
Stateless Light Clients for PoS Blockchains

Paul Etscheit

Bankai paul@bankai.xyz

Abstract. We present a stateless light client design for Proof-of-Stake
blockchains using recursive STARKs to compress the chain’s validation
history into a single, constant-sized proof. The core innovation is the
elimination of stateful on-chain contracts; instead, state is passed crypto-
graphically between proofs, creating a fully self-contained and portable
certificate of the canonical chain. This enables on-demand verification
without any persisted data. The client’s logic is made objective by track-
ing the chain as defined by the source protocol’s finality gadget, which
circumvents the need for internal fork resolution. Our proof-of-concept
for Ethereum confirms the design’s feasibility, showing that proving costs
stabilize at a near-constant rate. This method offers a robust solution
to weak subjectivity and provides an efficient primitive for blockchain
interoperability.

Keywords: Light Clients · Proof-of-Stake · Zero-Knowledge Proofs ·
STARKs · Recursion · Statelessness · Blockchain Interoperability.

1 Introduction

The evolution of light client design reveals a persistent trade-off between security,
efficiency, and statefulness. Early Simplified Payment Verification (SPV) clients
for Proof-of-Work (PoW) blockchains offered a simple model but required band-
width linear to the chain’s history [10]. Subsequent research achieved sub-linear
complexity [3,9], but these designs are fundamentally incompatible with Proof-of-
Stake (PoS) consensus. PoS systems introduce new challenges, such as dynamic
validator sets and weak subjectivity, forcing clients to maintain persistent state
to track validator changes and sync from trusted checkpoints [7,4].

Zero-knowledge (ZK) proofs have emerged as a powerful tool to address these
challenges. Initial applications focused on computational efficiency, compressing
heavy tasks like signature verification into succinct proofs [14,12]. While reducing
on-chain costs, these clients remain architecturally stateful, relying on smart con-
tracts that require perpetual updates. The concept of recursive proofs, pioneered
by Mina, demonstrated that an entire blockchain’s history could be compressed
into a single, constant-sized proof [2]. However, this cryptographic succinctness
proves only state transition validity, not consensus canonicity. To follow the
canonical chain, a client must still implement a state-dependent fork-choice rule,
reintroducing the very statefulness it aims to eliminate.

The gap between a cryptographically succinct blockchain and a truly stateless
light client is fork resolution. Our research resolves this dilemma by designing



2 P. Etscheit

a client that outsources fork choice entirely to the source chain’s consensus
mechanism. By constraining its ZK proofs to certify only those state transitions
that belong to the canonical chain, as determined by the source chain’s finality
gadget, our architecture makes the client’s validation logic objective and stateless.
This design circumvents the need for an internal fork-choice rule, inherently
defends against long-range attacks, and addresses the core vulnerability of weak
subjectivity without relying on external trust.

We propose an architecture for a ZK light client that is:

– Recursive, compressing the entire validation history of a PoS blockchain
into a single, constant-size proof.

– Deterministic, by outsourcing fork resolution to the source chain’s consensus
and certifying only transitions on the canonical chain, the resulting proofs
are deterministic.

– Stateless, enabling on-demand verification of the chain head without any
persisted state, thereby creating a mechanism for on-demand verification.

The goal is to demonstrate a light client that can serve as a highly efficient
and trustless primitive, applicable to a wide range of applications from cross-chain
interoperability to resource-constrained devices.

2 Related Work

Our work builds upon several distinct lines of research in light client design, from
early Proof-of-Work models to modern ZK-powered systems.

2.1 PoW and Stateful PoS Light Clients

Early light clients for PoW systems, from Bitcoin’s SPV [10] to sub-linear proto-
cols like NIPoPoWs [9] and FlyClient [3], are fundamentally tied to PoW-specific
security assumptions, such as cumulative work, rendering them incompatible
with PoS consensus. PoS light clients, such as those standardized by the Inter-
Blockchain Communication Protocol (IBC) [7], correctly model PoS security but
are inherently stateful. They require an on-chain contract to perpetually store
and update the source chain’s validator set, incurring continuous maintenance
costs and a significant state footprint [6].

Our approach differs by being designed for PoS from the ground up while
targeting true statelessness. Instead of tracking validator sets or cumulative work,
our client verifies a single, self-contained proof of the chain’s evolution up to a
finalized state, eliminating the need for persistent on-chain storage and ongoing
updates.

2.2 ZK-Powered Stateful Light Clients

A recent class of ZK-powered light clients, including Plumo [14] and Telepathy [12],
effectively reduces on-chain computation by verifying large signature sets off-chain.



