WALLET SDK
DOCUMENTATION




WalletSDK Interface Specification (Beta V1.2)

This document defines the final version of the WalletSDK interface for integrating name-
based contact resolution and signaling into crypto wallets. The SDK is designed to be
developer-friendly, reactive, and cryptographically secure, while abstracting complex
signaling logic. Consult the AmericanFortress™ whitepaper for an architectural overview of
the system. This SDK is patent pending under US and foreign patents which are detailed in
the AmericanFortress whitepaper.

Overview
WalletSDK enables wallets to:

Register human-readable names (sfhames) tied to BIP47 payment codes
Add and manage contacts by sfhame

Resolve a contact’s address on a specific chain

Send signals (BIP-47 compatibility available)

React to new contact additions via a callback

Authenticate securely using private key signatures

Derive payment code and pubkey from injected seed

Retrieve wallet's receive addresses for specific counterparties and chains
Check availability of an sfname before attempting registration

Once authenticated, the SDK operates under a single-user and single-name context for the
duration of the session. Multiple name functionality will be available in a future version.

Class: walletspk
Constructor
WalletSDK (std::string api_base_url);
Initializes the SDK with the APl base URL.

Authentication Methods

std::string request_challenge (Sfhame user);

Requests a cryptographic challenge string for authentication.The wallet signs this challenge
using its private key.

Returns: A challenge string to be signed.




bool authenticate(Sfname user, std::string signature);

Submits the signed challenge and, if valid, receives a JWT token.Establishes a session-bound
user context for all subsequent SDK calls. This allows the SDK to communicate with the
backend infrastructure.

Returns: true if authentication is successful.

|ldentity Registration

bool is_name_available (Sfhame user);

Checks if a given sfhame is available for registration. In beta name registration is free. This is
intended to be used unauthenticated — prior to the wallet user having a name.

Returns: frue if available, false if already taken.

bool register_name (Sfname user, Pcode pcode);

Registers a new identity (sfhame) with a payment code. This is infended to be used
unauthenticated — prior to the wallet user having a name. This functionality is free in beta,
in production the register_name method will provide payment hooks.

Returns: frue if the name was successfully registered.

|dentity Derivation
void import_seed(std::vector<uint8_t> seed);

Imports a BIP39-derived seed generated externally. The SDK will internally derive the pubkey
and BIP47 payment code.

Pcode get_my_payment_code();

Returns the BIP47 payment code derived from the Iast imported seed.

Pubkey get_my_pubkey();

Returns the public key derived from the imported seed. Optional for developers that need to
display or verify it.




Contact Management
bool add_contact(Contact contact);

Adds a contact entry to the current user’'s contact list. Used to prepare for sending and
receiving funds to/from that confact.

Returns: frue if contact was added successfully.

std::vector<Contact> retrieve_all_contacts();

Returns the full set of known contacts stored for this user.

void on_new_contact(std::function<void(Contact)> callback);

Registers a callback function that fires when a new contact is added —either via sync or
SDK-internal logic. The callback is ideally the add_contact method for the walllet.

Contact Resolution & Signaling
Address resolve_contact_address(Contact contact, std::string chain);

For sending funds, resolves the counterparty’s receive address on the specified chain.
Returns: Address usable for blockchain transaction.

bool send_signal(Sfname to_contact, std::string chain);

Sends a signal to the contact for the specified chain. To insure funds delivery the wallet
developer has to make sure that this Returns: true prior to sending the funds.

Returns: frue if the signal was successfully sent.

std::vector<Address> get_my_receive_addresses(std::vector<Sfname> counterparties,
std::vector<std::string> chain_codes);

Returns the addresses this wallet should add to it's internal monitor list to locate received
funds from counterparties across the specified chains.

Developer Usage Flow

1. Wallet imports a previously created seed. This has to be only performed once upon
initialization of the SDK. Prior to production were extending this function such that



supports on disk encryption of the seed. We will additionally provide a variant of the
SDK where the SDK doesn't require a seed import, but provides the required reference
functions and test vectors for the SDK users (aka 3rd party wallet developers) to
implement internally.

sdk.import_seed(seed);
auto pcode = sdk.get_my_payment_code();

. Check if name is available and register. This is to initially register the name. In beta the
names are free. In production payment mechanisms for the user to pay for a name
will be included in the SDK.

if (sdk.is_nhame_available(Sfhame{"alice"})) {
sdk.register_name(Sfname{"alice"}, pcode);
}

. Authenticate. We use the wallets own sfname to authenticate with our accelerators.

auto challenge = sdk.request_challenge(Sfname{‘alice"});
auto signature = sign_with_private_key(challenge, privkey);
sdk.authenticate(Sfname{"alice"}, signature);

. Add a contact. Done when a user sends money for the first time or manually adds a
contact to the contact list.

Contact bob = { Sthame{"bob"}, bob_pcode, bob_pubkey };
sdk.add_contact(bob);

. For sending funds the wallet can resolve counterparty contact’s address via:

Address recipient = sdk.resolve_contact_address(bob, "ETH");

. Prior to sending funds the counterparty must be signaled. If the signal was already
sent, the SDK will not resend it. Each counterparty must be signaled once only, ever
and the signal is permanent. Meaning, when the wallet is restored from seed it doesn’t
need to resend any signals.

SignalStatus = send_signal(bob, "ETH");

. React to contact additions:

sdk.on_new_contact([](Contact c) {
std::cout << "New contfact added: " << c.name.value << std::endl;

}:

. Get dll receive addresses for expected senders:



auvto addresses = sdk.get_my_receive_addresses({ Sthame{"bob"} }, { "ETH",
"BTC"}):

Notes

Wallets may use their own seed generation methods and simply inject the derived
seed using import_seed().

The SDK will use the seed to derive pubkey and pcode internally.

send_signal() must be called before funds are sent — this signals a new outgoing
contact. Each contact needs to be notified only one time.

get_contacts() provides recent/active entries. retrieve_all_contacts() returns the
full list.

Data Types

struct Sfname

struct Stname {
std::string value;

struct Pcode

struct Pcode {
std::string value;

¥

struct Pubkey

struct Pubkey {
std::string hex;

|

struct Address

struct Address {
std::string value;
std::string chain;

|

struct Contact

struct Contact {

Sfname name;
Pcode pcode;



Pubkey pubkey;
%



	WalletSDK Interface Specification (Beta V1.2)
	Overview
	Class: WalletSDK
	Constructor

	Authentication Methods
	std::string request_challenge(Sfname user);
	bool authenticate(Sfname user, std::string signature);

	Identity Registration
	bool is_name_available(Sfname user);
	bool register_name(Sfname user, Pcode pcode);

	Identity Derivation
	void import_seed(std::vector<uint8_t> seed);
	Pcode get_my_payment_code();
	Pubkey get_my_pubkey();

	Contact Management
	bool add_contact(Contact contact);
	std::vector<Contact> retrieve_all_contacts();
	void on_new_contact(std::function<void(Contact)> callback);

	Contact Resolution & Signaling
	Address resolve_contact_address(Contact contact, std::string chain);
	bool send_signal(Sfname to_contact, std::string chain);
	std::vector<Address> get_my_receive_addresses(std::vector<Sfname> counterparties, std::vector<std::string> chain_codes);

	Developer Usage Flow
	SignalStatus = send_signal(bob, "ETH");

	Notes
	Data Types
	● struct Sfname
	● struct Pcode
	● struct Pubkey
	● struct Address
	● struct Contact



