Ruhiya Kristine. 2020. "Conclusion: Understanding the Inclusive Potential of Open Development." In *Making Open Development Inclusive: Lessons from IDRC Research*. MIT Press.
- SIRCA. n.d. "About Us." Organization. SIRCA. n.d. https://www.sirca.org.au/about-sirca/.
- Spector, Julian. 2016. "Chicago Is Using Data to Predict Food Safety Violations. So Why Aren't Other Cities?" *Bloomberg.Com*, January 7, 2016. https://www.bloomberg.com/news/articles/2016-01-07/chicago-is-using-data-to-predict-food-safety-violations-why-aren-t-other-cities.
- Sudirman, Suhaiza, and Zawiyah Mohammad Yusof. 2017. "Public Sector ICT Strategic Planning: Framework of Monitoring and Evaluating Process." *Asia-Pacific J. Inf. Technol. Multimed.* 6 (1):85–99.
- Sultan Azlan Shah. 2004. *Constitutional Monarchy, Rule of Law, and Good Governance: Selected Essays and Speeches*. Edited by Visu Sinnadurai. Kuala Lumpur, Malaysia: Petaling Jaya, Selangor Darul Ehsan, Malaysia: Professional Law Books; Thomson Sweet & Maxwell Asia.
- Sunlight Foundation. 2010. "Ten Principles For Opening Up Government Information." Blogs. Sunlight Foundation. 2010. https://sunlightfoundation.com/policy/documents/tenopen-data-principles/.

- Syahirah, Syed Jaafar. 2020. "Statistics Act to Be Amended to Boost DOSM's Role in Data Collection." *The Edge Markets*, October 20, 2020. http://www.theedgemarkets.com/article/statistics-act-be-amended-boost-dosms-role-data-collection.
- The Federal Reserve. 2018. "The Fed FRB/US Model." Board of Governors of the Federal Reserve System. 2018. https://www.federalreserve.gov/econres/us-models-about.htm.
- TradeData International. 2015. "Understanding Trade Statistics." Tradedata International. 2015. https://www.tradedata.net/understanding-trade-statistics/.
- UN Global Pulse. n.d. "Pulse Lab Jakarta." UN Global Pulse. n.d. https://www.unglobalpulse.org/lab/jakarta/.
- UNESCO. 2017. "Open Science Movement." United Nations Educational, Scientific and Cultural Organization (UNESCO). 2017. http://www.unesco.org/new/en/communication-and-information/portals-and-platforms/goap/open-science-movement/.
- Verhulst, Stefaan, and Andrew Young. 2016. "Open Data Impact: When Demand and Supply Meet." GovLab & Omidyar Network. http://odimpact.org/key-findings.html.
- Verhulst, Stefaan, Andrew Young, Andrew Zahuranec, Susan Aaronson, Ania Calderon, and Matt Gee. 2020. "The Emergence of a Third Wave of Open Data." The GovLab. https://opendatapolicylab.org/images/odpl/third-wave-of-opendata.pdf%20.
- Wessels, Bridgette, Rachel Finn, Kush Wadhwa, and Thordis Sveinsdottir. 2017. *Open Data and the Knowledge Society*. Amsterdam University Press. https://doi.org/10.5117/9789462980181.
- White House, Office of the Press Secretary. 2013. "Executive Order -- Making Open and Machine Readable the New Default for Government Information." Informational. The White House. May 9, 2013. https://obamawhitehouse.archives.gov/the-press-office/2013/05/09/executive-order-making-open-and-machine-readable-new-default-government-.
- World Bank. 2016. "World Development Report 2016: Digital Dividends." Text/HTML. World Bank. 2016. https://www.worldbank.org/en/publication/wdr2016.
- ——. 2017a. "Open Data Readiness Assessment: Malaysia." 115192. The World Bank. http://documents.worldbank.org/curated/en/529011495523087262/pdf/115192-WP-PUBLIC-MALAYSIA-DEVELOPMENT-EXPERIENCE-SERIES.pdf.
- ——. 2017b. "Malaysia Economic Monitor: Data for Development." 116032. The World Bank. http://documents.worldbank.org/curated/en/993771497248234713/pdf/116032-REVISED-MEM-9-June-2017-FINAL-COPY-EDITED-96pgs-13-6-17.pdf.
- ———. 2020. "World Development Report 2021 Concept Note Data for Better Lives." World Bank.
 - http://documents1.worldbank.org/curated/en/778921588767120094/pdf/World-Development-Report-2021-Data-for-Better-Lives-Concept-Note.pdf.
- ——. n.d.a. "World Development Indicators." DataBank. n.d.a. https://databank.worldbank.org/source/world-development-indicators.
- ——. n.d.c. "Worldwide Governance Indicators." DataBank. n.d.c. https://databank.worldbank.org/source/worldwide-governance-indicators.
- World Wide Web Foundation. 2017. "Open Data Barometer: 2016 (Fourth Edition)." https://opendatabarometer.org/assets/downloads/Open%20Data%20Barometer%20-%20Global%20Report%20-%202nd%20Edition%20-%20PRINT.pdf.
- Young, Andrew, Stefaan Verhulst, Nadiya Safonova, and Andrew Zahuranec. 2020. "The Data Assembly: Responsible Data Re-Use Framework." The GovLab & Henry Luce Foundation. https://thedataassembly.org/files/nyc-data-assembly-report.pdf.

CHAPTER

06

PERSONAL DATA PRIVACY: SURVEILLANCE AND SECURITY

6.1	What is personal data?	137
6.2	How is personal data generated and collected?	137
6.3	Surveillance capitalism: what other data are being collected?	139
6.3.	1 Individual privacy violations	140
6.3.	2 Bias and discrimination	140
6.3.	3 Societal effects	141
6.4	What can individuals do?	142
6.4.	Be aware of phishing attacks; verify requests for personal data	143
6.4.	2 Be aware of social media settings; limit access to personal data	143
6.5	What can governments do?	144
6.5.	1 Digital Economy Blueprint	145
6.6	Conclusion	146
Refer	rences	148

PERSONAL DATA PRIVACY: SURVEILLANCE AND SECURITY357

By Rachel Gong, Shenyi Chua and Hui San Chiam

"Personal information is increasingly used to enforce standards of behavior. Information processing is developing, therefore, into an essential element of long-term strategies of manipulation intended to mold and adjust individual conduct.".

Shoshana Zuboff³⁵⁸

6.1 What is personal data?

Personal data refers to any data that contains personally identifiable information. Malaysia's Personal Data Protection Act 2010 (Act 709) defines personal data as "any information...that relates directly or indirectly to a data subject, who is *identified* or *identifiable* from that information..."359; Singapore's Personal Data Protection Act 2012 defines it as "...data, whether true or not, about an individual who can be *identified* from that data..."360; The European Commission defines it as "any information that relates to an *identified* or *identifiable* living individual"361 whereas the National Institute of Standards and Technology (NIST) of United States defines it as "information that can be used to distinguish or trace an individual's identity, either alone or when combined with other information that is linked or linkable to a specific individual"362.

The European Union's General Data Protection Regulation (GDPR) lists some examples of personal data including name, national identification number, location data and even internet protocol (IP) addresses that identify how a user is connecting to the internet³⁶³.

6.2 How is personal data generated and collected?

The Covid-19 pandemic has accelerated Malaysia's transition to a cashless society. Financial institutions and e-wallet service providers reported a steep rise in the transaction volume of contactless payments and e-wallet adoption during the Movement Control Order (MCO) as Malaysians try to minimise physical contact.

³⁵⁷ This chapter is based on two Views pieces published by KRI, one authored by Shenyi Chua and Rachel Gong published on 1 October 2020 titled "<u>Privacy and Cybersecurity: Protecting Personal Data</u>" and the other authored by Rachel Gong and Hui San Chiam published on 31 July 2019 titled "<u>Personal Data Privacy and Surveillance Capitalism</u>".

³⁵⁸ Zuboff (2019)

³⁵⁹ Government of Malaysia (2010)

³⁶⁰ Government of Singapore (2012)

³⁶¹ The European Commission (n.d.)

³⁶² Grassi, Garcia, and Fenton (2017)

³⁶³ The European Commission (n.d.)

Several banks saw a rise in the popularity of their e-wallets during the pandemic. For example, the sign-up rate for Maybank's MAE wallet doubled since the beginning of the first MCO in March 2020³⁶⁴. Hong Leong Bank witnessed a 13-fold increase in the total transnational value of e-wallet top-ups in two months from March to May 2020, as compared to the same period in 2019³⁶⁵.

Similarly, two popular e-wallets in Malaysia reported growth in their number of users and transactions. GrabPay Malaysia has seen a 60% increase in new users with more than 8,000 new merchants signing up to use its digital service³⁶⁶ and its contactless transactions have increased 1.7 times since the implementation of the MCO³⁶⁷. Additionally, Touch 'n Go's e-wallet saw an increase in e-wallet adoption among merchants³⁶⁸ as well as a surge in e-commerce volumes and online transactions³⁶⁹ during the first MCO period.

Transitioning to the digital economy results in more people being more connected to the internet. Internet users share personal information with mobile applications or businesses in exchange for ostensibly free goods or services. Not only is money stored in e-wallets operated by private companies, but shared real-time location and personal information are stored in their databases, too. Contact tracing apps may also store health information.

Generally, smartphone apps can track our movements (e.g. whether we are stationary or walking around), record our location and read (some) text messages without any additional user action or input³⁷⁰. Businesses process these data into useful information that helps them provide better user experiences and services to their customers. For example, an individual uses an e-wallet to pay for a flight planned via a travel app and receives a confirmation email, including personally identifying information such as name, travel dates, locations and payment details. These details are shared across multiple apps to automatically generate an event with details of the flight in the calendar of the user's smartphone.

Digital platforms, such as Facebook and Grab, establish a commercial network of interdependent end users and providers to enable the provision of products, which include both goods and services³⁷¹. These platforms create value by providing online communication channels and marketplaces that allow for rapid and inexpensive scaling. Multisided platforms such as Amazon allow producers and consumers to interact directly to find and obtain a wider range of products at lower marginal costs³⁷². Amazon expanded its range of products from retail goods to publishing to payments to online storage to the point that it now provides the backbone infrastructure for many other digital platforms³⁷³.

```
<sup>364</sup> The Star (2020a)
```

³⁶⁵ Hong Leong Bank (2020)

³⁶⁶ Boey (2020)

³⁶⁷ The Star (2020b)

³⁶⁸ Birruntha (2020)

³⁶⁹ Boey (2020)

³⁷⁰ Ng and Kent (2018); Valentino-DeVries et al. (2018)

³⁷¹ Rossotto et al. (2018)

³⁷² Asadullah, Faik, and Kankanhalli (2018)

³⁷³ Khan (2017)

Expansion of this magnitude depends on a strong understanding of what users want and what they are willing to give in order to get it. How much a user is willing to pay for a product is just one factor to be considered; another factor is how much personal data a user is willing to give up for convenience and personalisation. When someone opens the Google Assistant app and it welcomes them with a greeting appropriate for the time of day, a localised weather and traffic report, and a reminder to buy a birthday present for their mother, they take for granted the degree to which their life is being monitored.

Constant tracking by digital platforms like Google and Facebook gives them access to more user data than ever, both in terms of numbers of users and the types of data they collect on each user. As a start, Facebook collects all the data of users who are logged in, including profile information, shared photos, interactions and activities, likes and follows, network data, and location data. How often users log in, how long we spend on the platform and what items we click on are also tracked³⁷⁴. Facebook also uses cookies, little pieces of data, to track what its users do online even when they are not logged in to Facebook³⁷⁵. There is justified concern that not only will user data that are knowingly shared be used without informed consent but also that user data that are *unknowingly* shared will be used without informed consent in ways unintended by the data provider i.e. the platform user³⁷⁶.

6.3 Surveillance capitalism: what other data are being collected?

In her book *The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power*, Shoshana Zuboff³⁷⁷ explains how digital platforms engage in surveillance capitalism. Platforms like Google collect and analyse users' "behavioural surplus" for purposes besides service improvement, especially for predicting and modifying users' behaviour in order to generate more behavioural surplus. Behavioural surplus, also known as data exhaust, is secondary data generated during a transaction. For example, an internet user searches for "flights from Kuala Lumpur to Bali". The search term constitutes primary behavioural data; behavioural surplus includes data on what time of year (or day) the user conducted the search, how often the search was repeated, on what sort of device the search was conducted, and so on. Big data analysis of the primary data can be useful in identifying popular travel destinations, but analysis of the secondary data can reveal a lot more about the people interested in travel.

³⁷⁴ Facebook (2018)

³⁷⁵ Pierson and Heyman (2011)

³⁷⁶ Whitley (2009)

³⁷⁷ Zuboff (2019)

Because users are generally unaware of the amount of behavioural surplus they produce and because analysis of such data had previously been extremely costly and time-consuming, surveillance capitalism has gone unchecked until recently. Digital platforms were able to experiment with big data analysis and expand their collection of behavioural surplus without any regulations. But as governments, corporations and society are becoming more aware of how powerful and pervasive big data analytics can be, the real issue is not simply digital platforms hoarding user data. The real question is how society will choose to employ these technological tools—how will we manage the use of data to help and not harm?

There is evidence that, without proper foresight and management, the misuse of personal data can have adverse effects on multiple levels, discussed in subsequent sub-sections.

6.3.1. Individual privacy violations

The first level is at an individual level when users' personal data reveal private information that they had not intended to share.

Location data may seem innocuous, but in fact, this information reveals a lot about a person. Regular travel patterns can be used to infer a person's home address, place of work, leisure preferences, or private vices. Ride-sharing apps employ geolocation surveillance intended to protect drivers and passengers, but, in the case of Uber, location tracking has led to the exposure of extramarital affairs³⁷⁸ and patterns of one-night stands³⁷⁹. In 2016, Uber faced a lawsuit when a whistle-blower exposed how employees used location data to track politicians, celebrities and even exes³⁸⁰. All these constitute violations of individual privacy rights.

Although Uber has ceased operations in Malaysia, local counterparts such as Grab, MyCar and EzCab operate in much the same way. Per Grab's privacy policies, the ride-hailing app collects similar data, such as precise and approximate location information as well as trip updates³⁸¹. Therefore, it is reasonable to assume that many ride-hailing apps have similar capabilities for tracking and analysing its users' data. Without regulations, we are susceptible to violations of individual privacy rights, not only by foreign digital service providers, but also local companies.

6.3.2. Bias and discrimination

The second level affects vulnerable segments of society whose shared characteristics make them susceptible to bias and discrimination.

Digital platforms collect vast quantities of our regular micro behaviours that can then be analysed to reveal unexpected correlations to meso-level trends, such as susceptibility to illness, risk of traffic accidents³⁸², or tendency towards criminal activity. Using machine learning for complex big data analyses can be very useful, but it can also put vulnerable segments of society at risk of discriminatory effects.

³⁷⁸ Trigg (2017)

³⁷⁹ Uber (2012)

³⁸⁰ Chiang (2017)

³⁸¹ Grab (2019)

³⁸² Kita and Kidziński (2019)

Researchers have been exploring the use of Facebook user data to predict medical conditions³⁸³. For example, identifying emotion-associated language markers allow inferences to be made about a person's susceptibility to clinical depression. These language markers are consistent with some characteristics of depression: loss of drive and interest, reduced engagement and interactions, and social withdrawal that eventually leads to social isolation³⁸⁴. Predictive algorithms such as these can and have been used by health insurers to identify hidden health issues that require medical services. These predictive algorithms can then be used to charge higher medical insurance premium rates for customers with supposedly higher health risks even though they may not actually be at higher risk³⁸⁵. Furthermore, the ease with which public social media data can be obtained means that the data are susceptible to misinterpretation or misuse.

Malaysian law enforcement appears to be keen to adopt new digital technologies to improve public safety. Earlier in 2019, the country's first artificial intelligence-based facial recognition camera system was introduced in Penang to identify criminals on the street³⁸⁶. The auxiliary police force is also integrating on-body cameras with high-end facial recognition feature in criminal identification³⁸⁷. Artificial intelligence software such as CloudWalk Technology use predictive algorithms that draw from criminals' facial characteristics, body language and gait patterns across photos and videos to identify suspicious behaviour³⁸⁸. However, these tools are unreliable because inherent biases in algorithms and the training data they rely on³⁸⁹ could potentially lead to misidentification, racial profiling and discrimination in criminal sentencing³⁹⁰. The city of San Francisco, concerned over potential misuse of this technology, banned the use of facial recognition by all city agencies, including law enforcement³⁹¹.

6.3.3. Societal effects

The third level of societal adverse effects occurs when aggregated personal data are used to modify collective behaviour without users' knowledge.

Platform monopolies like Facebook and Amazon have so much individual data in their hands that their big data analyses can have far-reaching societal effects, as was the case when Cambridge Analytica got hold of the personal data of millions of Facebook users³⁹².