Stateless Light Clients 3

However, they do not compress on-chain state. These systems rely on a traditional
smart contract model where the contract itself stores a commitment to the latest
validator or sync committee. Advancing the client requires a state-modifying
transaction that proves a committee handoff and writes the new committee’s
commitment to the contract’s storage. This reliance on an on-chain state anchor
intrinsically links proof verification to the host chain, limiting the portability of
the verified data to contexts where the contract’s state is accessible.

Our architecture replaces this on-chain state storage with cryptographic
accumulation within the recursive proof. Instead of a smart contract storing
the current validator set commitment, this commitment is encoded as a public
output of the latest ZK proof. To process a subsequent block, the prover uses this
output commitment as a public input for the next proof, which in turn exposes
the next validator set commitment as an output. State is thereby carried forward
entirely within the sequence of proofs, never touching persistent on-chain storage.
Consequently, the proof chain can be advanced indefinitely off-chain, making
on-chain verification a stateless, on-demand transaction. This model eliminates
the perpetual synchronization costs required by a stateful contract, which accrue
even when the client is not being used.

2.3 Succinct Blockchains vs. Stateless Clients

The Mina protocol pioneered the use of recursive proofs to create a "succinct
blockchain," compressing the entire transaction history into a constant-sized
proof [2]. While cryptographically succinct, its light client architecture is not
stateless. To follow the canonical chain, a client must implement Mina’s internal,
state-dependent fork-choice rule, Ouroboros Samasika [1].

The crucial differentiation in our work lies in its external perspective and
focus on finality. By designing a client for an external chain and exclusively
proving blocks that have achieved deterministic finality, we circumvent the need
for stateful, consensus-level fork-choice logic. This design choice is what allows
us to achieve the true statelessness that a client internal to an L1, which must
participate in fork resolution, cannot.

2.4 Stateless and Recursive Clients for Ethereum

Recent ZK-based light clients for Ethereum, such as Telepathy [12] and proofs
leveraging SP1 [13], have demonstrated how to significantly reduce on-chain gas
costs by compressing sync committee signature verification into a ZK-SNARK.
While computationally efficient, these clients remain architecturally stateful.
They rely on an on-chain smart contract to store the public keys of the current
sync committee. Consequently, advancing the client requires a state-modifying
transaction that proves the committee handoff and updates this on-chain storage.

Our work introduces a fundamentally different, recursive architecture to
achieve true statelessness. Instead of depending on contract storage, we embed
the committee’s identity directly into the chain of proofs. Each new proof validates
a subsequent time period and, crucially, recursively verifies the STARK proof



4 P. Etscheit

from the preceding period. This composition allows the current committee’s
identity to be passed as a public input from the previous proof, while the next
committee’s identity is exposed as a public output. This creates a cryptographic
chain of custody for the state, yielding a client that can validate a continuous
history of committee handoffs with a single, self-contained proof. The result is
a truly stateless design that eliminates the costs and complexities of perpetual
on-chain synchronization.

3 System Design

This section details the architecture of our stateless light client.

3.1 Preliminaries and System Model

Our design is applicable to any Proof-of-Stake (PoS) blockchain that provides the
following fundamental mechanisms. These properties ensure that a light client
can track the canonical chain’s state progression in a simple, verifiable, and
stateless manner.

Deterministic Finality The protocol must possess a deterministic finality
gadget, a mechanism that designates certain blocks as final and irreversible. This
property is the fundamental prerequisite for our architecture because it provides
an objective distinction between the volatile chain head and the stable, canonical
history.

This distinction is what allows us to design a proof that certifies an inherently
fork-free view of the chain. By rooting our proof’s validity in the chain’s finalized
state, the complexity of consensus and fork resolution is entirely abstracted from
the verifier, who can trust that any state validated by the proof is permanent
and canonical.

Verifiable Committee Selection PoS blockchains typically rely on a rotating
committee of validators to produce blocks and signatures. For our design to
function, the process of selecting the members of this committee for future
periods must be deterministic and publicly verifiable. Specifically, all inputs
required to compute the composition of the next committee must be available
within the current finalized state of the chain. This property is crucial as it allows
our ZK circuit to prove a committee handoff without requiring any external
information or trust assumptions.

Running Example: Ethereum The Ethereum PoS protocol serves as an
excellent concrete instance of a blockchain that meets these requirements.