³⁸³ Eichstaedt et al. (2018)

³⁸⁴ Kupferberg, Bicks, and Hasler (2016)

³⁸⁵ Allen (2018)

³⁸⁶ The Star (2019a)

³⁸⁷ Tao (2018)

³⁸⁸ Mozur (2019)

³⁸⁹ Buolamwini (2017)

³⁹⁰ Angwin et al. (2016)

³⁹¹ Conger, Fausset, and Kovaleski (2019)

³⁹² Meredith (2018)

In 2014, a researcher named Aleksandr Kogan developed an app for Facebook. Several hundred thousand Facebook users who took a personality quiz using that app consented to share their personal data with the app. Unbeknown to them, the app also collected the personal data of all their friends, resulting in a pool of data for over eighty-seven million Facebook users. All this data was available to Kogan, who sold it to Cambridge Analytica. Cambridge Analytica then used this data to develop psychographic profiles of voters, which allowed it to micro-target political ads in the 2016 US Presidential election, potentially giving the Trump campaign, with whom it was affiliated, an unfair advantage. Individual privacy rights were violated and this affected the political landscape of an entire nation. When this scandal became public, it rightly raised many questions around data privacy and Facebook's apparent lack of respect for its users' personal data rights. Big data-driven methods of political persuasion like this are increasing globally³⁹³.

Political actors have long used data to target messaging and influence behaviour, but never on this scale and with this degree of micro-targeted advertising. In the 2016 UK referendum on the EU, exploitation of Facebook data and misleading targeted ads supporting the "Leave" campaign led to the unexpected referendum result among British voters³⁹⁴. Investigative journalist Carole Cadwalladr explained how residents of the traditionally left-wing town of Ebbw Vale were targeted with fake information about Turkish immigration on Facebook, resulting in a spike of Leave voters³⁹⁵. Not only are messages customised to the concerns of specific profile groups, but such groups are also often unaware that they have been targeted.

6.4 What can individuals do?

Oversharing personal data puts users at risk not only of potential stalking and attempts to manipulate their behaviour³⁹⁶, but also of their personal information being added to a database that may not be adequately secured and thus may be susceptible to hackers and data breaches. Such breaches put them at further risk of identity theft and scams.

Securing a database from cybersecurity threats is out of the control of individual users so, until comprehensive data protection legislation is passed, individuals are best served by learning about the risks of data sharing and taking steps to minimise those risks.

In addition to reviewing app permissions and evaluating whether the degree of personal data sharing is worth the benefits of the app, we suggest two more ways individual users can protect their personal data in the following sub-sections.

³⁹³ Tactical Tech's Data and Politics team (2019)

³⁹⁴ Cadwalladr (2018)

³⁹⁵ Cadwalladr (2019)

³⁹⁶ Zuboff (2019)

6.4.1. Be aware of phishing attacks; verify requests for personal data

Phishing is a type of online scam often used to steal personal information such as login credentials, bank account information or credit card numbers³⁹⁷. Phishing attacks can occur through any form of communication, such as emails, phone calls, text messages, instant messages received on social media sites or advertisements³⁹⁸. Phishing messages typically claim to come from a legitimate source such as a bank or a government agency. Not only will phishers use the email address, logo and other trademarks from the purported source to look authentic, they will also fabricate stories to cause recipients to panic into either giving away personal data or allowing their personal data to be tracked. Examples of phishing attacks include claiming a suspicious login attempt or unauthorised changes to the user's account have been detected or requesting confirmation to verify sensitive personal information³⁹⁹.

According to the Malaysian Communications and Multimedia Commission (MCMC), the majority of phishing attacks detected in Malaysia target internet banking users to trick them into revealing their login credentials⁴⁰⁰.

Cybersecurity Malaysia (CSM) also reported receiving a total of 838 cases involving fraud, intrusion and cyber-harassment in just three weeks of the MCO between 18 March and 7 April 2020^{401} . Cybercriminals are often quick in reacting to global events, in this case making use of the pandemic to launch Covid-19 themed phishing emails or fraudulent websites filled with fake Covid-19 news⁴⁰².

Before sharing any information, internet users should take additional steps to confirm who is requesting their personal data and for what purpose. For example, users receiving a text message about an unexpected financial transaction should contact their bank's customer service department to verify the message before responding to it. Users should also avoid clicking on links from suspicious emails without first verifying their source⁴⁰³. Fraudulent websites look very similar to original websites, differing by only a letter or punctuation mark. Examples include changing the letter O to the number O or inserting additional characters and symbols that legitimate web addresses will not have⁴⁰⁴.

6.4.2. Be aware of social media settings; limit access to personal data

Social media users tend to unknowingly overshare personal information on these platforms, whether checking in at a restaurant for a meal, tweeting about a new job promotion or sharing photos with location details in the background or in the photo geolocation tag. While these activities are meant to foster meaningful connections with friends and family, there are privacy risks to such online sharing activities.

³⁹⁷ MCMC (2020b); University of Massachusetts Amherst (n.d)

³⁹⁸ MCMC (2020b); University of Massachusetts Amherst (n.d)

³⁹⁹ MCMC (2020a)

⁴⁰⁰ MCMC (2020b)

⁴⁰¹ Yuen (2020)

⁴⁰² Yuen (2020)

⁴⁰³ U.S. Federal Trade Commission (2012)

⁴⁰⁴ Strawbridge (2018)

Social media posts uploaded on the internet may include personal details that malicious actors could exploit to access sensitive accounts or commit identity theft. For example, background information such as schools attended, pet names or vacation photos could provide enough clues for cybercriminals to work out a user's passwords⁴⁰⁵.

Internet users should review privacy settings on their social media accounts to limit who can access their personal information. For example, on Facebook, users may want to avoid setting their posts to be public as this allows even non-Facebook users to access their information. Users may also want to consider reviewing their friend/follower list regularly to remove unfamiliar accounts that might be monitoring their posts.

6.5 What can governments do?

Risks of abuse and misuse notwithstanding, the collection and use of anonymised personal data can be useful in many fields, including policy research. For example, location data can reveal travel patterns indicating where traffic flow and public transportation should be improved. However, considering that personal data can be—and have been—misused when it falls into the wrong hands, there are several critical data governance questions we need to ask in this rapidly digitalising world: who owns our personal data? Who has access to our personal data? Where and how are our personal data being used and stored? What are the laws and regulations in place governing the access, use and storage of our personal data, and are they enough to protect our privacy?

The responsibility of strengthening cybersecurity falls on the shoulders of all parties. It requires the efforts of both public and private sectors to coordinate and collaborate with each other in terms of capacity building and policy design and implementation.

Currently, the Personal Data Protection Act (PDPA) 2010 only protects inappropriate use of personal data for commercial purposes. Not only does it not regulate what types of data are collected or how those data are used, it is rarely enforced⁴⁰⁶ and simply does not apply to personal data processed outside of Malaysia⁴⁰⁷. Additionally, there is no Data Breach Notification Rule in the PDPA 2010 yet so businesses that suffer a data breach are not legally obliged to notify the authorities, the public, or the victims of the data leak⁴⁰⁸.

The Communications and Multimedia Ministry announced in March 2019 that it is in the process of reviewing the PDPA to update it in line with the European Union's GDPR⁴⁰⁹. This intention was reiterated in the Digital Economy Blueprint (DEB) released in February 2021. The GDPR, in addition to data security requirements already in the PDPA, limits personal data collection to only what is necessary, allows companies to keep data only for current requirements, and prohibits them from saving data for potential future use⁴¹⁰.

⁴⁰⁵ Cybersecurity Malaysia (n.d)

⁴⁰⁶ Jabatan Perlindungan Data Peribadi (2019)

⁴⁰⁷ Naufal Fauzi (2019)

⁴⁰⁸ Tashny Sukumaran (2019)

⁴⁰⁹ The Star (2019b)

⁴¹⁰ European Parliament (2016)

The California Consumer Privacy Act (CCPA), modelled after the GDPR, is another example of a law intended to provide data privacy protection. It allows residents of California to request a record of their personal data that was collected, used, shared or sold by a California business⁴¹¹ and to opt out of the sale of their data. The law grants individuals the right to learn the specific inferences made about them based on analysis of their personal data, including "predictions or categorisations related to an individual's behaviour, attitudes, psychology, intelligence or abilities"⁴¹². Crucially, not only must companies reveal the personal data they have collected upon request, they must also delete all data when asked by users⁴¹³.

Existing data protection laws are not by themselves enough to combat surveillance capitalism and to avoid the consolidation of a wealth of personal data in the hands of a few—at best unwitting and at worst unscrupulous—powerful players. They lack provisions to address children's digital privacy, personal data processed in non-commercial transactions and outside of Malaysia, as well as general online privacy issues such as geolocation data and browser cookies that could potentially track internet users⁴¹⁴. To that end, more research and, ironically, more data, are needed to evaluate how limits can be placed on data collection and distribution while allowing innovation and improving efficiency.

Digital technologies are evolving faster than policy and legislation, but this is no reason for policymakers not to tackle data privacy considerations when developing digital policy. At the very least, users should be explicitly informed as to what personal data, including behavioural surplus, are being collected by digital platforms and to what ends their data are being used. Wherever possible, users should be able to opt out of being tracked and having their personal data collected, for example by internet cookies, without losing access or functionality.

6.5.1. Digital Economy Blueprint

The DEB recognises that the collection and use of personal data by businesses both raises ethical concerns around privacy by those familiar with these issues and raises a need for improved cybersecurity education among those who are not—at both individual and institutional levels. It rightly notes that public trust in institutions, both government and business, remains weak and commits to improving regulations to protect personal data and privacy.

The Blueprint reiterates the need to review, though it does not specify revise, the PDPA and sets 2025 as the target for the PDPA to be reviewed. Given the rapid increase of e-commerce and widespread use of platforms for education and work as well as the push for 80% of the public sector to deliver end-to-end digital services by 2022, it would seem that a review of Malaysia's primary data protection law should be hastened.

⁴¹¹ Cowan and Singer (2020)

⁴¹² Cowan and Singer (2020)

⁴¹³ Myrow (2019)

⁴¹⁴ Segaran (2020)

Improvements to this law include requiring businesses in Malaysia to notify their clients about data breaches involving personal data, as in the case of Malaysia Airlines' frequent flier programme's third-party service provider⁴¹⁵. Businesses in Malaysia are not currently required to report such breaches to potentially affected individuals.

Cybersecurity will be paramount in minimising the risks of data breaches, especially since redundant systems and backups are necessary to ensure the smooth functioning of government and business. A traditional security mindset may assume cybersecurity protocols should be kept secret to reduce threats and attacks, but a contemporary mindset should consider allowing ethical hackers and other industry experts some access to rigorously test the security of a digital system before security protocols are officially implemented.

The DEB includes aims to grow the cloud computing ecosystem in Malaysia, for both public and private sectors, strengthening the capabilities of local data centre companies. Regulations will be needed to determine who has access to personal data on the cloud and how much access they should have. If the local servers are maintained by local companies with private interests, regulations will be needed to limit their access to and use of a national database of personal data.

The DEB also contains plans to strengthen cross-border data transfer mechanisms, which will likely be developed within the context of trade agreements. Data protection should not be considered secondary to other trade considerations, as Malaysia should recognise the value of the personal data generated within its borders.

6.6 Conclusion

As Malaysia, like the rest of the world, continues to adopt data-driven digital technologies, data policies are needed to govern and protect personal data. Personal data has far-reaching uses, both at the individual level (for example, to customise a user's experience), and at the national level (for example, to adjust electricity generation rates). It is important to assess and understand not just the benefits but also the risks of using large amounts of personal data, and then to develop policies, laws, and regulations that will protect personal data and individual privacy while deriving public good from such data.

Government agencies tasked with implementing digitalisation would do well to consult with each other and with industry experts, especially cybersecurity experts, as well as legal and human rights experts, to consider the implications of the collection and use of personal data on an everincreasing scale. Ethical questions, such as who owns personal data once it is collected and stored, who gets to use it, and how the benefits derived from its use can be distributed equitably, are not just philosophical in nature—they have direct implications for how data frameworks and systems are built and maintained.

CHAPTER 6

PERSONAL DATA PRIVACY: SURVEILLANCE AND SECURITY

As with most social structures, the ownership, control and use of personal data are likely to be unequally distributed, with power and resources consolidating in the hands of those who already have power and resources to begin with, usually platforms and corporations. But policy-making and public services may soon require access to personal data held by these platforms. Governments have an important role to play in developing data policies that can reduce these inequalities and ensure that personal data and privacy are properly protected.

References

- Allen, Marshall. 2018. "Health Insurers Are Vacuuming Up Details About You And It Could Raise Your Rates." ProPublica. July 17, 2018. https://www.propublica.org/article/health-insurers-are-vacuuming-up-details-about-you-and-it-could-raise-your-rates.
- Angwin, Julia, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016. "Machine Bias." *ProPublica*, May. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing.
- Asadullah, Ahmad, Isam Faik, and Atreyi Kankanhalli. 2018. "Digital Platforms: A Review and Future Directions," September.
- Birruntha, S. 2020. "E-Wallet Adoption on the Rise during MCO." *The Malaysian Reserve*, May 21, 2020, sec. News. https://themalaysianreserve.com/2020/05/21/e-wallet-adoption-on-the-rise-during-mco/.
- Boey, Elaine. 2020. "Finance Digital Payments Give Users More Bang for Their Ringgit." *The Edge Markets*, August 16, 2020. http://www.theedgemarkets.com/article/finance-digital-payments-give-users-more-bang-their-ringgit.
- Buolamwini, Joy Adowaa. 2017. "Gender Shades: Intersectional Phenotypic and Demographic Evaluation of Face Datasets and Gender Classifiers." Thesis, Massachusetts Institute of Technology. https://dspace.mit.edu/handle/1721.1/114068.
- Cadwalladr, Carole. 2018. "AggregateIQ: The Obscure Canadian Tech Firm and the Brexit Data Riddle." *The Guardian*, March 31, 2018, sec. UK news: The Cambridge Analytica Files. https://www.theguardian.com/uk-news/2018/mar/31/aggregateiq-canadian-techbrexit-data-riddle-cambridge-analytica.
- ——. 2019. Facebook's Role in Brexit -- and the Threat to Democracy. TED Talk. https://www.ted.com/talks/carole_cadwalladr_facebook_s_role_in_brexit_and_the_threat_to_democracy.
- Chiang, Angel. 2017. "Former Uber Employee Files Suit for Retaliation in Reporting Insecure Data Privacy Practices." *American Bar Association*, September 1, 2017. https://www.americanbar.org/groups/litigation/committees/privacy-data-security/practice/2017/former-uber-employee-files-suit-for-retaliation-insecure-data-privacy-practices/.
- Conger, Kate, Richard Fausset, and Serge F. Kovaleski. 2019. "San Francisco Bans Facial Recognition Technology." *The New York Times*, May 14, 2019, sec. U.S. https://www.nytimes.com/2019/05/14/us/facial-recognition-ban-san-francisco.html.
- Cowan, Jill, and Natasha Singer. 2020. "How California's New Privacy Law Affects You." *The New York Times*, January 3, 2020, sec. U.S. https://www.nytimes.com/2020/01/03/us/ccpacalifornia-privacy-law.html.
- Cybersecurity Malaysia. n.d. "Keep Yourself Safe from Online Identity Theft." https://www.cybersecurity.my/data/content_files/11/763.pdf.
- Eichstaedt, Johannes C., Robert J. Smith, Raina M. Merchant, Lyle H. Ungar, Patrick Crutchley, Daniel Preoţiuc-Pietro, David A. Asch, and H. Andrew Schwartz. 2018. "Facebook Language Predicts Depression in Medical Records." *Proceedings of the National Academy of Sciences* 115 (44):11203–8. https://doi.org/10.1073/pnas.1802331115.
- European Parliament. 2016. *General Data Protection Regulation (GDPR)*. *OJ L.* Vol. 119. http://data.europa.eu/eli/reg/2016/679/oj/eng.
- Facebook. 2018. "Facebook Data Policy." Facebook. April 19, 2018. https://engb.facebook.com/about/privacy/update.
- Government of Malaysia. 2010. "Personal Data Protection Act 2010 (Act 709)." http://www.agc.gov.my/agcportal/uploads/files/Publications/LOM/EN/Act%20709% 2014%206%202016.pdf.

- Government of Singapore. 2012. "Personal Data Protection Act 2012." December 7, 2012. https://sso.agc.gov.sg/Act/PDPA2012.
- Grab. 2019. "Grab Privacy Policy." Grab MY. March 14, 2019. https://www.grab.com/my/privacy/.
- Grassi, Paul A, Michael E. Garcia, and James L. Fenton. 2017. "Digital Identity Guidelines." *NIST Special Publication 800-63-3*, June, 75.
- Hong Leong Bank. 2020. "Hong Leong Bank Introduces HLB Pocket Connect." August 17, 2020. https://www.hlb.com.my/en/personal-banking/news-updates/hlb-introduces-hlb-pocket-connect.html.
- Jabatan Perlindungan Data Peribadi. 2019. "Pengguna Data Yang Telah Dikenakan Tindakan Di Bawah Akta Perlindungan Data Peribadi 2010 (Akta 709) Jabatan Perlindungan Data Peribadi." September 22, 2019. https://www.pdp.gov.my/jpdpv2/berita_terkini/pengguna-data-yang-telah-dikenakan-tindakan-di-bawah-akta-perlindungan-data-peribadi-2010-akta-709/.
- Khan, Lina M. 2017. "Amazon's Antitrust Paradox." *The Yale Law Journal* 126 (3):564–907. https://www.yalelawjournal.org/note/amazons-antitrust-paradox.
- Kita, Kinga, and Łukasz Kidziński. 2019. "Google Street View Image of a House Predicts Car Accident Risk of Its Resident." *ArXiv:1904.05270* [Stat], April. http://arxiv.org/abs/1904.05270.
- Kupferberg, Aleksandra, Lucy Bicks, and Gregor Hasler. 2016. "Social Functioning in Major Depressive Disorder." *Neuroscience & Biobehavioral Reviews* 69 (October):313–32. https://doi.org/10.1016/j.neubiorev.2016.07.002.
- MCMC. 2020a. "Identify Phishing E-Mail." September 21, 2020. https://www.mcmc.gov.my/en/faqs/phishing-attack/2-identify-phishing-e-mail.
- ——. 2020b. "What Is Phishing?" September 21, 2020. https://www.mcmc.gov.my/en/faqs/phishing-attack/1-what-is-phishing.
- Meredith, Sam. 2018. "Facebook-Cambridge Analytica: A Timeline of the Data Hijacking Scandal." *CNBC*, April 10, 2018. https://www.cnbc.com/2018/04/10/facebook-cambridge-analytica-a-timeline-of-the-data-hijacking-scandal.html.
- Mozur, Paul. 2019. "One Month, 500,000 Face Scans: How China Is Using A.I. to Profile a Minority." *The New York Times*, April 14, 2019, sec. Technology. https://www.nytimes.com/2019/04/14/technology/china-surveillance-artificial-intelligence-racial-profiling.html.
- Myrow, Rachel. 2019. "California Rings In The New Year With A New Data Privacy Law." *NPR.Org* (blog). December 30, 2019. https://www.npr.org/2019/12/30/791190150/california-rings-in-the-new-year-with-a-new-data-privacy-law.
- Naufal Fauzi. 2019. "Data Privacy Laws: Malaysia Has a Long Way to Go." *ISIS* (blog). February 12, 2019. https://www.isis.org.my/2019/02/12/data-privacy-laws-malaysia-has-a-long-way-to-go/.
- Ng, Vivian, and Catherine Kent. 2018. "Smartphone Data Tracking Is More than Creepy Here's Why You Should Be Worried." Yahoo! Finance. February 7, 2018. https://ca.finance.yahoo.com/news/smartphone-data-tracking-more-creepy-104117812.html.
- Pierson, Jo, and Rob Heyman. 2011. "Social Media and Cookies: Challenges for Online Privacy." *Info* 13 (6):30–42. https://doi.org/10.1108/14636691111174243.

- Rossotto, Carlo Maria, Prasanna Lal Das, Elena Gasol Ramos, Eva Clemente Miranda, Mona Farid Badran, Martha Martinez Licetti, and Graciela Miralles Murciego. 2018. "Digital Platforms: A Literature Review and Policy Implications for Development." *Competition and Regulation in Network Industries* 19 (1–2). https://doi.org/10.1177/1783591718809485.
- Segaran, Darmain. 2020. "Child Digital Privacy in Malaysia: Risks, Regulation and Solutions." *Dataraxis* (blog). January 7, 2020. https://www.dataraxis.co/blog-1/child-digital-privacy-in-malaysia-risks-regulation-and-solutions.
- Strawbridge, Geraldine. 2018. "5 Ways to Identify a Phishing Website." MetaCompliance. July 2, 2018. https://www.metacompliance.com/blog/5-ways-to-identify-a-phishing-website/.
- Tactical Tech's Data and Politics team. 2019. "Personal Data: Political Persuasion. Inside the Influence Industry. How It Works."
- Tao, Li. 2018. "Malaysian Police Wear Chinese Start-up's AI Camera to Identify Suspected Criminals." *South China Morning Post*, April 20, 2018. https://www.scmp.com/tech/social-gadgets/article/2142497/malaysian-police-wear-chinese-start-ups-ai-camera-identify.
- Tashny Sukumaran. 2019. "Malindo Air Confirms Data Breach, Exposing Records of Millions of Passengers." *South China Morning Post*, September 18, 2019, sec. News. https://www.scmp.com/news/asia/southeast-asia/article/3027780/malindo-air-confirms-data-breach-exposing-millions.
- The European Commission. n.d. "What Is Personal Data?" Accessed September 4, 2020. https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-personal-data_en.
- The Star. 2019a. "Use of Biome-tric Facial Recognition Must Be Regulated." *The Star Online*, January 3, 2019, Nation edition. https://www.thestar.com.my/news/nation/2019/01/03/use-of-biometric-facial-recognition-must-be-regulated/.
- ——. 2019b. "Gobind: Personal Data Protection Law Being Reviewed." *The Star Online*, March 18, 2019, Nation edition. https://www.thestar.com.my/news/nation/2019/03/18/gobind-personal-data-protection-law-being-reviewed/.
- ——. 2020a. "Covid-19 Outbreak Steepens Adoption Curve of e-Wallets in Malaysia," April 28, 2020. https://www.thestar.com.my/news/regional/2020/04/28/covid-19-outbreak-steepens-adoption-curve-of-e-wallets-in-malaysia.
- ———. 2020b. "Malaysia's Online Retail Sales up 28.9% in April," June 11, 2020. i.
- Trigg, Rose. 2017. "Cheating Frenchman Sues Uber for €45m Blaming Glitch in App for His Divorce." *The Local*, February 8, 2017. https://www.thelocal.fr/20170208/frenchmansues-uber-for-45-million-after-glitch-lets-his-wife-track-him.
- Uber. 2012. "Rides of Glory." *Uber's Blog* (blog). March 26, 2012. https://web.archive.org/web/20141118192805/http:/blog.uber.com/ridesofglory.
- University of Massachusetts Amherst. n.d. "Phishing: Fraudulent Emails, Text Messages, Phone Calls & Social Media." n.d. https://www.umass.edu/it/security/phishing-fraudulent-emails-text-messages-phone-calls.
- U.S. Federal Trade Commission. 2012. "How to Keep Your Personal Information Secure." Consumer Information. July 2012. https://www.consumer.ftc.gov/articles/0272-how-keep-your-personal-information-secure.

- Valentino-DeVries, Jennifer, Natasha Singer, Michael H. Keller, and Aaron Krolik. 2018. "Your Apps Know Where You Were Last Night, and They're Not Keeping It Secret." *The New York Times*, December 10, 2018, sec. Business. https://www.nytimes.com/interactive/2018/12/10/business/location-data-privacy-apps.html, https://www.nytimes.com/interactive/2018/12/10/business/location-data-privacy-apps.html.
- Whitley, Edgar A. 2009. "Informational Privacy, Consent and the 'Control' of Personal Data." *Information Security Technical Report* 14 (3):154–59. https://doi.org/10.1016/j.istr.2009.10.001.
- Yu, Eileen. 2021. "Malaysia Airlines Suffers Data Security 'incident' Affecting Frequent Flyer Members." ZDNet. February 3, 2021. https://www.zdnet.com/article/malaysia-airlines-suffers-data-security-incident-spanning-nine-years/.
- Yuen, Meikeng. 2020. "Cybersecurity Cases Rise by 82.5%." The Star. April 12, 2020. https://www.thestar.com.my/news/focus/2020/04/12/cybersecurity-cases-rise-by-825.
- Zuboff, Shoshana. 2019. *The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power*. Public Affairs.

CHAPTER

07

DIGITAL GOVERNANCE: CLASSIFICATION OF INFORMATION DISORDER

7.1 I	ntroduction	153
7.1.1	Media: the fourth pillar of democracy	153
7.1.2	Information disorder	155
7.2	Objectives of research	157
7.3	Methods and results	158
7.3.1	Context of the case study	158
7.4 I	Human assessments	159
7.4.1	Descriptive results	160
7.4.2	Observations	161
7.4.3	Summary of reflection essays by coders	162
·		
	Natural Language Processing [NLP)	163
	(NLP)	163 163
7.5.1	(NLP) Data processing & analytical	
7.5.1	(NLP) Data processing & analytical pipeline	163
7.5.1 7.5.2 7.5.3	(NLP) Data processing & analytical pipeline Descriptive results	163 165
7.5.1 7.5.2 7.5.3 7.5.4	Data processing & analytical pipeline Descriptive results Topic analysis: LDA	163 165 167
7.5.1 7.5.2 7.5.3 7.5.4 7.5.5	Data processing & analytical pipeline Descriptive results Topic analysis: LDA LDA: Topic–Word Association	163 165 167 170

7.6 I	Policy considerations	178
7.6.1	Vulnerabilities emerging from a digitalised society can be addressed with Augmented	
	Intelligence	178
7.6.2	Principles of objective fact- checking	180
	0	
7.6.3	Civic responsibilities of handling information disorder	180
7.6.4	Digital and online media literacy	181
7.7 (Conclusion	182
References		184

CHAPTER 7

DIGITAL GOVERNANCE: CLASSIFICATION OF INFORMATION DISORDER⁴¹⁶

By Gregory Ho Wai Son and Emir Izat Abdul Rashid

"The limits of my language mean the limits of my world".

Ludwig Wittgenstein⁴¹⁷

7.1 Introduction

7.1.1. Media: the fourth pillar of democracy

The early philosophy of Ludwig Wittgenstein⁴¹⁸ asserts that all philosophical problems are limited by the way in which language conveys logical meaning. However, his later philosophy⁴¹⁹ took a turn and posits that the meaning of a word is its use in the language. The latter view highlights the importance of the role of context in determining what people mean. Certainly, with the advent of digital technology, the means of communication in society are very different from Wittgenstein's era. Nonetheless, the arguments raised in both his philosophies remain evermore relevant in today's information age.

Marshall McLuhan argues that it is impossible to understand social and cultural changes without a knowledge of the workings of media⁴²⁰. McLuhan argues that media can be categorised in a spectrum of "high definition" to "low definition" media⁴²¹ Books for example, are high definition media as they embody a large volume of information and allow for little interaction on the part of the receiver during the process of transmitting information. Social media on the other hand, are "low definition" in comparison as social media posts contain a smaller volume of information and necessitate the participation of the receiver in a more immersive experience as part of the transmitting process. For "low definition" media, meaning is an emergent process not only from the original content, but also from the various media-receiver interactions (e.g. comments and likes).

On democracy, Amyrta Sen observed that "no substantial famine has ever occurred in any independent and democratic country with a relatively free press." Apart from the three branches of government—"Legislative", "Executive" and "Judicial"—the "Press/Media" is also recognised to be the fourth pillar of democracy. In an ideal democracy, the press plays the role of seeking and disseminating information independently in order to facilitate debates over "truth" and "shared meaning" in the public sphere.

⁴¹⁶ An earlier version of this chapter authored by Gregory Ho Wai Son and Emir Izat Abdul Rashid was published by KRI on 23 February 2021 as a Working Paper titled "<u>Classification of Information Disorder</u>".

⁴¹⁷ Original: Wittgenstein (1921), translation: Wittgenstein and dos Santos (1994)

⁴¹⁸ Original: Wittgenstein (1921), translation: Wittgenstein and dos Santos (1994)

⁴¹⁹ Original: Wittgenstein (1921), translation: Wittgenstein (2009)

⁴²⁰ McLuhan and Fiore (1967)

 $^{^{421}}$ McLuhan (1994). McLuhan uses the terms "hot" and "cold" to refer to high and low definition media, respectively.

⁴²² Sen (1999)

In an increasingly digitalised society, the advent of social media platforms such as Facebook or Twitter has allowed media to be propagated with superior coverage, at unprecedented speeds and at very minimal or no distribution costs. More importantly, there is also a notable transition in the workings of media from high definition to low definition. This implied that the facilitation of public debate over "shared meaning" has also transitioned from being dominated by "mainstream press" to a more decentralised system where the "wisdom" (or "madness") of the crowd takes precedence.

For a population size of around 32.7 million people in 2020⁴²³, the Malaysian Communications and Multimedia Commission (MCMC) estimates that there were about 24.6 million users of social networking apps in the country in 2018⁴²⁴. Of the total number of social networking users, 97.3% owned a Facebook account, 23.8% owned a Twitter account and 13.3% owned a LinkedIn account.

While the widespread availability of social media most certainly enabled greater freedom of expression, unbounded freedom of expression in the workings of media may not always yield democratic or beneficial outcomes for society. For example, the use of social media has been recognised to play an important role in fuelling violence in Myanmar in September 2017. There were documented accounts of widespread circulation of parallel rumours of imminent attacks which were designed to ignite violence between Muslim and Buddhist communities⁴²⁵.

Another issue that emerged with the use of social media is the spread of misinformation (and disinformation). Social media platforms employ the use of algorithms whose objective function is to maximise user engagement; a direct consequence of such algorithms is the filtering of media or content for users based on "how much a user interacts with certain 'friends'" and "what type of news feed a user interacts with"⁴²⁶. The result is the feeding of problematic media to users that compels real-world actions. For example, the Pizzagate scandal in the US—initially began as a conspiracy theory in 4Chan (an anonymous bulletin board website)—became viral in various other social media platforms. This eventually resulted in a firearm incident in the Comet Ping Pong Restaurant on 4 December 2016.

In the era of Covid-19, the perils of misinformation cannot be underestimated. In a joint statement by various international agencies including the World Health Organization (WHO), United Nations (UN), United Nations International Children's Emergency Fund (UNICEF) and the International Federation of Red Cross and Red Crescent Societies (IFRC)⁴²⁷, misinformation has been identified to be harmful—in that "...without the appropriate trust and correct information, diagnostic tests go unused, immunization campaigns (or campaigns to promote effective vaccines) will not meet their targets, and the virus will continue to thrive." Similarly, disinformation "...is polarizing public debate on topics related to Covid-19; amplifying hate speech; heightening the risk of conflict, violence and human rights violations; and threatening long-terms prospects for advancing democracy, human rights and social cohesion."

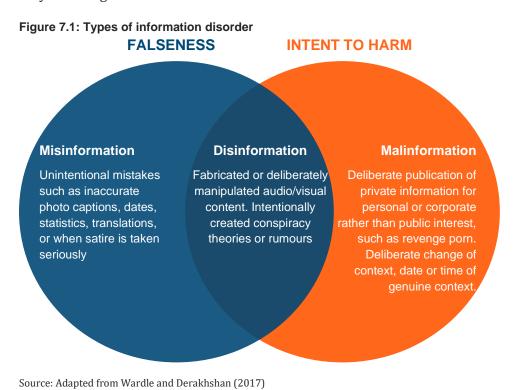
⁴²³ DOS (2020)

⁴²⁴ MCMC (2019)

⁴²⁵ Rio (2020)

⁴²⁶ Bakshy, Messing and Adamic (2015)

⁴²⁷ "Managing the COVID-19 Infodemic: Promoting Healthy Behaviours and Mitigating the Harm from Misinformation and Disinformation" (n.d.)


Closer to home, the government's initiative to combat misinformation is led by *Sebenarnya.my*, an initiative of the Malaysian Communications and Multimedia Commission (MCMC). *Sebenarnya.my* serves as a one stop centre for fact-checking potentially erroneous media that is flagged to them. In addition to traditional media, the government has also used social media such as Facebook and Twitter to distribute information.

Additionally, a separate survey conducted by Vase.ai⁴²⁸ highlighted that prior to movement control order (MCO) in March 2020, most Malaysians have relied on Facebook and other social media platforms as their main news source. This is indicative of the prominence and pervasiveness of social media platforms in facilitating public debates in Malaysia today.

7.1.2. Information disorder

Information disorder refers broadly to any distortion of information that can be classified into three types, namely misinformation, disinformation and malinformation. The term "fake news" is often used as a catch-all to refer to these three types of information disorder and conflates their definitions, thus is not a useful term. Furthermore, "fake news" has been highly politicised and used as more than just a label for false and misleading information. Fake news has been deployed as a weapon against journalists, a way of undermining reporting that people in power do not like⁴²⁹. As such, this chapter uses the term information disorder and its different types to quantify and discuss this phenomenon that is more complex than what "fake news" is able to convey.

Figure 7.1 defines these types of information disorders using a Venn diagram to illustrate where they fall along the dimensions of falseness and intent to harm

⁴²⁸ Vase.ai (2019)

⁴²⁹ Ireton and Posetti (2018)

"Falseness" simply represents the presence of content that is untrue. "Intent to harm" represents the presence of content that either is specifically (or maliciously) constructed to bring physical harm or is an "attack on dignity" to harm the reputation of a person, institution or social group. Along these two dimensions, information disorder is then categorised as **misinformation**, **disinformation** or **malinformation**, as described in Table 7.1.

Table 7.1: Three categories of information disorder

Category	Description
Misinformation	False information is present, but no harm is intended
Disinformation	False information is knowingly shared to cause harm
Malinformation	Genuine information is shared to cause harm, often by moving private information to the public sphere

Source: Adapted from Wardle and Derakhshan (2017)

However, the use of such terminology can sometimes be confusing or inconsistent in experimental or analytical settings⁴³⁰. This is because the key to effectively employing the definitions lie in the ability to confidently label content along two dimensions. Firstly, to label some media content as containing "falseness", the encoder must claim **access to truth**. Secondly, to label some media content as containing "intent to harm", the encoder must have the correct interpretation of **authorial intent**. Where there is reasonable uncertainty with regards to these two dimensions, it can be difficult to make a case for the presence of information disorder, or which category of information disorder is present in some media.

Moreover, these difficulties necessarily extend beyond the experimental and analytical settings. In a legal setting, the burden of proof falls on the part of the plaintiff who has to make a case for which the defendant is guilty of either falseness or intent to harm. Additionally, the plaintiff has to defend his position beyond reasonable doubt ("standard of proof") in the case of criminal proceedings. Whatever judgements arise from such cases also form a precedent for future cases.