– Finality: It employs the Casper-FFG finality gadget, which classifies epochs
as justified and, after two epochs, as finalized. This provides the strong
guarantee of irreversibility our design relies on.



Stateless Light Clients 5

– Light Client Committee: Ethereum features a dedicated Sync Committee,
a randomly sampled subset of 512 validators tasked with signing block headers
for light clients.

– Selection: This committee rotates every 256 epochs (∼27 hours). The
selection of the next committee is a deterministic process based on publicly
available state, primarily using the ‘RANDAO‘ value as a source of on-
chain randomness. This makes the transition between committees perfectly
verifiable.

– Efficiency: Furthermore, the Sync Committee uses BLS signatures. These
signatures can be aggregated into a single, compact signature, allowing
for highly efficient verification via a single pairing check. This feature is
particularly advantageous for reducing the computational complexity within
a ZK circuit, as it avoids costly individual signature verifications.

3.2 System Actors

We define three key roles in the system:

Source Chain (C) A PoS blockchain, utilizing a deterministic finality and
signer selection.

Prover (P) An untrusted, off-chain entity that observes the source chain C.
For each new period (e.g., an epoch), the Prover generates a proof of the state
transition and recursively combines it with the proof from the previous period.

Verifier (V) An entity (e.g., a smart contract on a destination chain or an
off-chain application) that verifies a single, self-contained proof from P to become
convinced of the source chain’s latest finalized state. The Verifier does not need
to maintain any state to verify the proof soundly.

3.3 Cryptographic Primitives

Our construction relies on two primary cryptographic primitives:

Zero-Knowledge Proof System Our design imposes several key requirements
on the underlying ZK proof system.

– Recursion: The system must support efficient recursive proof verification,
allowing one proof to attest to the validity of a previous proof, forming a
chain.

– No Trusted Setup: A transparent proof system (e.g., a STARK) is highly
desirable to avoid the complexities and trust assumptions associated with a
trusted setup ceremony.

– Efficient Field Emulation: To verify signatures from an external chain,
the system must provide an efficient mechanism for emulating arithmetic
over non-native fields.



6 P. Etscheit

Efficient Signature Scheme Verification The verification of committee
signatures presents a significant performance challenge within a ZK circuit.

– ZK-Efficiency: The signature scheme must be computationally feasible to
verify within the constraints of a ZK proof, where cryptographic operations
are expensive.

– Signer Scalability: The primary bottleneck is the large number of individual
signatures that may need to be verified for each state transition.

– Aggregation: Consequently, signature schemes that support aggregation,
such as BLS, are ideal, as they allow for the compression of many signatures
into a single, efficiently verifiable signature.

3.4 Architecture: A Generic Recursive Framework

The core of our design is a recursive proof chain that separates the mechanism of
stateless state progression from chain-specific validation rules. This architecture
can be understood as two distinct components: a generic recursive engine and a
pluggable state transition relation, R.

The recursive engine is responsible for chaining proofs together. State is
not stored on-chain but is instead passed cryptographically from one proof to
the next. Let πi be the STARK proof corresponding to the finalization of period
i. Each proof πi attests to the validity of two distinct statements:

1. State Transition Validity: The state transition from period i− 1 to i is valid
according to the source chain’s specific relation, R.

2. Recursive Verification: The proof for the previous period, πi−1, is valid.

The state transition relation R is a pluggable component that encapsulates
the consensus rules of a specific source chain. It formally defines the conditions
for a valid state transition. By treating R as modular, our framework can be
adapted to any PoS blockchain that meets the preconditions outlined earlier.

This recursive composition means that a single proof, πn, serves as a succinct
certificate for the entire history of finalized state transitions from a trusted genesis
point up to period n. The following section formalizes a concrete instantiation of
R for Ethereum.

3.5 Instantiating the Framework: An Ethereum State Transition
Relation

We now formalize the state transition relation R by providing a concrete instantia-
tion for the Ethereum PoS blockchain. This involves defining the specific structure
of the state and the computational steps performed within the ZK-STARK circuit
to validate a transition.

I/O Definitions We will start by describing the witness (the computation’s
inputs) and the output of the system.



Stateless Light Clients 7

Witness (wi): The Computation Inputs The witness wi comprises the complete
set of data required to compute the state transition from period i− 1 to i.

wi := (Si−1, πi−1, Hi, σi,Pi, Hexec,i, µexec,i, µcomm,i)

where the components are:

Si−1 : The state from the preceding period, trusted as an input to this step.
πi−1 : The STARK proof that validates the state Si−1.

Hi : The new beacon header for period i.