On 11 April 2018, the Anti-Fake News Act 2018 (Act 803) was passed by the Malaysian Parliament⁴³¹. In an interview with the minister in the Prime Minister's Department responsible over the bill, Azalina Othman explained that the act was passed to deal with "...the issue of dissemination of fake news is a global problem, following the technological communication revolution, which is happening at a rapid pace. Of late, Malaysia has faced numerous challenges as an effect from fake news which not only confuses the public but can also threaten the safety, economy, prosperity and well-being of the people and the country"⁴³².

This act has since been repealed on 9 October 2019. Explanatory statements accompanying the bill to repeal Anti-Fake News Act 2018 (Act 803) states that Act 803 is no longer relevant given changes in the Penal Code (Act 574), the Printing Presses and Publications Act 1984 (Act 301) and the Communications and Multimedia Act 1998 (Act 588)⁴³³.

⁴³⁰ Wu et al. (2019)

⁴³¹ AGC (2018b)

⁴³² Ngah (2018)

⁴³³ Link to the bill.

Wu et al. (2019) argues that in the spectrum of media containing information disorder, distinguishing between "mis-information" and "dis-information" is relatively difficult. The key difficulty lies in determining whether the content was intentionally and deliberately constructed to deceive, to mislead or to cause harm. Wu et al. (2019) organises information disorder as described in Table 7.2.

Table 7.2: Other categorisations of information disorder

Category	Description
Unintentionally spread misinformation	Instead of wanting to deceive, a user tries to inform their social network about a certain issue or situation
Intentionally spread misinformation	Usually writers and coordinated groups of spreaders who have a clear goal and agenda to compile and promote misinformation
Urban legends	Intentionally spread misinformation on fictional stories. Can often be for entertainment
Fake news	Intentionally spread misinformation that is in the format of news. (original definition before the popularisation of the term)
Rumours	Unverified information (can be true)
Crowdturfing	Inflation of support (likes) via the use of marketing agents / bots
Spam	Unsolicited information that unfairly overwhelms recipients
Troll	Cause disruption and arguments in a discussion
Hate speech	Content that targets certain groups of people, inciting hatred and violence

Source: Adapted from Wu et al. (2019)

Conversely, harm can also be unintentionally but wrongfully inflicted on individuals, institutions, or social groups in the pursuit of truth. Should these content be categorised as containing information disorder?

7.2 Objectives of research

This section provides an outline of the research objectives of this chapter. Firstly, this chapter investigates the subtleties and problems associated with categorising information disorder in the context of human assessments. Given the issues highlighted above, the chapter investigates whether human assessments are able to consistently detect the presence of information disorder and consistently label them according to the various categorisations of information disorder.

Secondly, the chapter investigates if computational approaches can be employed to aid with the classification of information disorder. We investigate if unsupervised learning, specifically whether Latent Dirichlet Allocation (LDA) can be implemented to augment human assessments at a larger scale.

Given that the scale, openness and timeliness of social media have largely transformed the role of media as the fourth pillar of democracy, this chapter examines if problems that emerge from an increasingly digitalised society can also be battled using digitalised solutions that emerge from data science and machine learning.

We do this by studying tweets regarding a specific Covid-19 patient who was the subject of widespread public discussion in Malaysia in early 2020.

7.3 Methods and results

7.3.1. Context of the case study

At the time of data collection in early 2020, we only had access to a standard Twitter developer account. The standard account has limitations with regards to the breadth, depth and timeframe of search and extraction of tweets. With these limitations in mind, this chapter approaches information disorder in Malaysia by use of a case study of "Kes-26". "Kes-26" was the 26th person in Malaysia to have tested positive for Covid-19 and was initially identified by the Ministry of Health (MOH)⁴³⁴ to be the index case of over 20 other infections.

At the onset of Covid-19 in pre-lockdown Malaysia, "Kes-26" was interesting because its prominence in social media led to speculations on the identity of the patient especially following the circulation of a rumour of his attendance at a particular political event leading up to his diagnosis⁴³⁵. Following these events, there were various forms of information disorder being spread on social media concerning him. On 6 March 2020, "Kes-26" released a public statement, sharing the facts and clarifying the statements that were being made about him.

The case study is based on a relatively small corpus of Twitter data. We generated the dataset by collecting tweets surrounding "Kes-26". For data collection, we developed a crawler based on Twitter's API, which allows for a filtered collection of real-time tweets based on prespecified keywords. The keywords which were employed are summarised in Table 7.3.

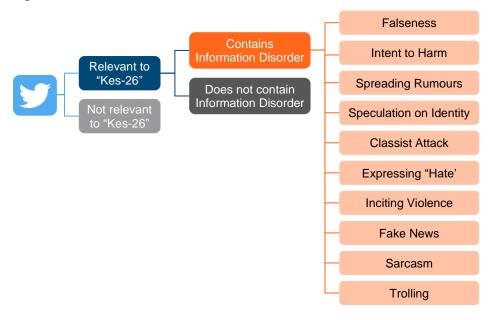
Table 7.3: Keywords used for filtered collection of tweets

Keywords	Description
"Kes-26", "Kes 26", "Case-26", "Case 26"	Keywords directly referring to Kes-26
"Hisham Hamdan", "UDA Chair"	The "identities" of Kes-26

Based on the filtered collection, we extracted a total of 2,015 tweets, posted by 1,569 unique twitter handles, over the period of 28 February 2020 to 10 March 2020.

⁴³⁴ KKM Portal MyHealth (2020)

⁴³⁵ Sarawak Report (2020)


7.4 Human assessments

The 2,015 tweets were distributed among seven coders in a way where each tweet was classified by a minimum of three coders. Each coder classified 860+ tweets per person. To ensure that the classification was done in a consistent and objective way, coders were:

- 1. Exposed to the events surrounding Kes-26
- 2. Exposed to the literature on the categorisation of information disorder
- 3. Given a randomised set of 100 tweets as a practice set before the actual classification exercise. Post-practice, two meetings were held to discuss issues and iron out interpretive dissonance on what each class represents.

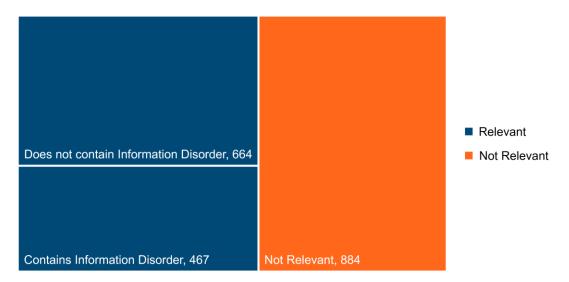
Figure 7.2 represents the classification of information disorder that we employed in this exercise.

Based on Figure 7.2, coders first classified if a particular tweet is "relevant" or "not relevant" to "Kes-26". As we were only interested to study Information Disorder within the context of our case study, "non-relevant" tweets were filtered out in order to generate a dataset that is specific to "Kes-26". Some of the non-relevant tweets include tweets promoting mobile phone cases, tweets reporting Covid-19 cases in other countries, or even legal cases in other countries.

For relevant tweets, coders then determined if the tweet contains information disorder, or if it does not contain Information Disorder. If the tweet contains information disorder, coders had the additional task of identifying if the tweet contains particular definitions of information disorder based on our literature review⁴³⁶. These definitions are not mutually exclusive (the presence of one definition does not necessitate the absence of another). The authors also made the decision to add the following definitions in Table 7.4, based on feedback from the practice exercise.

⁴³⁶ These definitions were developed mainly from Wardle and Derakhshan (2017) and Wu et al. (2019).

Table 7.4: Additional classifications of information disorder


Category	Description
Speculation on identity	Intentionally trying to reveal the identity of a Covid patient
Classist attack	Expressing prejudice against a particular group based on class
Expressing hate	Use of pejorative and discriminatory language with reference to a person or group based on who they are 437.
Inciting violence	Advocating a crime, or injury to person or social group

Moreover, these additional definitions may have more serious implications than the earlier definitions. For example, the spreading of rumours can be combated by sharing facts and the truth to dispel misinformation. However, the strategy to combat content with pejorative language or content even suggesting physical harm to a person or a social group may require more than just the sharing of facts. The law of Malaysia makes provisions for this in Act 574 (Penal Code) Section 153^{438} .

7.4.1. Descriptive results

This section summarises the descriptive results that emerge from the human assessments. Figure 7.3 describes the proportion of tweets that contain information disorder in the set of tweets relevant to our case study.

Figure 7.3: Proportion of tweets with information disorder

Source: Authors' calculation

⁴³⁷ UN (2019)

⁴³⁸ AGC (2018a)

Out of the total 2,015 tweets that were extracted, 884 were considered to be not relevant to our case study 439 . Of the remaining 1,131 tweets relevant to the case study, only 467 (41.3%) were considered to contain some form of information disorder . However, the quantification of what proportion of tweets contain information disorder would also vary across country, topic and time periods. Another study that employed human assessments over a much larger volume of tweets has found about 23.46% of tweets to be perceived as not credible 440 .

For the 470 tweets that contained some form of information disorder, Figure 7.4 describes the consistency of human assessments⁴⁴¹.

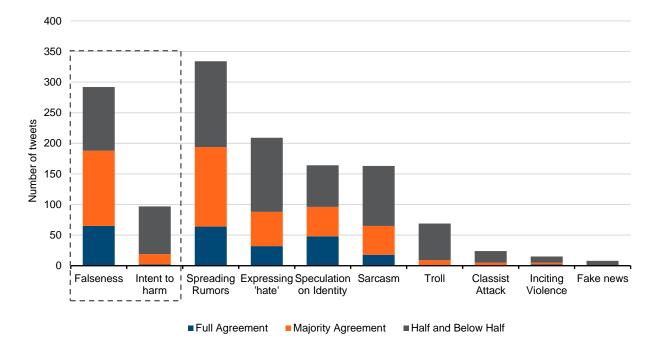


Figure 7.4: Consistency of human assessments

Source: Authors' calculation

7.4.2. Observations

Firstly, over the period of 28 February 2020 to 10 March 2020—of the tweets that were relevant to "Kes-26"—most tweets (664 [58.7%] out of 1,131) did not contain information disorder.

Secondly, coders were able to consistently differentiate tweets which contained information disorder and tweets which did not⁴⁴².

 $^{^{439}}$ We only consider definitions to be "present" for tweets where there is full agreement or majority (2/3 or 3/4) agreement.

⁴⁴⁰ Mitra and Gilbert (2015)

⁴⁴¹ In considering information disorder, we employed a more stringent measure. A tweet is considered to contain some form of information disorder if there is at least one human that identifies the presence of a particular definition of information disorder.

⁴⁴² Majority and Full Agreement is observed to be at 86.4%.

Thirdly, certain dimensions of information disorder were classified relatively more consistently than others. The dimensions of "falseness", "spreading rumours", "expressing hate" and "speculation on identity" all had a sizeable amount of full and majority agreement. However, when it comes to the presence of "intent to harm", "trolling", "classist attacks", "inciting violence" and "fake news", the classifications the coders decided on did not agree with one another. In fact, there were close to zero cases of full agreements over the aforementioned dimensions.

The presence of such ambiguity in the classification of these dimensions could be a signal of the difficulties people face in reading intent and subsequently making a judgement based on that.

Of the 470 tweets containing Information Disorder, the presence of "falseness" far outweighs "intent to harm". For the tweets where "falseness" and (or) "intent to harm" are recognised to be present at majority and full agreement, Figure 7.5 describes the distribution of information disorder as defined by Wardle and Derakhshan (2017) in our human assessments.

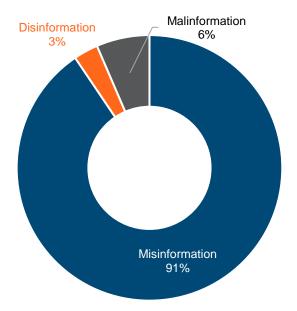


Figure 7.5: Information disorder in the case study of "Kes-26"

Source: Authors' calculation

Potentially, this implies that the information disorder tweets were mostly misinformation—tweets containing content that have an element of falseness but was not constructed maliciously with intent to harm. Unfortunately, we are unable to determine if this is a feature of the case study, or if it is a result of ambiguity in the classification of "intent to harm", as outlined in the next section.

7.4.3. Summary of reflection essays by coders

Coders involved in the human assessment were also asked to write a reflective essay to summarise their experience in this classification exercise. This section seeks to summarise key reflections emerging from the exercise.

First, all coders experienced difficulties with regards to **assessing intent and motive**. It was argued that to be able to objectively determine if a person intends to harm another, the motive of writing the particular tweet has to be made known. In some cases, coders were able to rely on verbal cues, such as the CAPITALISATION OF ALL LETTERS or the use of strong emotional words. However, to truly know a person's motivations is almost impossible: the practice of classifying content based on the **authorial intent** can be somewhat subjective.

Second, even when one had access to all the facts, there is still ambiguity that arises from the use of language. In social media platforms like Facebook or Twitter, what is posted is often unscripted, unfiltered sentiment of the populus. In many cases, what has been said can be very different from what one intends to say. Moreover, in a world where truth can often be relative, should people be labelled as spreading misinformation based on an incorrect or inaccurate use of words that both they themselves and the rest of the world do not fully understand?

Third, Malaysia is a multilingual country—a melting pot of different ethnic groups and cultures. Many tweets were written in a combination of at least two or more languages with use of shorthand, abbreviations and memes. In many cases, coders had to understand how these features were used in order to gauge the intent behind the tweets.

7.5 Natural Language Processing (NLP)

Up to this point, the human assessments have emphasised the importance of understanding context, the structure and rules of language, and having the ability to correctly identify motive and intent in order to objectively identify the presence of information disorder .

However, in a digitalised society where millions of new tweets are generated every single day, the scale and time-sensitivity of having humans assess large volumes of tweets would be severely impractical and expensive. A digitalised society requires digitalised solutions or augmentations that can greatly ease the workload of classifying information disorder.

In this section we explore the use of NLP techniques as a potential enabler to augment human assessments. NLP represents a body of statistical tools, techniques and algorithms used to process natural language based data (normally unstructured) like text, documents or speeches.

7.5.1. Data processing & analytical pipeline

A visual description of our data processing and analytical pipeline is illustrated in Figure 7.6.

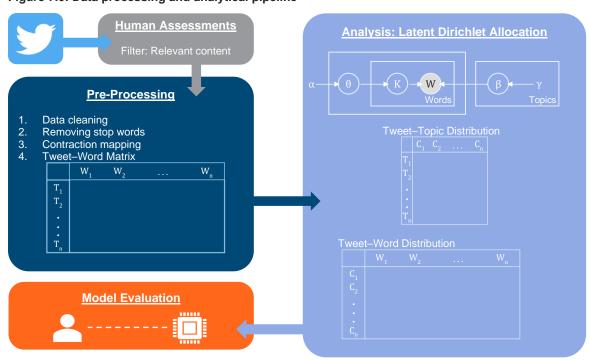


Figure 7.6: Data processing and analytical pipeline

Based on Table 7.3, we extracted a total of 2,015 tweets, posted by 1,569 unique twitter handles, over the period of 28 February 2020 to 10 March 2020. The tweets were filtered to obtain a dataset that only contained tweets that were relevant to our case study⁴⁴³. This dataset is henceforth referred to as the "Kes-26" corpus. The corpus is then subjected to standard NLP data pre-processing techniques. Table 7.5 describes the various pre-processing steps that were conducted preceding the analytical steps.

Table 7.5: NLP data pre-processing steps

Step	Processes	Description
Data cleaning	Removing html tags, Twitter handles and special characters Correcting spelling errors	These elements have to be addressed as they contribute to more noise in the dataset
Handling "stop words"	Removing stop words	Stop words ("a", "and", "the") are words that appear very frequently, but have little significance analytically
Contraction mapping	Map contractions, abbreviations and shorthand	Contractions ("you're", "you've") are shortened words or syllables. These elements are mapped to ensure consistency in the use of words

⁴⁴³ Relevent tweets were defined based on human assessments.

After the pre-processing stage, the corpus is then tokenised⁴⁴⁴ to generate a traditional document–term matrix (which is henceforth defined as the tweet–word matrix [TW matrix]). Elements of the TW matrix are computed according to the frequency of appearance for each word in each tweet. In the traditional NLP literature, the TW matrix is classified as a "Bag of Words" model. One consequence of employing "Bag of Words" models, is that these models dissolve any information in semantics, structure, sequence and context when coarse-grained^{445.} As described in Figure 7.6, the most basic form of the TW matrix is simply a frequency count of the occurrence of each word in each tweet.

7.5.2. Descriptive results

Before analysing the data further, we first used information retrieval methods, namely "Term Frequency-Inverse Document Frequency" (TF-IDF) and correlation analysis to extract a general overview of the Kes-26 corpus.

The frequency of a word seems intuitive at first—the more a word is repeated, the more we know what kind of words are being used; however, word frequencies are often unhelpful to capture the words that could make a sentence meaningful. For example, in our data set, the word "kes", "26", "hisham", "covid", and "case" are in the top 20 words used, by virtue of these words being used as parameters for the filtered collection of tweets. However, those words do not provide any meaningful information regarding the tweet data sets as they were employed on Twitter's API specifically to retrieve tweets which contain these words.

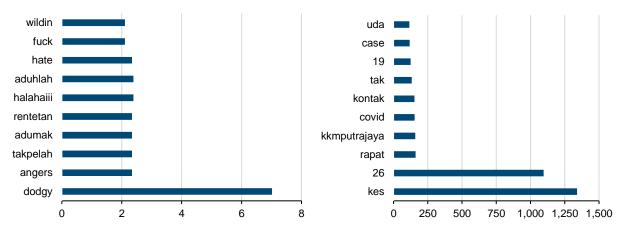
To generate a general description, we employed TF–IDF instead of word frequency to gauge the Kes-26 corpus. TF–IDF assigns an index value to every word in the corpus based on the following inputs:

$$TF_{i,j} = \frac{n_{i,j}}{\sum_{k} n_{i,j}}$$
 ...(1)

$$IDF(w) = \log\left(\frac{N}{df_i}\right) \qquad \dots (2)$$

$$TF - IDF = \frac{n_{i,j}}{\sum_{k} n_{i,j}} x \log \left(\frac{N}{df_i}\right) \qquad \dots(3)$$

A TF-IDF⁴⁴⁶ value increases proportionally with the number of times a particular word is repeated in a single tweet, but is offset by the number of times the word is being used in other tweets. For example, common words that are being used many times in one tweet, but also at the same time being used across the tweet data set, will most likely be lower than words that are being used less in a single tweet but less prevalent across the data set. An ideally high TF-IDF score will be words that are used a lot in a single tweet but is not repeated again in the data set.


⁴⁴⁴ Breaking sentences into linguistic units-case words

⁴⁴⁵ Sarkar (2016)

⁴⁴⁶ The algorithmic form of this equation applies $\log{(\frac{N}{df+1})}$ to avoid division over 0.

Figure 7.7 describes the top 10 highest valued words based on TF-IDF⁴⁴⁷ while Figure 7.8 describes the top 10 highest word frequencies of the corpus.

Figure 7.7: Top 10 TF-IDF valued words in the corpus Figure 7.8: Top 10 words by frequency in the corpus

Source: Authors' calculation

High TF–IDF words paint a better picture for the overall sentiment of the tweet data set than word frequencies. For example, the words "tak", "kontak", "rapat" reflect common features that provide little contextual information. On the other hand, words like the *f-word*, "dodgy", "adumak" or "halahaiii" reflect stronger emotional responses that relate to the context of the corpus.

Next, to infer trends in the underlying topics and ideas that were discussed in the corpus, the TW matrix is reorganised according to bi-gram pairs of words (instead of individual words, bigram tokenisation breaks the sentence into word pairs). Then the correlation coefficient ρ is computed for each word pair. Using ρ , we generated a correlation network of words (Figure 7.9) "naturally" occurring in the corpus.

Figure 7.9 describes the word map based on the frequency of words appearing in succession. As observed in the correlation network, words that frequently appear together agglomerate closer together to form "islands". "Islands" represent themes, entities, events and other features of the corpus.

The two major word "islands" are composed of official Malay words, which we conclude are announcements or reports from news agencies and MOH. On the other hand, the word "super" and "spreader"—a recurring allegation—appears to form their own word island. Other notable word islands represent the identities associated with "Kes-26", places which he has visited, the characteristics of Covid-19, and other related themes.

⁴⁴⁷ Malaysia is a melting pot of many cultures, religions and languages. For every non-English word that is used in our analysis, a corresponding definition may be found in Appendix A of our Working Paper titled "<u>Classification of Information Disorder</u>".

⁴⁴⁸ A bi-gram represents a sequence of two adjacent words appearing in each tweet.

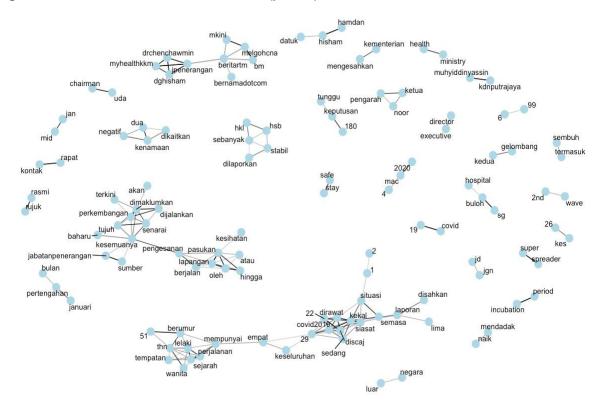


Figure 7.9: Correlation network between words ($\rho > 0.5$)

Source: Authors' calculation

The generation of this correlation network makes no prior assumptions on the themes save for the "filtered words" applied in the Twitter's API. This indicates that the method may be employed as a precursory diagnostic tool that may help in human assessments, provided that the "filtered words" were selected accurately.

7.5.3. Topic analysis: LDA

For human assessments of information disorder, two ingredients are necessary—access to truth and the ability to correctly diagnose authorial intent. In this section, we explore the possibility of classifying information disorder without making any a priori assumptions on the characteristics of information disorder .

To do this, we employ the use of unsupervised classification, a set of techniques in machine learning whose goal is to correctly group objects based on shared "similarity(-ies)" over a set of dimensions. In particular, we employ the use of a topic modelling method called Latent Dirichlet⁴⁴⁹ Allocation (LDA) as first described in Blei, Ng and Jordan (2003) in the context of machine learning.

⁴⁴⁹ The Dirichlet distribution is generalised from the Beta distribution for multiple random variables.

Box 7.1: A layman's explanation of LDA

When you read a document—a book, a news article, or any sort of publication—how would you know what that document is about?

You might know based on reading the title of the document, by looking at the cover picture or by reading snippets of document itself. However, the best way to truly know what a document is about is to go through its content word by word and page by page.

Consider the following two KRI publications: the article on the left was written by Gregory Ho and Dr Suraya Ismail, while the article on the right was written by Siti Aiysyah Tumin.

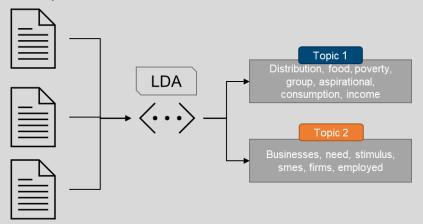
Source: Ho and Ismail (2020) and Tumin (2020)

The article on the left focuses on the perils of using the B40 demarcation given stark disparities in Malaysian household wellbeing. On the other hand, the article on the right focuses on the struggles faced by Malaysian firms during the Covid-19 pandemic and the government's policy responses to address these difficulties.

You could arrive at this interpretation by reading each sentence and evaluating the arguments based on what else you know about the topic. However, **what might be the basis of your interpretation?**

One approach would be to argue that the use of certain words can be associated with certain topics. For example, the words income, consumption, wellbeing or food are words that you might expect to see in an article describing household wellbeing. On the other hand, you would expect to see words like SMEs, stimulus, liquidity or cash flow in the article describing the survival of firms in a pandemic.

Figure 7B. 1: A human depiction of topics


Household Wellbeing
Income, Consumption, Wellbeing, food

Firms

SMEs, Stimulus, Liquidity, Cash flow

Latent Dirichlet Allocation (LDA) is a statistical method utilizing unsupervised learning to discover Topic-Word associations, among other things. While LDA does not categorise topics in the same way that a human does, LDA is able to identify the statistical characteristics of word associations between different topics based on text data.

Figure 7B. 2: LDA's Topic-Word Association

Using a metric called *Coherence*, LDA can quantify the degree to which topics use the same words, something called semantic similarity. For example, how the word-cluster – *Distribution, food, poverty, group, aspirational, consumption, or income* is distinguishable from another word-cluster – *Businesses, need, stimulus, SMEs, firms, or employed.*

Based on these Topic-Word associations, it is then possible to describe any media as a composition of its generated LDA features. For example, let there be a fictitious hypothetical media which "highlights the shrinking middle-class as a result of struggling SMEs".

LDA can attribute *Topics* (representing a cluster of words) to a body of text with the goal of describing what the body of text is about. Typically step 1 begins with LDA describing the text as mainly about Topics 1 and 2. At this point, the computer does not know what Topics 1 and 2 are about, at least not in the same way a human would interpret the two topics. Hence, in the next step, a human then looks at the classification generated by the machine and gives each topic a human name based on our background knowledge and contextual understanding.

LDA describes an Topic 4 article along Topic-Word associations LDA Topic 3 Topic 2 (household wellbeing) Topic 1 A human names the 0% 10% 20% 30% 40% machine identified topics, based on background knowledge

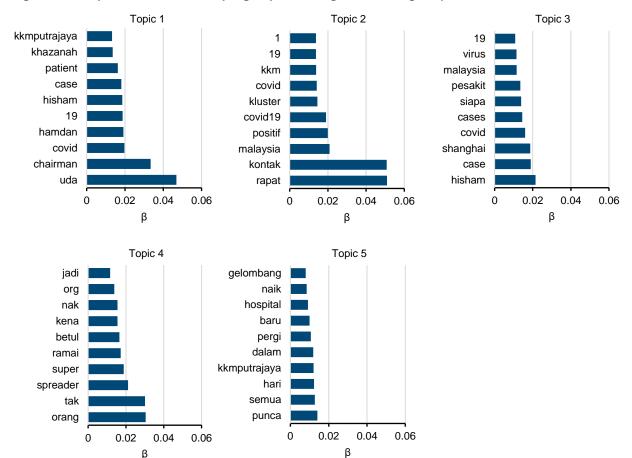
Figure 7B. 3: Human assignment of meaning to machine labelled topics

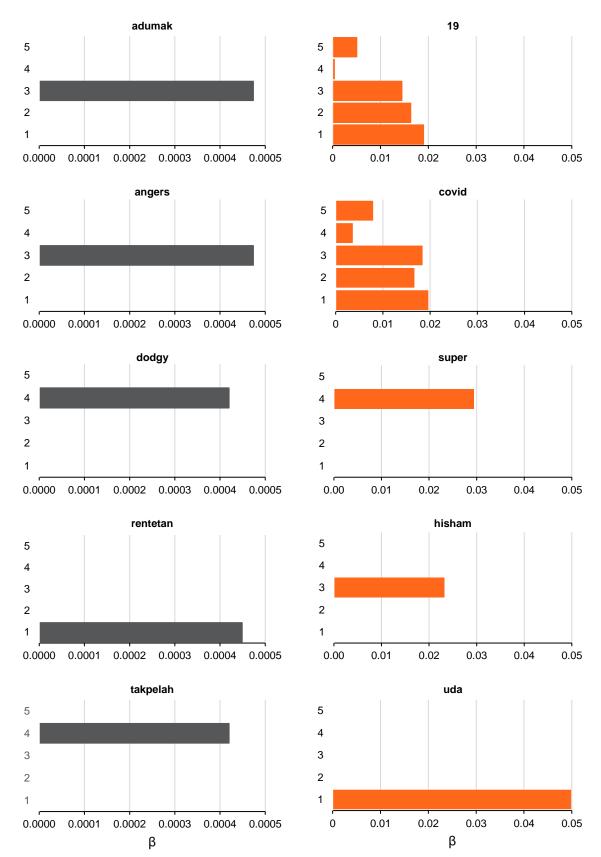
In our study, we compared the classification of misinformation made by both human assessments and LDA. For more information, please refer to our **Discussion Paper**: Classification of Information Disorder.

7.5.4. LDA: Topic-Word Association

Within the framework of LDA, every word is associated with topics based on β . As a result, each topic can then be described as a distribution of words⁴⁵⁰. By rank-ordering the β -values for each topic, we can then explore the semantic structure of what the topic represents. For each of the five topics, LDA assigns β -values for a total of 1,828 words. Figure 7.10 describes the top 10 words by each topic.

⁴⁵⁰ Technically, a K-dimensional discrete representation.




Figure 7.10: Top 10 terms for each topic group according to their assigned β-values

Source: Authors' calculation

While top terms are a good start to gauge the composition of the distinct topic groups, the sheer scale in the number of words can be informationally overwhelming. The use of TF–IDF can further simplify the process by singling out words that are more polarised in the distribution. High polarisation indicates clear distinctions between groups while high frequency words with larger spread distribution indicates that the word is being used across the entire data set. For example, Figure 7.11 and Figure 7.12 describes the β -value of five highest TF–IDF words and five highest frequency words, respectively, against the topic number.

Figure 7.11: High TF-IDF topic-word distribution

Figure 7.12: High Frequency topic-word distribution

Source: Authors' calculation

Firstly, high TF-IDF words are observed to be more polarised than high frequency words. This is expected because words that appear less frequently in the corpus give more informational value as compared to words that appear in most tweets. Hence, specific words can be associated more closely to the individual tweet. The words "dodgy" and "takpelah" both have similar distribution (highly probable to be classified in topic 4), while "adumak" and "angers" (highly probable to be classified in topic 3). Interestingly, none of the high TF-IDF words belong in topic 2, a strong sign that topic 2 is less likely to have "outlier" words.

High frequency words on the other hand are less polarised. For "covid" and "19", there is a high spread. This shows that the usage of those two words is common throughout the data set. By the same token, the word "covid" and "19" have a similar β -value trend except for a slight bump in topic 4 for "covid". These two similar distributions indicate a strong keyword relation—"covid" and "19" appears together often, but "covid" can also be used without "19", hence the small difference in topic 4.

It is observed that the word "super" dominated topic 4, alongside "dodgy" and "takpelah", while "hisham" is overwhelmingly in topic 3, shared by "adumak" and "angers". Similar probability distributions indicate that these words share some form of "commonality" that a human otherwise could not be able to decipher.

The word-topic distribution shows the algorithm's remarkable ability to detect similarities between seemingly unrelated words. The word-topic distribution does not suggest that some words are intrinsically related with information disorder. It shows that tweets containing information disorder share word similarities, as indicated by highly polarised word-topic distribution and strong keyword relations between other words.

Based on the results, we can establish some word patterns using a word-topic probability distribution; the distribution can be used to detect distinct groups of word-topic combinations. However, dividing words into topics is not enough to fully capture the depth of the topics. Using certain words together does not encapsulate the context of the tweet. These words should be analysed concurrently with the tweet-topic distribution to understand further the composition of each group.

7.5.5. LDA: Topic-Tweet Association

Within the framework of LDA, every tweet can be associated with topics based on γ . γ represents the probability that a certain tweet belongs in a particular topic. Figure 7.13 describes the Topic–Tweet distribution for the 1,131 relevant tweets over all five topics.

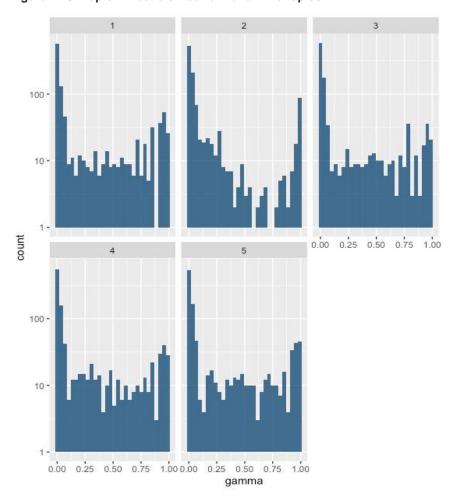


Figure 7.13: Topic-Tweet distribution for all five topics

Source: Authors' calculation

Figure 7.13 can be described as a histogram which represents the degree of intra-topic polarisation. As γ probabilities represent topic–tweet associations, they are not mutually exclusive. Thus, each tweet can be described as being composed of multiple topics. To quantify the degree of polarisation in each topic, a polarisation index⁴⁵¹ is used. The measure of polarisation, denoted by d is computed as follows:

$$d = \frac{|gc_u - gc_l|}{|\gamma_{max} - \gamma_{min}|}$$

where:

$$gc_l = \frac{\int_0^{0.5} p(\gamma) \gamma \, d\gamma}{\int_0^{0.5} p(\gamma) \, d\gamma}$$

$$gc_u = \frac{\int_{0.5}^1 p(\gamma) \gamma \, d\gamma}{\int_{0.5}^1 p(\gamma) \, d\gamma}$$

⁴⁵¹ As proposed in Morales et al. (2015)

The polarisation index is a measure of normalised distance between the upper and lower gravity centres (gc_u and gc_l) of each topic. At extremes, the index yields d=0 where there is no separation between gravity centres (the topic is described by identical tweets) and d=1 where there is maximal separation between gravity centres (the topic consists of tweets that are at extreme ends and are completely and perfectly opposed).

0.7
0.6
0.5
0.4
0.3
0.2
0.1
2
3
Topic Group
4
5
All topics

Figure 7.14: Topic polarisation index

Source: Authors' calculation

As observed in Figure 7.14, topic 2 records the highest polarisation compared to other topics. The polarisation index for topic 2 is also significantly different from all other topics, which indicates the potential use of the LDA algorithm to classify tweets according to γ -values of topic 2. The implications of this observation will be discussed further in the next section.

7.5.6. Similarities and differences between human assessments and NLP

One other major use for tweet–topic association is to establish some relationship between our manual human assessments and natural language processing. Since γ -values are attached for each tweet and each tweet has its own categorical Information Disorder criteria based on human assessments, this section examines the corroboration between the two methods.

Tweet–Topic association also allows each tweet to be described as a composition of topics based on its semantic structure. Figure 7.15 through Figure 7.20 below summarises the intersection between mean Tweet–Topic compositions of LDA and the results of human assessments.