σi : The committee’s aggregate BLS signature for header Hi.

Pi : Public keys and Merkle proofs for each participating signer.
Hexec,i : The execution header for period i.

µexec,i : The SSZ inclusion proof for Hexec,i.

µcomm,i : The optional SSZ inclusion proof for the next committee’s data.

Public Output (Si): The Verifiable State The public output Si is the new state,
which is the sole, verifiable result of the computation. This is the public claim
that the proof πi supports. It is a tuple containing:

– beacon_header_root, beacon_state_root, beacon_height
– justified_beacon_height, finalized_beacon_height
– execution_header_hash, execution_height
– justified_exec_height, finalized_exec_height
– current_committee_root, next_committee_root

While all fields are available for a client to use, two are critical for maintaining
the recursive chain of trust:

– ci: The current_committee_root in state Si.
– ni: The next_committee_root in state Si.

These roots are commitments to the Poseidon Merkle trees of their respective sync
committees’ hashed public keys. We use ⊥ to denote a null next_committee_root.

The Relation R The relation R holds if the public output Si is the correct
result of the state transition function F (wi). The proof πi attests to this fact:
VSTARK(πi, Si) = true implies the existence of a witness wi such that Si = F (wi).
The function F is defined by the following sequence of computational steps
performed within the circuit. Let H be a cryptographic hash function and V be
a verification function.

1. Recursive Verification: Verify the previous proof πi−1 against the previous
state Si−1. For the genesis case (i = 0), this check is bypassed and Si−1 is
asserted to equal a trusted Sgenesis.(

VSTARK(πi−1, Si−1) = true
)
∨
(
i = 0 ∧ Si−1 = Sgenesis

)



8 P. Etscheit

2. Signer Key Reconstruction: The aggregate public key, K′
i, is constructed

by verifying and summing the keys of participating members from the witness.
For each participant p ∈ Pi, where p = (pubkey, proof), the circuit performs
two checks:
Preimage Check The Poseidon hash of the public key must match the leaf

of the Merkle proof, where L(proof) is the leaf of the proof.

HPoseidon(pubkey) = L(proof)

Merkle Verification The Merkle proof must be valid against the current
committee root from the trusted previous state, ci−1.

VMerkle(proof, ci−1) = true

The aggregate signer key is the sum of all public keys that pass these checks.

K′
i =

∑
p∈Pi

p.pubkey

3. Signature Verification: The aggregate signature σi must be valid on the
header Hi when verified with the constructed signer key K′

i.

VBLS(K′
i, Hi, σi) = true

4. Execution Header Decommitment: The circuit validates the SSZ proof
µexec,i to confirm that the execution header Hexec,i is included in the beacon
block body. The root of this body is committed to in the beacon header Hi.

VMerkle(Hi.body_root,Hexec,i, µexec,i) = true

5. Committee Transition Logic: The circuit first computes intermediate
committee hashes, (cinterim, ninterim), based on whether the header’s slot
triggers a periodic transition. A transition occurs if Hi.slot (mod Pslots) = 0.

(cinterim, ninterim) :=

{
(Si−1.n,⊥) if Hi.slot (mod Pslots) = 0

(Si−1.c, Si−1.n) otherwise

6. Conditional Committee Decommitment: If the periodic transition re-
sulted in a null intermediate hash (ninterim =⊥), a new committee must
be decommitted from the state. The final next committee hash, ni, is then
determined.
– Computation: The final next committee hash is computed as:

ni :=

{
H(NextCommi) if ninterim =⊥
ninterim otherwise

– Assertion: The decommitment is constrained by the requirement that
the provided Merkle proof is valid against the trusted state root.

(ninterim =⊥) =⇒
(
VMerkle(Hi.state_root,NextCommi, µcomm,i) = true

)



Stateless Light Clients 9

The final current committee hash is simply the intermediate one: ci := cinterim.
7. Final State Assembly: With all components now validated and computed,

including the final committee hashes (ci, ni), the circuit assembles the com-
plete state. The relation holds only if this computed state matches the public
output Si.

Perpetual and Trustless State Progression: The state transition relation R
defines a perpetually verifiable process anchored entirely by a trusted genesis state,
Sgenesis. Each subsequent state transition is valid if and only if a corresponding
witness wi exists that satisfies the relation. Due to the soundness of the ZK-
STARK system, it is computationally infeasible for a Prover to generate a valid
proof for a transition that violates the consensus rules encapsulated within F .
This guarantee is recursive: by successfully verifying a single proof πn against its
public output Sn, a verifier gains cryptographic assurance that the entire history
of state transitions from Sgenesis is valid.

3.6 Fork Resolution Model

Our design handles blockchain forks by strictly separating concerns between the
off-chain Prover and the on-chain Verifier, leveraging the source chain’s distinction
between finalized and unfinalized states.

The Prover is responsible for tracking the canonical source chain, including
handling any short-range forks or re-organizations. In the event of a fork, the
Prover discards any proofs generated for the non-canonical chain and re-generates
proofs starting from the last valid state before the divergence. This may result in
multiple, distinct proofs for the same epoch number, each representing a different
potential chain tip.

However, this re-organization only affects unfinalized state transitions. The
core security guarantee for the Verifier is that while the proof certifying a given
epoch might change to follow the canonical chain, the underlying finalized state
data it attests to will never be altered once committed. A verifier seeking strong
consistency can therefore achieve it by only accepting data corresponding to the
finalized height reported within the proof, remaining insulated from any chain
re-organizations. This model effectively outsources fork resolution to the source
chain’s consensus, allowing the verifier to remain simple and stateless.

4 Evaluation

To assess the practical viability of our proposed architecture, we conducted
a series of experiments designed to measure its computational cost and real-
world performance. The primary goals of this evaluation are to: (1) establish a
performance baseline for the core cryptographic primitive, STARK recursion;
(2) measure the computational complexity of the full light client circuit; and (3)
demonstrate the long-term cost stability of the recursive design.



10 P. Etscheit

4.1 Implementation Architecture

Our practical implementation of the system consists of two primary components:
an off-chain backend service which embodies the role of the Prover, and the
ZK-STARK circuit which implements the core state transition logic. Figure 1
illustrates the interaction between these components.

Fig. 1. A high-level overview of the architecture.

4.2 Development Stack

We instantiate this architecture using the following concrete components:

– Target Blockchain: Our implementation proves finalized epochs from
Ethereum’s Sepolia testnet. As detailed in Section 3.1, Ethereum’s sync
committee protocol, BLS signature scheme, and Casper-FFG finality gadget
make it an ideal subject for this work.

– Language and Toolchain: The ZK circuit is written in Cairo v0.13.5. For
compilation, we use the cairo-lang toolchain, with a Rust-based Cairo VM
for local trace generation.



Stateless Light Clients 11

– Cryptographic Libraries: For efficient BLS signature verification, we use
the Garaga and Garaga Zero libraries. Their optimized circuits leverage
Cairo’s native modulo builtin to significantly reduce the cost of non-native
field emulation.

– Prover: Proof generation is delegated to StarkWare’s production Shared
Prover (SHARP). The prover configuration targets an estimated 96 bits of
security, utilizing poseidon3 for the Fiat-Shamir channel hash, and variants
of blake2s for both the FRI commitment and proof-of-work hashes. An
off-chain coordinator service written in Rust generates the execution trace
and submits it to SHARP, which returns the resulting STARK proof.

4.3 Experimental Setup

Our evaluation comprises two distinct experiments conducted on an Apple M1
Pro machine (32GB RAM) acting as the off-chain coordinator.

Test Scenarios

1. Recursive Counter Baseline: To isolate and understand the fundamental
cost of recursion itself, we first evaluated a minimal recursive program. This
circuit’s only logic is to verify the proof of the previous step and increment
a counter. This allows us to model the overhead of the in-circuit STARK
verifier independent of our light client’s application logic.

2. Full Light Client Circuit: We then recursively proved a sequence of
epochs from the Sepolia testnet, spanning from epoch 248,576 to 249,504. To
efficiently measure performance across both standard updates and periodic
sync committee handoffs, we sampled one epoch every 32 epochs within this
range, resulting in 29 recursive proof generations.

Metrics We measure performance using two key indicators:

– Cairo Steps: The number of virtual machine execution steps required to run
the circuit. This serves as a hardware-agnostic proxy for the computational
cost and complexity of the ZK program.

– Proving Time: The wall-clock time in seconds, as reported by the SHARP
proving service, to generate a STARK proof from an execution trace. This
metric reflects real-world performance, though it can be influenced by external
factors such as prover queue times.

4.4 Evaluation Results

We now present the quantitative results of our evaluation, beginning with the
baseline cost of recursion before analyzing the full light client’s performance.