Figure 7.15: Tweet-Topic composition (No Information Disorder)

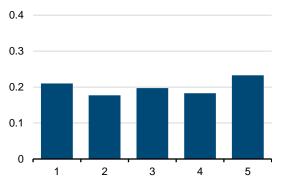


Figure 7.17:Tweet-Topic composition (Intent to Harm)

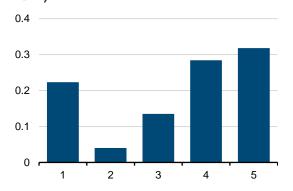


Figure 7.19: Tweet-Topic composition (Inciting Violence)

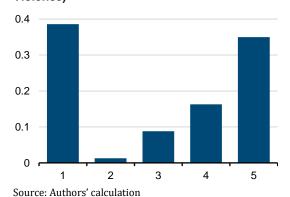


Figure 7.16: Tweet-Topic composition (Falseness)

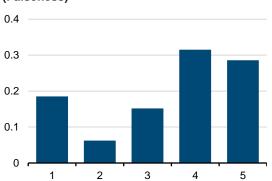


Figure 7.18: Tweet–Topic composition (Expressing Hate)

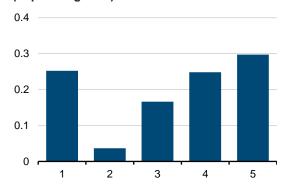
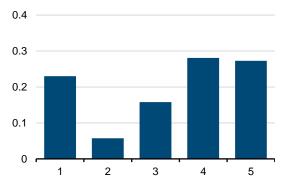



Figure 7.20: Tweet-Topic composition (Spreading Rumours)

It is observed from Figure 7.15 that the tweets which the coders identified to have no information disorder exhibits a more "uniform" distribution. Tweets that were identified as containing information disorder of the various categories did not exhibit a uniform distribution as illustrated in Figure 7.15 to Figure 7.20.

Across all information disordered tweets, topic 2 has a mean γ -value close to zero. This means that a tweet with low to almost zero γ -value of topic 2 is a necessary factor for information disorder . The mean γ distribution for "spreading rumours", "intent to harm" and "expressing hate" is almost identical except with higher values for topics 4 and 5 for "intent to harm". The reason for the similarity could be attributed to the fact that the tweets that fall under these categories tend to be labelled together. "Falseness" has a slight difference (topic 5 being slightly higher than the rest); this is because people tweeting false information might have done so without ill intentions. "Inciting violence" distribution shows a great disparity between topics 1 and 5 and with topic 2. The magnitude of mean γ -value for topic 5 is slightly above 0.4, topic 1 slightly above 0.3 and topic 2 almost zero.

Compared with "no information disorder" tweets, it seemed that the harmful category of tweets is linked with low mean γ -values for topic 2, and high γ -values for topics 1 and 5. High mean γ -values for topic 4 seemed to be linked closely with falseness and misinformation as it registered lower γ -values for "inciting violence".

However, topic 3's role in classifying information disorder remains ambiguous as it is almost the same across all categories. The vast difference between the mean γ -values of different topics shows that we can establish some distinction between the tweets using topic modelling via LDA.

While the results above do not show a one-to-one relationship between human assessments and natural language processing, the results suggest that there is a way to cluster information disorder using the various techniques documented here.

From our analysis, there is a clear difference in the semantic structure in sentences based on the bag-of-words model between different types of information disorder categories we have established in our earlier discussion. Tweet-topic distribution showed the algorithm's ability via LDA to detect semantic resemblance between different types of information disordered tweets. By describing the semantic structure of information disorder , the description may be further studied to better inform human assessments of information disorder .

7.5.7. Further improvements with more data and research

While our computational methods show promising results to detect information disorder in tweets, the next step to increase the efficiency for information disorder detection is through the use of sentiment analysis. Sentiment analysis analyses people's opinions, sentiments, evaluations, attitudes and emotions from written language⁴⁵².

The core of sentiment analysis is the sentiment lexicon (a library of words with an attached sentiment rating). There are a few accessible lexicons available for non-commercial use such as the NRC Word-Emotion Lexicon Association⁴⁵³, the Bing lexicon⁴⁵⁴ and the AFINN lexicon⁴⁵⁵; all, however, are in English. The development of an easily accessible sentiment library in Bahasa Melayu is therefore an important element of mining opinions in Malay that could enable further opinion-based analysis to be conducted. Further research in sentiment analysis could prove to be useful for our study.

Our LDA analysis results are encouraging, although more data would allow for higher quality of results. Due to our limited access to Twitter APIs, we were only able to access just over 2,000 tweets, with nearly half of them irrelevant to the subject of our study. A larger data set can contribute to a greater number of topics from LDA, giving us greater clarity in the distinctions between the topics.

While language is essential for information dispersion, there are also other important internet media besides text for the spread of information: most notably images, videos and audio. Further research in natural language processing, image processing, speech recognition and computer vision is needed to approach misinformation from different prongs of data analytics. The reason we could perform great analysis on language is because of its highly structured nature. Developing detection models of unstructured data such as images and videos of fake news are future areas to explore.

7.6 Policy considerations

The way we live and function in society is intrinsically tied to the use of language. The acceleration and democratisation of communication in a highly digitalised world has revealed several vulnerabilities in the social fabric of countries and communities. While there are many policy considerations, this chapter focuses only on four policy recommendations which we believe could have the largest effects in combating information disorder .

7.6.1. Vulnerabilities emerging from a digitalised society can be addressed with Augmented Intelligence

Firstly, without a means to first classify information disorder, it would be extremely difficult to detect and measure its spread on social media. For example, the Mueller Report⁴⁵⁶ highlights evidence of Russian involvement in US elections using social media as a tool to spread mis/dis/malinformation. This reveals the threat that social media may pose to a functioning democracy. Without a means to classify information disorder, there is no means to even detect activities such as disinformation campaigns. Our democracy is left vulnerable to manipulation from both inside or outside the country.

⁴⁵³ Saif Mohammad and Turney (2012)

⁴⁵⁴ Liu (2010)

⁴⁵⁵ Nielsen (2011)

⁴⁵⁶ Mueller (2019)

However, with millions of tweets, Facebook posts and other user generated media produced every day, the prospects of having humans to go through and label them manually would be futile. Moreover, our case study indicates that while humans are able to consistently identify the presence of information disorder with respect to factual claims, the identification of "intent" proves to be more inconsistent.

The analysis from topic modelling indicates that LDA distinguishes factual claims and non-factual claims in similar ways when compared to human assessments. This has two potential implications:

- 1. LDA may be employed to statistically generate "features" of information disorder. These statistical features can then be employed as a filter to detect the presence of information disorder on a real time basis.
- 2. The use of LDA as a decision filter to first pre-select questionable media on social media platforms can potentially simplify the workload of fact-checkers.

Vulnerabilities emerging from a digitalised society require digitalised tools that can augment human decision making. Big data analytics have the potential to access different segments of society tweeting about the same news trend. Detailed data collection from social media—voluntary surveys of user information such as residence, income level and education level—can allow future research to identify some key correlating factors that contribute to vulnerabilities towards misinformation and fake news. Big data analytics will allow us to study social trends with real time detailed data sets—which also comes with the need to invest in computer hardware infrastructure as well as the human capital that could design and manage sophisticated algorithmic models in a relatively short amount of time.

7.6.2. Principles of objective fact-checking

Secondly, the role that reporters and journalists play in being the "fourth pillar of democracy" has been eroded by the advent of social media. Most Malaysians now heavily rely on Facebook and other social media platforms as their main news source⁴⁵⁷. Reporters and journalists are held to a set of standards when discharging their duties—they can also be sued and be held accountable for what they publish. Meanwhile, the advent of social media platforms has democratised the powers previously held by reporters and journalists, without the corresponding responsibilities of holding to standards of publishing. Reporters and journalists no longer have monopoly in gatekeeping the diffusion of information in this day and age.

As pointed out by Harris and Farlina (2020), there are many weaknesses with regard to *Sebenarnya.my's* effectiveness. For example, *Sebenarnya.my* relies a lot on "tips" and has a heavy emphasis on government agencies as a source of truth. It does not have a robust fact-checking environment in which a diverse membership can contribute towards better fact-checking a certain media.

⁴⁵⁷ Vase.ai (2019)

While government efforts and intentions to combat information disorder have been observed in this pandemic, the means through which "questionable media" is classified is not clear. Harris and Farlina (2020) also highlight that the proximity of *Sebenarnya.my* to authorities could undermine the perceived validity of their exercise, should trust in government erode.

The International Fact-Checking Network (IFCN)⁴⁵⁸ outlines the following principles that are foundational to fact-checking:

- 1. A commitment to **Non-Partisanship and Fairness:** Claims are fact-checked using the same standards for every fact-check. All sides are taken into account. Evidence dictates conclusions.
- 2. A commitment to **Standards and Transparency of Sources**: All sources are published so that readers are able to verify and externally validate the findings.
- 3. A commitment to **Transparency of Funding and Organisation:** Fact-checkers reveal their source of funding, qualifications and affiliations.
- 4. A commitment to **Standards and Transparency of Methodology:** Fact-checkers explain the methodology that they use to select, research, write, edit, publish and correct their fact-checks.
- 5. A commitment to an **Open and Honest Corrections Policy:** Fact-checkers publish their corrections policy, correct clearly and transparently in line with the policy.

In this regard, the perceived trustworthiness of *Sebenarnya.my* could be improved by making some or all of these dimensions explicit. The goal of making this information accessible is to indicate to readers that fact-checkers are credible individuals, that perform fact-checking in a non-biased way, using a consistent method to arrive at conclusions.

7.6.3. Civic responsibilities of handling information disorder

Thirdly, lies may spread much faster, deeper and wider compared to truth. In a mass study 459 which looked at 126,000 verified stories tweeted by over 3 million people, from the inception of twitter in 2006 to 2017:

- 1. Truth rarely diffused to more than 1,000 people, while the top 1% of false-news cascaded to between 1,000 and 100,000 people.
- 2. Truth took about six times as long as falsehood to reach 1,500 people, and 20 times as long to reach a cascade depth 460 of 10.
- 3. Truth never exceeded a cascade depth of 10, while falsehood reached a depth of 19 which is nearly 10 times faster.

⁴⁵⁸ Poynter (n.d)

⁴⁵⁹ Vosoughi, Roy, and Aral (2018)

⁴⁶⁰ Cascade depths refer to independent sharing of unbroken retweet chains with a common, singular origin.

While not explicitly studied in this chapter⁴⁶¹, the characteristics of falsehood diffusion brings into question the role that *Sebenarnya.my* and other government initiatives play in combating information disorder in Malaysia. In particular, even if *Sebenarnya.my* can hypothetically detect and classify all "compromised" media, the dissemination of its results might not be as deep, as wide or as fast as the spreading of "false news", whose damage might have already been done by the time they are categorised as false.

In an ideal world, to effectively combat the spread of false news, the results of fact-checking have to be seen by all individuals who have potentially viewed the false news. To inch closer to this ideal, *Sebenarnya.my* has to be empowered to work together with social media platforms to first flag false news and to disseminate the results of the fact-checking exercise in a timely manner to all platform users who might have viewed or interacted with questionable media.

Recently in the 2020 US elections, Twitter took action to censor tweets with false information regarding the election⁴⁶² by inserting a disclaimer notifying users that the content of a tweet may be disputed. In the extreme case, Twitter went as far as to remove President Trump's Twitter account. Twitter's role in regulating social media is the result of multiple collaborations with various news agencies from all over the political spectrums: from Fox News to CNN to Associated Press (a non-partisan not-for-profit news agency). Therefore, regulating social media content requires a decentralised responsible collaboration from a diverse set of bodies (such as government, civil societies and private sectors).

7.6.4. Digital and online media literacy

Regulating information and fact-checking are highly reliant on the choices that people make whether to believe or disbelieve the information that is presented to them. The spread of misinformation at the end of the day is the result of willing actors propagating the message⁴⁶³. Therefore, combating misinformation should also factor in user participation—which can be approached from two paths: critical thinking and institutional trust.

Digital literacy and the ability to discern false information on the internet requires critical thinking and source evaluation. Therefore, civic education in schools and in public should emphasise the role of individuals in society and their responsibilities to be informed citizens. School curriculums should prioritise the role of critical thinking in education. In 2015, Stanford History Education ran a study of under-resourced schools in Los Angeles and Minneapolis suburbs and found that the student's ability to reason from online information is "bleak" 464. Introducing online literacy educational programmes in schools and to the wider general public especially underserved communities is a way forward to foster an online-intelligent society.

⁴⁶¹ We intend to study this phenomena in a future publication.

⁴⁶² Gadde and Kayvon Beykpour (2020)

⁴⁶³ Marwick (2018)

⁴⁶⁴ Wineburg and McGrew (2016)

Reducing the trust gap among people and government institutions is crucial to minimise the effect of information disorder. Low institutional trust was shown to have an effect in the lower likelihood to adopt preventative behaviours during the 2018 Ebola outbreak in Eastern Congo⁴⁶⁵. The study showed that greater institutional mistrust is correlated with widespread misinformation (belief that Ebola was not real was prevalent) causing behaviours such as refusal to vaccinate or seek medical assistance and lower compliance to messages from authorities, increasing the risk of spread of the Ebola virus. Therefore, public confidence in institutions is essential to stem the prevalence of information disorder and minimising its harmful real-world effects.

In Malaysia, a 2020 study by Ipsos found that 59% of Malaysians do not trust the government ⁴⁶⁶. Although decreasing that trust gap is not within the scope of the study, one of the ways to improve government trust is to improve e-government facilities ⁴⁶⁷. Several areas of e-government facilities need to be re-evaluated to rebuild institutional-based trust and process-based trust through commitment to transparency, efficiency and grassroots participation. There is an urgent need for stronger collaboration and relationship between the government and its people. Closing the trust gap contributes to the effectiveness for authorities to spread important information without becoming fake news.

7.7 Conclusion

"The problems are solved, not by giving new information, but by arranging what we have known since long." – Ludwig Wittgenstein⁴⁶⁸

Digitalisation has transformed the dynamics by which information is curated and diffused. Consumers of media are no longer just passive recipients but also curators of information, thus setting the landscape of public opinion formation in society. In this chapter, we have shown how information disorder emerging from a digitalised society can be addressed with digital tools.

In a digitalised society, there is a growing need to be able to quantify and classify information disorder. Our research compared human assessments against computational approaches, specifically unsupervised learning using Latent Dirichlet Allocation (LDA). Evidence from our experiment indicates that humans are better able to classify content than they are to classify intent. We also found that computational approaches can augment the human effort to classify information disorder.

⁴⁶⁵ Vinck et al. (2019)

⁴⁶⁶ Ipsos (2020)

⁴⁶⁷ Tolbert and Mossberger (2006)

⁴⁶⁸ Original: Wittgenstein (1921), translation: Wittgenstein (2009)

CHAPTER 7

DIGITAL GOVERNANCE: CLASSIFICATION OF INFORMATION DISORDER

However, computational approaches alone are not enough to combat information disorder. While some countries favour censorship as a blanket approach to combat information disorder, we propose that information disorder might be better addressed with greater transparency instead. As information disorder thrives in an environment of opacity and malicious intent, we call for, among other things, a more rigorous fact-checking ecosystem underpinned by IFCN's Code of Principles that represents the discipline of approaching a view in an independent, transparent and objective way.

References

- Bakshy, E., S. Messing, and L. A. Adamic. 2015. "Exposure to Ideologically Diverse News and Opinion on Facebook." *Science* 348 (6239):1130–32. https://doi.org/10.1126/science.aaa1160.
- Blei, David M., Andrew Y. Ng, and Michael I. Jordan. 2003. "Latent Dirichlet Allocation." *Journal of Machine Learning Research* 3 (Jan):993–1022.
- Caroline Tolbert and Karen Mossberger. 2006. "The Effects of E-Govenment on Trust and Confidence in Government." *Public Adminstration Review*, May, 354–69.
- DOS. 2020. "Current Population Estimates, Malaysia, 2020." July 15, 2020. https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=155&bul_id=0 VByWjg5YkQ3MWFZRTN5bDJiaEVhZz09&menu_id=L0pheU43NWJwRWVSZklWdzQ4Tl hUUT09.
- Gadde, Vijaya and Kayvon Beykpour. 2020. "Additional Steps We're Taking Ahead of the 2020 US Election." Social Media. *Twitter* (blog). November 12, 2020. https://blog.twitter.com/en_us/topics/company/2020/2020-election-changes.html.
- Harris, Zainul, and Said Farlina. 2020. *The COVID-19 Infodemic in Malaysia*. Policy Paper. Institute of Strategic and International Studies Malaysia. https://www.isis.org.my/2020/08/24/the-covid-19-infodemic-in-malaysia-scale-scope-and-policy-responses/.
- Ho, Gregory, and Ismail, Suraya. 2020. "Are Both the B40 and M40 'Poor'? Evidence from an Intergrated Income-Expenditure Analysis." *Khazanah Research Institute, License: Creative Commons Attribution CC BY*, February.
- Ipsos. 2020. "Do Malaysians Lack Trust in Government and Institutions?" Press Release. Kuala Lumpur, Malaysia: Ipsos Sdn Bhd.
- Ireton, Cherilyn, and Julie Posetti. 2018. *Journalism, Fake News & Disinformation: Handbook for Journalism Education and Training*. UNESCO Publishing. https://books.google.com.my/books?hl=en&lr=&id=wW5vDwAAQBAJ&oi=fnd&pg=PA5 &dq=journalism+fake+news+and+&ots=UYh6Ug61EG&sig=ZHq9kcy6JHX92rdkHxEnBj ALljQ&redir_esc=y#v=onepage&q=journalism%20fake%20news%20and&f=false.
- Liu, Bing. 2010. "Sentiment Analysis and Subjectivity." In *Handbook of Natural Language Processing*, Second, 629–61. Machine Learning and Pattern Recognition Series. Cambridge, UK: CRC Press.
- ——. n.d. *Sentiment Analysis and Opinion Mining*. Synthesis Lectures on Human Language Technologies 16. Morgan and Claypool Publishers.
- "Managing the COVID-19 Infodemic: Promoting Healthy Behaviours and Mitigating the Harm from Misinformation and Disinformation." n.d. Accessed October 20, 2020. https://www.who.int/news/item/23-09-2020-managing-the-covid-19-infodemic-promoting-healthy-behaviours-and-mitigating-the-harm-from-misinformation-and-disinformation.
- Marwick, Alice E. 2018. "Why Do People Share Fake News? A Sociotechnical Model of Media Effects." *Georgetown Law Technology Review* 2 (2):474–512.
- McLuhan, Marshall, and Quentin Fiore. 1967. "The Medium Is the Message." *New York* 123:126–28.
- McLuhan, Marshall, and MARSHALL AUTOR MCLUHAN. 1994. *Understanding Media: The Extensions of Man.* MIT press.
- MCMC. 2019. "Internet Users Survey 2018." Annual Survey 1823–2523. Malaysia: MCMC. https://www.mcmc.gov.my/skmmgovmy/media/General/pdf/Internet-Users-Survey-2018.pdf.
- Mitra, Tanushree, and Eric Gilbert. 2015. "Credbank: A Large-Scale Social Media Corpus with Associated Credibility Annotations." In *ICWSM*, 258–67.

- MOH. 2020. "KKM Portal MyHealth on Twitter." Social Media. Twitter. 2020. https://twitter.com/MyHEALTHKKM/status/1235880123384991744.
- Morales, Alfredo Jose, Javier Borondo, Juan Carlos Losada, and Rosa M. Benito. 2015. "Measuring Political Polarization: Twitter Shows the Two Sides of Venezuela." *Chaos: An Interdisciplinary Journal of Nonlinear Science* 25 (3). AIP Publishing LLC:033114.
- Mueller, Robert S. 2019. *The Mueller Report: Report on the Investigation into Russian Interference in the 2016 Presidential Election*. WSBLD.
- Ngah, Nazura. 2018. "FAQs: What You Need to Know about the Anti-Fake News Bill 2018." NST Online. March 26, 2018. https://www.nst.com.my/news/nation/2018/03/349691/faqs-what-you-need-know-about-anti-fake-news-bill-2018.
- Nielsen, Finn. 2011. "A New ANEW: Evaluation of a Word List for Sentiment Analysis in Microblogs." *ArXiv*, Making Sense of Microposts, Making Sense of Microposts (1):6.
- Poynter. n.d. "IFCN Code of Principles." n.d. https://www.ifcncodeofprinciples.poynter.org/know-more/the-commitments-of-the-code-of-principles.
- Rio, Victoire. 2020. "The Role of Social Media in Fomenting Violence: Myanmar." Policy Brief No.78. Policy Brief. Tokyo: Toda Peace Institute. https://toda.org/assets/files/resources/policy-briefs/t-pb-78_victoire-rio_role-of-social-media-in-fomenting-violence-myanmar.pdf.
- Saif Mohammad, and Peter Turney. 2012. "Crowdsourcing a Word-Emotion Association Lexicon." *Computational Intelligence*, September.
- Sarawak Report. 2020. "EXCLUSIVE Health Rules Demand PM8 And All Co-Conspirators Must Immediately Self-Isolate For 14 Days?" Sarawak Report. March 1, 2020. http://www.sarawakreport.org/2020/03/health-rules-demand-pm8-and-all-co-conspirators-must-immediately-self-isolate-14-days/.
- Sarkar, Dipanjan. 2016. "Text Analytics with Python." Springer.
- Sen, Amartya Kumar. 1999. "Democracy as a Universal Value." *Journal of Democracy* 10 (3). Johns Hopkins University Press:3–17.
- Tumin, Siti Aiysyah. 2020. "Firms: Survival in Times of Crisis." *Khazanah Research Institute, License: Creative Commons Attribution CC BY*, March 27, 2020.
- UN. 2019. "United Nations Strategy and Plan of Action on Hate Speech." Strategy Paper. United Nations.
 - https://www.un.org/en/genocideprevention/documents/UN%20Strategy%20and%20 Plan%20of%20Action%20on%20Hate%20Speech%2018%20June%20SYNOPSIS.pdf.
- Vase.ai. 2019. "Malaysia's 2019 Media Consumption Report." Learning Resources | Vase Actionable Intelligence. September 6, 2019. https://vase.ai/resources/malaysias-media-consumption-2019/.
- Vinck, Patrick, Phuong N. Pham, Kenedy K. Bindu, Juliet Bedford, and Eric J. Nilles. 2019. "Institutional Trust and Misinformation in the Response to the 2018–19 Ebola Outbreak in North Kivu, DR Congo: A Population-Based Survey." *The Lancet Infectious Diseases* 19 (5). Elsevier:529–36.
- Vosoughi, Soroush, Deb Roy, and Sinan Aral. 2018. "The Spread of True and False News Online." *Science* 359 (6380). American Association for the Advancement of Science:1146–51. https://doi.org/10.1126/science.aap9559.
- Wardle, Claire, and Hossein Derakhshan. 2017. "Information Disorder: Toward an Interdisciplinary Framework for Research and Policymaking." Council of Europe report DGI. https://rm.coe.int/information-disorder-toward-an-interdisciplinary-framework-for-researc/168076277c.
- Wineburg, Sam, and Sarah McGrew. 2016. "Evaluating Information: The Cornerstone of Civic Online Reasoning." Stanford History Education Group, Robert R. McCormick Foundation.

- Wittgenstein, Ludwig. 1921. "Logisch-Philosophische Abhandlung." *Annalen Der Naturphilosophie* 14:185–262.
- ———. 2009. *Philosophical Investigations*. John Wiley & Sons.
- Wittgenstein, Ludwig, and Luiz Henrique Lopes dos Santos. 1994. *Tractatus Logico-Philosophicus*. Edusp.
- Wu, Liang, Fred Morstatter, Kathleen M. Carley, and Huan Liu. 2019. "Misinformation in Social Media: Definition, Manipulation, and Detection." *ACM SIGKDD Explorations Newsletter* 21 (2). ACM New York, NY, USA:80–90. https://doi.org/10.1145/3373464.3373475.

CHAPTER

08

ARTIFICIAL INTELLIGENCE IN THE COURTS: AI SENTENCING IN SABAH AND SARAWAK

8.1 Introduction	188
8.2 Bias	189
8.2.1 Training data	189
8.2.2 Software development	191
8.2.3 Definition of subjective concepts, e.g. fairness	191
8.3 Lack of Transparency and Accountability	192
8.4 The Justice Code	192
8.4.1 Primacy of law/flexibility of the common law to make changes	193
8.4.2 Right to a fair trial	193
8.5 Responsible AI development	193
8.5.1 Collaboration between users and software developers	194
8.5.2 Stakeholder consultations	194
8.5.3 Continuous improvements to the system	194
8.5.4 Development of ethical frameworks	194
8.6 Conclusion	195
References	196

CHAPTER 8

ARTIFICIAL INTELLIGENCE IN THE COURTS: AI SENTENCING IN SABAH AND SARAWAK⁴⁶⁹

By Claire Lim and Rachel Gong

"First Law—A robot may not injure a human being or, through inaction, allow a human being to come to harm. Second Law—A robot must obey the orders given it by human beings except where such orders would conflict with the First Law. Third Law—A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws."

Isaac Asimov⁴⁷⁰

8.1 Introduction

The Covid-19 pandemic has accelerated the need for many industries to undertake digital transformation. Even the traditionally conservative judicial system has embraced the new normal, for example, by holding court trials online⁴⁷¹. However, adapting to technological change is not foreign to the Malaysian judiciary. Earlier this year, even before the pandemic forced industries to embrace digital transformation, the Sabah and Sarawak courts launched a pilot artificial intelligence (AI) tool⁴⁷² as a guide to help judges with sentencing decisions.

AI refers to machines which are able to make decisions with human-like intelligence and tackle tasks that are arduous to do manually. It is important to note the distinction between predictive statistical analysis and machine learning-based AI. Predictive statistical analysis uses historical data to find patterns in order to predict future outcomes; it requires human intervention to query, make assumptions and test the data⁴⁷³. Machine learning-based AI is able to make assumptions, learn and test autonomously⁴⁷⁴.

In recent years, although there has been much hype about the rise of AI transforming industries to improve efficiency and productivity, some of these systems actually fall within data analytics or predictive analytics rather than true machine learning-based AI. The Sabah and Sarawak courts' tool at present falls more within the category of predictive statistical analysis, but aims to move towards machine learning-based AI.

⁴⁶⁹ An earlier version of this chapter authored by Claire Lim and Rachel Gong was published by KRI on 18 August 2020 as a Views piece titled "<u>Artificial Intelligence in the Courts: AI sentencing in Sabah and Sarawak</u>".

⁴⁷⁰ Asimov (1942)

⁴⁷¹ Khairah N. Karim (2020)

⁴⁷² Wong (2020)

⁴⁷³ Wade et al. (2020)

⁴⁷⁴ Reavie (2018)

The impetus behind this recent push to utilise AI in the court system is to achieve greater consistency in sentencing. The AI tool is currently being trialled on two offences: drug possession under Section 12(2) of the Dangerous Drug Act and rape under Section 376(1) of the Penal Code. The algorithm analyses data from cases of these two offences which are registered in Sabah and Sarawak between 2014 and 2019, identifies patterns which it will apply to the present case and produces a sentencing recommendation that judges can choose to adopt or deviate from. According to the courts, the reason behind choosing s12(2) of the Dangerous Drug Act and s376(1) of the Penal Code for the pilot is that the dataset for those two offences is the richest dataset that they have.

As with any new technology, the development of AI's tremendous potential has to be counterbalanced against certain risks. An analysis of cases which used AI sentencing tool as at 29 May 2020 shows that judges followed the recommendation in approximately 33% of cases⁴⁷⁵. This chapter discusses the risks of bias and lack of transparency and accountability that surround AI and considers mitigating measures to address these risks with reference to the Sabah and Sarawak courts' AI sentencing tool.

8.2 **Bias**

8.2.1. Training data

Machines are generally assumed to be objective. However, a major concern with AI is its potential to replicate and exaggerate bias. Experiments with AI technology such as Microsoft's Tay⁴⁷⁶ and Google's autocomplete suggestions⁴⁷⁷ which rely on human engagement for input data show that machines are not immune to society's prejudices. Tay, a Twitter chatbot, was corrupted in hours by users who flooded it with misogynistic and racist posts and began putting out its own offensive posts. Google's offensive autocomplete predictions were based on actual searches entered into its searchbox. A popular phrase to describe this phenomenon is "garbage-in, garbage out" i.e. an AI system is only as good as the data that it is trained on.

Amazon's recruiting tool⁴⁷⁸ which was trained on historical recruitment data consistently downgraded female candidates, consequently perpetuating existing gender bias. In effect, "we can't expect an AI algorithm that has been trained on data that comes from society to be better than society – unless we've explicitly designed it to be"⁴⁷⁹.

⁴⁷⁵ The authors gratefully acknowledge the case data statistics as provided by the courts of Sabah and Sarawak. Exact case numbers were not available for release at the time of writing.

⁴⁷⁶ Vincent (2016)

⁴⁷⁷ Lapowsky (2018)

⁴⁷⁸ Vincent (2018)

⁴⁷⁹ Marr (2019)

Global efforts are ongoing to "cure automated systems of hidden biases and prejudices" 480. In 2012, Project ImageNet played a key role in providing developers with a library of images to train computers to recognise visual concepts. Scientists from Stanford University, Princeton University and the University of North Carolina paid digital workers a small fee to label more than 14 million images, creating a large dataset which they released to the public for free. While greatly advancing AI development, researchers later found problems in the dataset, for example, an algorithm trained on the dataset may identify a "programmer" as a white man because of the pool of images labelled in that way. The ImageNet team set about analysing the data to uncover these biases and took steps such as identifying words that projected a meaning on an image (e.g. "philanthropist") and assessing the demographic and geographic diversity in the image set. The effort showed that algorithms can be re-engineered to be fairer.

A separate study was conducted by ProPublica on Correctional Offender Management Profiling for Alternative Sanctions (COMPAS), a recidivism risk assessment algorithm used by the US courts to aid in sentencing. The study criticised COMPAS as being racially biased against African-Americans and argued that COMPAS was more likely to "falsely flag black defendants as future criminals, wrongly labelling them this way at almost twice the rate as white defendants" and that "white defendants were mislabelled as low risk more often than black defendants". ProPublica's conclusions have since been rebutted by Northpointe (the makers of COMPAS) and various academics⁴⁸¹ who noted that the program "correctly predicted recidivism in both white and black defendants at similar rates"⁴⁸².

Bias has also been demonstrated in facial recognition AI tools. Despite Amazon, IBM and Microsoft's decisions to pause the sale of their facial recognition tools to US law enforcement⁴⁸³, a Black man was wrongly arrested⁴⁸⁴ for a crime he didn't commit because facial recognition had identified him as the perpetrator.

Conscious of this risk of bias, the Sabah and Sarawak courts and their software developer (Sarawak Information Systems Sdn Bhd, SAINS, a Sarawak state government-owned company) held stakeholder consultations during the development process to identify prominent concerns. For example, stakeholders were concerned that the "race" variable might create bias in future sentencing decisions, so the courts made the decision to remove the variable from the algorithm as it was not a significant factor in the sentencing process.

Such mitigating measures are valuable, but they do not make the system perfect. A dataset of five years of cases seems somewhat limited in comparison with the extensive databases used in global efforts such as Project ImageNet. Furthermore, it is unclear whether the removal of the race variable from the algorithm has any significant effect on its recommendations.

⁴⁸⁰ Knight (2019)

⁴⁸¹ Flores, Bechtel, and Lowenkamp (2016)

⁴⁸² Yong (2018)

⁴⁸³ Heilweil (2020)

⁴⁸⁴ Allyn (2020)

8.2.2. Software development

AI training data is not the only place where bias can occur. It is very difficult to strip human bias from algorithms themselves⁴⁸⁵, partly because it still requires humans to develop them. Bias can creep in at any stage. One of the earliest instances is at the problem structuring stage⁴⁸⁶ where, when creating a deep learning model, computer scientists need to decide what they want the model to achieve, and the parameters set by the scientists may reflect their intentions or subconscious prejudices.

To mitigate this, SAINS has worked collaboratively with the Sabah and Sarawak judiciary to test the results of the AI sentencing tool. During the development process, the judiciary analysed the recommendations produced by the AI tool and debated whether they would have reached the same conclusions. This helped the software developers, who have no legal training, understand the needs of the legal system and make changes to the AI algorithm accordingly. SAINS and the Sabah and Sarawak judiciary have emphasised that this learning, consultative and collaborative process is an ongoing one as they seek to make further improvements to the AI tool.

8.2.3. Definition of subjective concepts, e.g. fairness

Another AI challenge that the MIT Technology Review has identified is the difficulty of defining fairness in mathematical terms⁴⁸⁷. Other commentators⁴⁸⁸ have suggested that at the heart of the debate is the ethical question of what it means for an algorithm to be fair, and the mathematical limits to how fair an algorithm can ever be.

The Sabah and Sarawak courts' AI tool also raises similar concerns with the definition of subjective matters into quantifiable, mathematical terms. For example, one of the variables in the AI tool is whether the victim in a rape case has "suffered psychological distress". It is arguable that all rape victims suffer psychological distress, but in varying degrees. However, the AI tool's algorithm only recognises the binary inputs of "yes" or "no". This highlights the clash of applying mathematical principles to the law where nuances and subtleties in individual cases are very important. Recognising these weaknesses in AI, the Sabah and Sarawak judiciary has thus far only used the AI tool as a guideline; judges make the final sentencing decision.

An analysis of the cases heard in Sabah and Sarawak as at 29 May 2020 shows that judges departed from the AI sentencing recommendation in 67% of the cases. Reasons for deviation included accounting for mitigating factors which the algorithm had not been designed to consider and the recommended sentence not being considered a strong enough deterrent. This highlights the limitations of an algorithm and indicates that the human element is still needed in sentencing.

⁴⁸⁵ Knight (2019)

⁴⁸⁶ Hao (2019)

⁴⁸⁷ Hao (2019)

⁴⁸⁸ Corbett-Davies et al. (2016)

8.3 Lack of Transparency and Accountability

Humans find it hard to explain their subconsciously biased decisions, and machines which make biased decisions are even "less visible and less open to correction"⁴⁸⁹. At has an issue with transparency—the "black box" problem where the actual mechanics within the box cannot be observed. Machine learning models often build complex models based on large datasets, so that their eventual conclusions may be unexplainable as they cannot be attributed to any specific factors or combination of factors.