12 P. Etscheit

Baseline Cost of STARK Recursion The cost of verifying a STARK proof
within a circuit is not fixed; it grows logarithmically with the size of the inner
proof’s execution trace. We can model the cost of the n-th recursive proof,
measured in Cairo steps Sn, with the approximation Sn ≈ C + α lnSn−1. Here,
C is a large, fixed overhead for the verifier circuit, and α is a scaling factor
influenced by the program’s "trace width" (i.e., the builtins used).

Our minimal recursive counter experiment provides a strong empirical value for
C. The first recursive step, which verifies a trivial 11-step program, costs 2,322,005
Cairo steps. This value serves as our baseline constant overhead, C ≈ 2.32M
steps. Using data from deeper recursions, we derive a scaling factor of α ≈ 27, 924
for this minimal circuit. As illustrated in Fig. 2, this model shows high predictive
accuracy, confirming the expected logarithmic growth of recursive proving costs.

Fig. 2. Observed vs. predicted step counts for a recursive counter. The model (Sn ≈
2.32M + 27.9k lnSn−1) confirms the predictable, logarithmic cost structure of STARK
recursion.

Light Client Performance Examining the performance over all 29 recursive
invocations reveals a critical property of the architecture: computational stability.
As shown in Fig. 3, after an initial ramp-up period of about four invocations,
the computational cost, measured in Cairo steps, stabilizes and does not exhibit
unbounded growth.

The observed fluctuations in the step count correspond to predictable, periodic
work. The prominent spikes are caused by the sync committee update, which
occurs once every 256 epochs (in our test, this was sampled approximately every
eighth invocation). This operation is computationally intensive as it requires the
circuit to perform a significant amount of hashing: each of the 512 public keys in
the new committee is decommitted from the beacon state, hashed using Poseidon,



Stateless Light Clients 13

and then Merkelized to compute the new committee root. This periodic workload
is the primary driver of the cost variance.

Fig. 3. Measured Cairo steps for each recursive epoch. The cost stabilizes after an initial
ramp-up, with periodic spikes corresponding to sync committee updates, demonstrating
the long-term computational stability of the architecture.

Beyond the abstract cost of Cairo steps, we measured the real-world perfor-
mance by tracking the wall-clock proving time reported by SHARP. As shown in
Fig. 4, the results exhibit two distinct types of variation.

The most significant outliers are the large, periodic spikes in proving time,
which directly correspond to the increased computational workload of the sync
committee updates. These are an expected and deterministic feature of the
system’s performance.

In addition to these major spikes, the proving times exhibit minor, unpre-
dictable fluctuations that do not correlate with the Cairo step count. These
smaller variations are attributed to external factors inherent in using SHARP, a
shared, multi-tenant proving service. Latency can be introduced by variable queue
times or system load, causing identical computations to have slightly different
wall-clock proving times.

Despite this external noise, the performance is largely consistent. The majority
of standard proofs (those not involving a committee update) were generated in a
stable time frame of approximately 575 seconds (9.6 minutes), confirming the
system’s viability.



14 P. Etscheit

Fig. 4. Proving time per epoch. The significant spikes are expected and correlate with
sync committee updates. Minor variations are attributed to the use of a shared proving
service (SHARP).

5 Discussion

5.1 Technical Challenges

Several technical challenges were addressed during implementation, primarily
related to the computational cost of cryptographic primitives within the Cairo
VM.

Hash-to-Curve Algorithm: The hash-to-curve function, a prerequisite for
BLS signature verification, is complex to implement. Performing this operation in
Cairo is particularly expensive due to the overhead of emulating non-native field
arithmetic. To mitigate this, we utilized the Garaga library [5], which provides
highly optimized circuits for cryptographic operations by directly leveraging
Cairo’s ‘modulo‘ builtin, thereby significantly reducing the cost of field emulation.

BLS Pairing Check: The final pairing check in the BLS verification scheme is
another performance-critical component. As with hash-to-curve, a naive imple-
mentation incurs significant costs from field emulation. We again employed the
Garaga library [5] for an efficient implementation that dramatically reduces the
computational footprint of the pairing operation.

STARK Recursion Cost: A core design trade-off is the cost of in-circuit
STARK verification. While STARKs provide transparency (no trusted setup)
and conjectured post-quantum security, verifying a STARK proof is more com-
putationally intensive than verifying common elliptic-curve-based SNARKs (e.g.,
Groth16). This cost is a primary driver of overall prover time in our recursive
architecture.



Stateless Light Clients 15

5.2 Discussion of Results

Our evaluation provides strong evidence for the viability of the proposed archi-
tecture and highlights key areas for future optimization.