Deep Patient, a programme used at a New York hospital, proved to be "incredibly good" ⁴⁹⁰ at predicting disease without expert instruction, including psychiatric disorders which are difficult for physicians to anticipate. Its creators are unable to explain how it does this. This has serious consequences, for example, if an AI is unable to explain why it provided a higher sentence for offenders of certain ethnicities, or if a bank loan was rejected for no clear reason. This could be exacerbated by companies using the shield of proprietary information to prevent researchers from accessing details of how the algorithm works. For AI to move towards safe mainstream usage, it needs to be more understandable and accountable to its creators and users so that potentially life-changing actions resulting from AI can be justified.

This black box problem exists with the Sabah and Sarawak courts' AI tool. The software developers are unable to predict and explain how the algorithm derives certain patterns, why the algorithm attaches more weightage to one variable over another and, consequently, the reasoning behind the eventual recommendation. Thus, the collaborative and consultative process between the judiciary and software development team becomes even more important. The algorithm can be tested and tweaked until it consistently produces recommendations that the judiciary would independently arrive at, but this iterative process is more likely to be driven by trial and error than a reasoned understanding of what variables to weight.

To increase accountability, the Sabah and Sarawak judiciary have a standard operating procedure (SOP) in place to regulate the way in which each judge responds to the recommendations. For example, judges have to provide their reasoning for why they decided to adopt or deviate from the AI tool's recommendation in their judgment decisions. At this stage, it is difficult to ascertain how comprehensive this SOP is as it is not publicly available.

8.4 The Justice Code

These risks of bias and lack of transparency and accountability exist in any industry implementing AI, but several fundamental principles of the legal system give rise to unique challenges in using AI.

⁴⁸⁹ Vincent (2018)

⁴⁹⁰ Knight (2017)

8.4.1. Primacy of law/flexibility of the common law to make changes

As AI tools become more widespread, there is a risk that they "may even transcend the act of judging and affect essential functioning elements of the rule of law and judicial systems"⁴⁹¹. This is because the common law system practised by Malaysia relies on flexibility in the courts to carry out case-by-case reasoning to adapt dynamically to changing needs, and not be bound by precedent if there is good reason to deviate. The EU Charter emphasises that in common law systems, "[l]egal rules therefore do not evolve in a linear fashion, distinguishing them from empirical laws...in legal theory, two contradictory decisions can prove to be valid if the legal reasoning is sound"⁴⁹².

The Sabah and Sarawak judiciary takes the view that the AI tool is compatible with the principles of sentencing because it incorporates the thought process of sentencing in its parameters, for example, accounting for previous criminal convictions. However, it is important to consider the extent to which AI sentencing recommendations may neglect individual mitigating or aggravating circumstances.

8.4.2. Right to a fair trial

All parties in a case have a right to a fair trial and any new technology introduced must be compatible with this fundamental right. The way the Sabah and Sarawak's AI tool is used in practice is that when the accused has decided to plead guilty, the court will make the involved parties aware that the AI tool will be used to provide a sentencing recommendation. It is stressed that this is merely a recommendation and that parties are invited to submit alternative sentencing suggestions upon hearing the recommendation. The judge then decides whether or not to follow the recommendation and will provide a brief explanation for his/her decision.

During the first case where the AI was used, the accused's lawyer mounted a constitutional challenge⁴⁹³ against its use arguing that the recommendation may influence the court's decision despite its proposed function as a guideline. The judge noted the objection but proceeded with the use of the AI tool, eventually passing a sentence that was more severe than the AI recommendation. At the time of writing, the outcome of the challenge has not been finalised and there is not enough information about the ease of appeals against the AI recommendation. More data need to be gathered about the challenge/appeals process and its rates and outcomes.

8.5 Responsible Al development

In the absence of definite solutions to the bias and black box problems, it is important for industries, not just the legal system, that wish to implement AI to properly monitor, evaluate and eventually regulate their systems. Several mitigating measures undertaken by the Sabah and Sarawak courts have been alluded to above and are elaborated upon below.

⁴⁹¹ European Commission for the Efficiency of Justice (2018)

⁴⁹² European Commission for the Efficiency of Justice (2018)

⁴⁹³ The Star (2020)

8.5.1. Collaboration between users and software developers

As demonstrated by the Sabah and Sarawak courts, there needs to be an ongoing consultative and collaborative process between the AI users and the software development team. This is to ensure that the software development team receives feedback on the challenges in the AI's practical use and that users will be more informed about its functionality, impact and limitations.

8.5.2. Stakeholder consultations

Stakeholder consultations should also be carried out to gather opinions and suggested improvements to the algorithm. The Sabah and Sarawak courts carried out stakeholder consultations with legal practitioners and legal association representatives during the development of the pilot AI tool. These consultations are ongoing and are scheduled to occur every 6 months. Arguably, wider scale consultations could be sought. In Canada, a national consultation⁴⁹⁴ was launched to ensure that all citizens had the opportunity to have a say in the country's digital transformation.

8.5.3. Continuous improvements to the system

Resources need to be allocated to post-developmental monitoring and evaluation for continuous human oversight. This is necessary to detect errors and improve accuracy in the algorithm.

There should also be an open and non-hierarchical organisational culture to encourage whistle-blowers and enable fast reactions to problems reported in algorithmic development and performance. The Sabah and Sarawak judiciary actively compile criticism and feedback on its AI tool to help improve it further.

8.5.4. Development of ethical frameworks

A broad policy consideration is for computer science education syllabi to incorporate ethics⁴⁹⁵ as an integral component to encourage developers to prioritise ethical concerns in parallel with technical design.

Ethical standards and governance frameworks could also be set up within AI development teams to prioritise transparency, fairness and accountability in designing and building algorithms. For example, the EU has set up several principles that AI systems in the judicial system should be designed in accordance with: (i) respect for fundamental rights and civil liberties (ii) non-discrimination (iii) quality (iv) security, transparency, impartiality and fairness and (v) informed user control⁴⁹⁶.

Guidelines could be drawn from The Partnership on AI⁴⁹⁷, a multi-stakeholder organisation bringing together "academics, researchers, civil society organizations, companies building and utilizing AI technology, and other groups working to better understand AI's impacts". It produces thought leadership, insights, principles and frameworks on the latest developments of AI.

⁴⁹⁴ Government of Canada News Release (2018)

⁴⁹⁵ Grosz et al. (2019)

⁴⁹⁶ European Commission for the Efficiency of Justice (2018)

⁴⁹⁷ Partnership on AI: https://www.partnershiponai.org/

8.6 Conclusion

Despite its risks and limitations, digital transformation has the potential to bring about benefits beyond increased efficiency or objectivity. The EU Charter provides the valuable guiding principle that "[f]ar from being a simple instrument for improving the efficiency of judicial systems, AI should strengthen the guarantees of the rule of law, together with the quality of public justice." A judge's discretion remains crucial in Malaysia's legal system. Cognisant of AI's risks, outgoing Chief Justice for Sabah and Sarawak Tan Sri David Wong stressed at the launch of the AI system that it is meant to act purely as a guideline⁴⁹⁸. This is highlighted by the fact that judges still deviated from the AI recommendation in 67% of cases. At this stage, the AI tool remains a suggestion rather than a final decision.

It is hard to argue against the inevitability of widespread technological transformation of society. As part of its digital transformation, Malaysia would benefit from digital governance policies to enable the government to regulate the use of digital technologies; to help multiple sectors of society to navigate risks and challenges—to say nothing of unintended outcomes—of implementing these technologies; and to protect the public interest from their misuse. AI is just one of the many areas that should be included in such digital governance policies.

⁴⁹⁸ Wong (2020)

References

- Allyn, Bobby. 2020. "The Computer Got It Wrong: How Facial Recognition Led To False Arrest of Black Man." *NPR*, June 24, 2020. https://www.npr.org/2020/06/24/882683463/the-computer-got-it-wrong-how-facial-recognition-led-to-a-false-arrest-in-michig.
- Asimov, Isaac. 1942. "The Runaround," 1942.
- Corbett-Davies, Sam, Emma Pierson, Avi Feller, and Sharad Goel. 2016. "A Computer Program Used for Bail and Sentencing Decisions Was Labeled Biased against Blacks. It's Actually Not That Clear." *The Washington Post*, October 17, 2016. https://www.washingtonpost.com/news/monkey-cage/wp/2016/10/17/can-an-algorithm-be-racist-our-analysis-is-more-cautious-than-propublicas/.
- European Commission for the Efficiency of Justice. 2018. "European Ethical Charter on the Use of Artificial Intelligence in Judicial Systems and Their Environment." Strasbourg: European Commission for the Efficiency of Justice. https://rm.coe.int/ethical-charter-en-for-publication-4-december-2018/16808f699c.
- Flores, Anthony, Kristen Bechtel, and Christopher Lowenkamp. 2016. "False Positives, False Negatives, and False Analyses: A Rejoinder to 'Machine Bias: There's Software Used Across the Country to Predict Future Criminals. And It's Biased Against Blacks." Federal Probation 80 (2). https://www.uscourts.gov/federal-probation-journal/2016/09/false-positives-false-negatives-and-false-analyses-rejoinder.
- Government of Canada News Release. 2018. "Government of Canada Launches National Consultations on Digital and Data Transformation," June 19, 2018. https://www.canada.ca/en/innovation-science-economic-development/news/2018/06/government-of-canada-launches-national-consultations-on-digital-and-data-transformation.html.
- Grosz, Barbara, David Grant, Kate Vredenbrugh, Jeff Behrends, Lily Hu, Alison Simmons, and Jim Waldo. 2019. "Embedded EthiCS: Integrating Ethics Across CS Education." *Communications of the ACM*, August 2019.
- Hao, Karen. 2019. "This Is How AI Bias Really Happens—and Why It's so Hard to Fix." *MIT Technology Review*, February 4, 2019. https://www.technologyreview.com/2019/02/04/137602/this-is-how-ai-bias-really-happensand-why-its-so-hard-to-fix/.
- Heilweil, Rebecca. 2020. "Big Tech Companies Back Away from Selling Facial Recognition to Police. That's Progress." *Vox*, June 11, 2020. https://www.vox.com/recode/2020/6/10/21287194/amazon-microsoft-ibm-facial-recognition-moratorium-police.
- Khairah N. Karim. 2020. "Court of Appeal Goes Virtual for the First Time [NSTTV]." *New Straits Times*, April 23, 2020. https://www.nst.com.my/news/crime-courts/2020/04/586873/court-appeal-goes-virtual-first-time-nsttv.
- Knight, Will. 2017. "The Dark Secret at the Heart of AI No One Really Knows How the Most Advanced Algorithms Do What They Do. That Could Be a Problem." *MIT Technology Review*, April 11, 2017. https://www.technologyreview.com/2017/04/11/5113/the-dark-secret-at-the-heart-of-ai/.
- ———. 2019. "AI Is Biased. Here's How Scientists Are Trying to Fix It." *Wired*, December 19, 2019. https://www.wired.com/story/ai-biased-how-scientists-trying-fix/.
- Lapowsky, Issy. 2018. "Google Autocomplete Still Makes Vile Suggestions." *Wired*, February 12, 2018. https://www.wired.com/story/google-autocomplete-vile-suggestions/.
- Marr, Bernard. 2019. "Artificial Intelligence Has A Problem With Bias, Here's How To Tackle It." *Forbes,* January 29, 2019. https://www.forbes.com/sites/bernardmarr/2019/01/29/3-steps-to-tackle-the-problem-of-bias-in-artificial-intelligence/#1306d00a7a12.

- Reavie, Vance. 2018. "Do You Know The Difference Between Data Analytics And AI Machine Learning?" Forbes. August 1, 2018. https://www.forbes.com/sites/forbesagencycouncil/2018/08/01/do-you-know-the-difference-between-data-analytics-and-ai-machine-learning/.
- The Star. 2020. "Coded Justice: Courts Start Use of AI to Aid Sentencing, Lawyer Claims It Is Unconstitutional," February 19, 2020. https://www.thestar.com.my/news/nation/2020/02/19/coded-justice-courts-start-use-of-ai-to-aid-sentencing-lawyer-claims-it-is-unconstitutional.
- Vincent, James. 2016. "Twitter Taught Microsoft's AI Chatbot to Be a Racist Asshole in Less than a Day." *The Verge*, March 24, 2016. https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist.
- ——. 2018. "Amazon Reportedly Scraps Internal AI Recruiting Tool That Was Biased against Women." *The Verge*, June 10, 2018. https://www.theverge.com/2018/10/10/17958784/ai-recruiting-tool-bias-amazon-report.
- Wade, Michael, Amit Joshi, Mark J. Greeven, Robert Hooijberg, and Shlomo Ben-Hur. 2020. "How Intelligent Is Your AI?" MIT Sloan Management Review. June 22, 2020. https://sloanreview.mit.edu/article/how-intelligent-is-your-ai/.
- Wong, David Dak Wah. 2020. "Speech By Justice David Wong Dak Wah Chief Judge Of Sabah And Sarawak On The Opening Of The Legal Year 2020 In Kuching." Kuching: The High Court in Sabah and Sarawak. https://judiciary.kehakiman.gov.my/portals/web/home/article_view/0/1705/1.
- Yong, Ed. 2018. "A Popular Algorithm Is No Better at Predicting Crimes Than Random People." *The Atlantic*, January 17, 2018. https://www.theatlantic.com/technology/archive/2018/01/equivant-compasalgorithm/550646/.

AFTERWORD

"Remember, governance is a big word that includes human rights, freedom of speech, economic transactions on a worldwide basis — it touches everything. It's everywhere, and that's why [i]nternet governance is topic A in many corners."

Vint Cerf499

AFTERWORD⁵⁰⁰

The Digital Economy Blueprint (DEB) was launched in February 2021 as the overarching national action plan for digital development up until 2030. It gave some much-needed structure to Malaysia's ongoing digital transformation. Its six thrusts are aimed at the public sector, firms, infrastructure, human capital, inclusivity and governance, making it clear that digital transformation is an "all of society" process. In fact, the digital economy is defined in the Blueprint as "economic and social activities that involve the production and use of digital technology by individuals, businesses and government".

This tacit understanding of the digital economy as involving "all of society" needs to be made explicit as we move forward. An "all of society" digital transformation necessarily includes social well-being and human rights as well as economic development and growth. A digital *society* framework, not just a digital *economy* framework, brings a greater variety of community issues, rights and needs to the table.

Reconceptualising a digital economy framework as a digital society framework is not just a matter of semantics. It brings to the table stakeholders with non-economic interests in digital policy issues that can affect many groups, especially those who are marginalised and vulnerable, in unexpected and sometimes damaging ways. It amplifies the voices of those calling for digital rights and those speaking out against digitally-enabled injustices.

Having a digital society mindset involves thinking about development and design not just for efficiency but also for inclusivity. Apps and websites should be intuitive to use and able to work on multiple devices so that everyone can use them. These principles of ease-of-use and interoperability should drive user interface and user experience design in developing cross-platform, cross-device technology to lower barriers of entry to digital adoption. With broadband being considered a basic utility, the conversation around the digital divide can go beyond access and affordability to meaningful connectivity and use.

Providing equitable digital opportunities would include closing gaps in user experience of network performance, types of devices used and digital skills needed to derive optimal benefits from digital connectivity and technologies. This would improve digital human capital development, not just in terms of technical skills and social protections for the digital workforce but also in terms of digital and media literacy needed to equip Malaysians to handle social problems such as scams, cyberbullying and misinformation.

Data is rightly spotlighted in the Blueprint as a key commodity in the digital economy, and thus a key building block of a digital society. A digital society framework facilitates data governance policies that value data privacy and security as much as open data and big data analysis. Different types of data require different policy priorities, and data policies are like most other policies—no one size fits all. So we must reframe the way we think about data, not just in terms of types of data (e.g. public versus private), but also in terms of the entire data value chain, from data generation and collection to data retention and deletion.

⁵⁰⁰ This section draws extensively from an op-ed authored by Rachel Gong which was published in The Star on 22 February 2021, titled "<u>Towards a Digital Society</u>".

As AI advances, big data, automation and machine learning are likely to be used more not just in supply chains but also in everyday decision-making processes and conveniences such as the Internet of Things. Any number of objects not normally associated with data transfer (e.g. lights or a fridge) can be equipped with sensors and connected for data exchange. A "society-first" policy framework recognises the productivity gains of such technologies without neglecting laws and regulations that guard against discriminatory outcomes, such as in AI-dependent hiring practices, placement of rental ads and risk assessments for loans or insurance.

A digital society framework facilitates multi-disciplinary policy research. It allows researchers to ask questions about the ways digital technologies have become part of our everyday lives and what sort of influence they will have on our future. How much power will we allow algorithms to have in determining what news we read or what values we share? Are these technologies sustainable? How can they help us address future challenges, such as climate change? Are the public interest gains from these technologies worth the risks?

We have only begun to scratch the surface of how digital technologies are impacting and influencing our daily lives. Like most tools, digital technologies are neither inherently good nor bad. Apps and algorithms can open up a world of possibilities, but without due consideration and responsible governance, they can wreak havoc. The data that emerge from the use of digital technologies can spur innovation but can also marginalise the vulnerable. Thus, in adopting digital technologies, a public interest policy framework must also be in place to ensure we can navigate the challenges and maximise the opportunities of digital transformation.

KHAZANAH RESEARCH INSTITUTE

Level 25 Mercu UEM Jalan Stesen Sentral 5 Kuala Lumpur Sentral 50470 Kuala Lumpur MALAYSIA

Tel: +603 2265 0000 Fax: +603 2265 0088

www. KR Institute.org