Strengths: The results successfully demonstrate that the core concept of a
stateless, recursive light client is feasible. We show that it is possible to per-
petually sync with a PoS chain, accumulating its state transitions into a single,
near constant-sized ZK proof that enables trustless verification without any
external state. A key enabler is the efficiency of the underlying cryptography;
using the Garaga library with Cairo’s native ‘modulo‘ builtin, the entire BLS
signature verification process, including hash-to-curve, pairing checks, and signer
aggregation, required only approximately 71,000 Cairo steps, or about 5% of the
total computational workload. Furthermore, while STARKs are often considered
less efficient for recursion than other proof systems, our findings indicate that the
approach is practical even with the original Stone prover (c. 2020), suggesting
significant potential for performance gains with more modern provers.

Limitations: The primary trade-off in our design is the cost of recursion itself.
As noted, verifying a STARK proof in-circuit is computationally demanding. A
critical consideration for future work is how the cost scales as the base circuit
grows. Adding features essential for a production client, such as a historical
header commitment (e.g., an MMR), would increase the number of constraints
in the epoch-validation circuit. This, in turn, increases the complexity and cost
of the in-circuit verifier, making every subsequent recursive step more expensive.
Quantifying this overhead is essential for understanding the practical limits of
the architecture.

Robustness: The fundamental architecture is not specific to Ethereum. Its core
principles—verifying finalized state transitions and passing committee commit-
ments via recursion—are generalizable to other PoS blockchains that feature a
finality gadget. The demonstrated efficiency of the BLS verification logic makes
this approach particularly applicable to the growing number of chains that use
BLS-based consensus.

6 Conclusion and Future Work

In this paper, we presented and evaluated a stateless, recursive ZK light client for
PoS blockchains. Our evaluation demonstrates the architecture’s computational
viability, establishing that a perpetual sequence of state transitions can be
compressed into a single, near constant-sized STARK proof. The average proving
time of approximately 9.5 minutes per epoch, using a five-year-old prover, confirms
the system is viable, although it is not yet fast enough to keep pace with



16 P. Etscheit

Ethereum’s 6.4-minute epoch time. A production system could manage this
latency by strategically generating proofs for every k-th epoch.

However, a significant architectural challenge remains. The current design
only validates the chain head. Extending it to include a cryptographic accu-
mulator, such as a Merkle Mountain Range to commit to historical headers,
would increase the base circuit’s complexity. This, in turn, would raise the cost of
in-circuit STARK verification, making every recursive step more expensive. Quan-
tifying this overhead is a critical area for future investigation. These performance
considerations frame the most immediate avenues for future work:

– Prover Upgrade: A primary focus is migrating to next-generation provers.
Preliminary tests with StarkWare’s S-Two prover [11], which is based on
Circle STARKs [8], are highly promising. A non-recursive epoch proof that
takes 266 seconds on the production SHARP service can be generated in
approximately 13 seconds on a consumer M4 Max laptop. However, realizing
these gains in a recursive context is currently infeasible due to the inefficiency
of the available in-circuit verifier for Circle STARK proofs.

– Historical Data Accumulation: Once an efficient recursive verifier is
developed, the circuit can be extended to include a cryptographic accumulator,
such as a Merkle Mountain Range. This would commit to the entire history
of verified headers within the proof itself, transforming the client into a fully
succinct verifier for both state and history.

Acknowledgements

The author would like to express gratitude to Herodotus for their support of the
underlying light client research and for providing access to the Atlantic Prover
service for generating recursive proofs. Special thanks are also due to the Garaga
team for their exceptional work on the elliptic curve and pairing libraries for Cairo,
which were instrumental for this project. The author would also like to thank
Filip Krawczyk for his help in modeling the recursion complexity. Finally, the
author is grateful to StarkWare for their continuous support and for developing
the foundational technology that made this research possible.

Author’s Note

The author acknowledges the use of large language models (LLMs) to assist in the
preparation of this manuscript. These tools were used for specific tasks, including
literature review, proofreading for spelling and grammar, and rephrasing to im-
prove clarity. The conceptual framework, technical implementation, experimental
results, and all conclusions presented are the original work of the author.



Stateless Light Clients 17

Recursive Counter Light Client Circuit

Round Steps Epoch n_steps Proving time (s)

1 11 252,384 742,788 369
2 2 322 005 252,416 4,590,488 624
3 2 832 636 252,448 8,761,136 1365
4 2 714 132 252,480 4,596,143 604
5 2 718 837 252,512 4,313,175 729
6 2 721 987 252,545 4,297,409 729
7 2 727 275 252,577 4,317,408 742
8 2 719 123 252,609 4,311,111 727
9 2 713 958 252,641 4,308,513 721

252,673 4,317,257 697
252,705 8,784,263 1380
252,737 4,606,633 722
252,769 4,312,255 614
252,801 4,321,544 644
252,833 4,311,646 624
252,865 4,293,621 624
252,897 4,312,591 671
252,929 4,306,270 722
252,961 8,773,950 1374
252,993 4,609,449 675
253,025 4,305,516 610
253,057 4,311,388 682
253,089 4,291,930 640
253,121 4,298,221 613
253,153 4,307,915 588
253,186 4,277,743 582

Table 1. Raw benchmark data for the recursive counter and light client circuits.
Measurements taken on 18 September 2025.



18 P. Etscheit

A Benchmark Data

References

1. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros samasika: A
provably secure blockchain protocol for dynamic availability. In: ACM Conference
on Computer and Communications Security (CCS). pp. 913–930. ACM (2018)

2. Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Coda: Decentralized cryptocurrency
at scale. Tech. Rep. 2020/352, IACR Cryptology ePrint Archive (2020), https:
//eprint.iacr.org/2020/352

3. Bünz, B., Kiffer, L., Luu, L., Zamani, M.: Flyclient: Super-light clients for cryp-
tocurrencies. In: IEEE Symposium on Security and Privacy. pp. 928–946. IEEE
(2020)

4. Chatzigiannis, P., Baldimtsi, F., Chalkias, K.: SoK: Blockchain light clients. Tech.
Rep. 2021/1657, IACR Cryptology ePrint Archive (2021), https://eprint.iacr.
org/2021/1657

5. FeltroidPrime: keep-starknet-strange/garaga. https://github.com/keep-starknet-
strange/garaga (jun 23 2025), https://github.com/keep-starknet-strange/
garaga

6. Goel, G., Jain, J.: Bringing IBC to Ethereum using ZK-Snarks. https://ethresear.
ch/t/13634 (2022), [Accessed 14-07-2025]

7. Goes, C.: The inter-blockchain communication protocol: An overview.
arXiv:2006.15918 (2020), https://arxiv.org/abs/2006.15918

8. Haböck, U., Levit, D., Papini, S.: Circle STARKs. Cryptology ePrint Archive, Paper
2024/278 (2024), https://eprint.iacr.org/2024/278

9. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work. In:
Financial Cryptography and Data Security (FC). LNCS, vol. 12059, pp. 505–522.
Springer (2020)

10. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.
org/bitcoin.pdf (2008), white paper

11. StarkWare: S-two: A high-performance stark prover. https://starkware.co/blog/
s-two-prover (2025)

12. Succinct Labs: Telepathy protocol documentation. https://docs.telepathy.xyz/
telepathy-protocol/overview (2023)

13. Succinct Labs: Ibc eureka × sp1: Unlocking mod-
ular interoperability. https://university.mitosis.org/
ibc-eureka-meets-mitosis-unlocking-modular-interoperability-with-succincts-sp1
(2025)

14. Vesely, P., Gurkan, K., Straka, M., Gabizon, A., Jovanovic, P., Konstantopoulos,
G., Oines, A., Olszewski, M., Tromer, E.: Plumo: An ultralight blockchain client.
Cryptology ePrint Archive, Paper 2021/1361 (2021), https://eprint.iacr.org/
2021/1361

https://eprint.iacr.org/2020/352
https://eprint.iacr.org/2020/352
https://eprint.iacr.org/2021/1657
https://eprint.iacr.org/2021/1657
https://github.com/keep-starknet-strange/garaga
https://github.com/keep-starknet-strange/garaga
https://ethresear.ch/t/13634
https://ethresear.ch/t/13634
https://arxiv.org/abs/2006.15918
https://eprint.iacr.org/2024/278
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://starkware.co/blog/s-two-prover
https://starkware.co/blog/s-two-prover
https://docs.telepathy.xyz/telepathy-protocol/overview
https://docs.telepathy.xyz/telepathy-protocol/overview
https://university.mitosis.org/ibc-eureka-meets-mitosis-unlocking-modular-interoperability-with-succincts-sp1
https://university.mitosis.org/ibc-eureka-meets-mitosis-unlocking-modular-interoperability-with-succincts-sp1
https://eprint.iacr.org/2021/1361
https://eprint.iacr.org/2021/1361

	Stateless Light Clients for PoS Blockchains

