

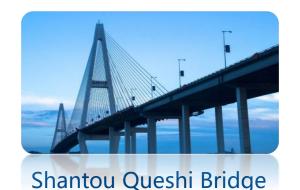
OVM250/OVMAT Multi-Strand Stay Cable Systems

Liuzhou OVM Machinery Co., Ltd.

02 Project Application

03 OVM Capacities

04 System Introduction


CONTENTS

02 Project Application

03 OVM Capacities04 System Introduction

OVM multi-strand stay cable was developed and applied on Liuzhou Huxi Bridge.

OVM250 cable is used for the buckle cable during the bridge arch assembling. The replaceability of the cable was verified.

1993

1998

2002

Liuzhou Huxi Bridge

OVM250 multi-strand stay cable system was successfully developed and applied on Queshi Bridge.

Shanghai Lupu Bridge

The first multi-strand cable stayed bridge constructed with guyed FT method. The safety and reliability of OVM250 system used in low stress (less than 10% GUTS) has been verified.

Ailan Bridge, Taiwan

OVM250 multi-strand cable system entering Iran Market for the first time.

2003

2006

2008

Jinshajiang bridge, Yibing Zhongba

First verified by USA and Swiss labs in accordance with international criterion, and first applied to Taiwan cablestayed bridge engineering.

Laly Bridge, Iran

Large size stay cable (OVM250-139) passed the fatigue test with high stress amplitude 250MPa, which is the cable fatigue test with the highest stress amplitude of the oversized cable in the world.

New Fengping Bridge, Taiwan Hualian

The 8th multi-strand cable-stayed bridge in Korea

2012

2013

Tongling Yangtze River Bridge

OVM250 multi-strand cable has withstood the earthquake occurred in Feb 2018

The 4th Kum Kang Bridge, Korea

OVM250 successfully applied to:

- ➤The world's largest span steel truss cablestayed bridge - Guizhou Yachi River Bridge
- The world's tallest bridge Bidu Expressway Beipanjiang Bridge
- ➤ The largest bridge in East Africa Kigamboni Bridge, Tanzania

Fire protection, blast protection and anti-vandalism increased to OVM250 multi-strand cable system according to the requirement specified in Rod El Farag bridge specification.

2016

2017

Yachi River Bridge, Guizhou

Bidu Expressway Beipanjiang Bridge

Kigamboni Bridge, Tanzania

Rod El-Farag Bridge, Egypt

The first extra-dosed bridge of China. The first generation extra-dosed stay cable developed by OVM applied on this bridge.

Lanzhou Xiaoxihu Bridge, Gansu

The pier height of this bridge is 150.7 meters. It is the highest in Asia.

2001

2003

2008

Zhangzhou War Preparation Bridge, Fujian

The saddle of individual steel tubes applied on this bridge.

Xianshenhe Bridge, Jincheng,Shanxi

The individual replaceable anti-slipping technology is applied to this bridge for the first time

Xiaobantian Bridge, Taiwan

The sixth generation saddle with one-side two-way anti-slipping device applied on this bridge. The cable of 99 strands is the biggest cable has ever been used.

2013

2015

Fenhe Bridge, Shanxi

The sixth generation saddle with one-side two-way anti-slipping device first applied on this bridge.

Chaoyang Bridge, Nanchang, Jiangxi

Henan Shangdeng South-to-North water diversion bridge, the main span is 265m.

Fudiankou Bridge, Wuzhou, Guangxi

The under construction project of Wulongjiang Bridge is the largest Extra-dosed cable stayed bridge in china with a main span of 288m.

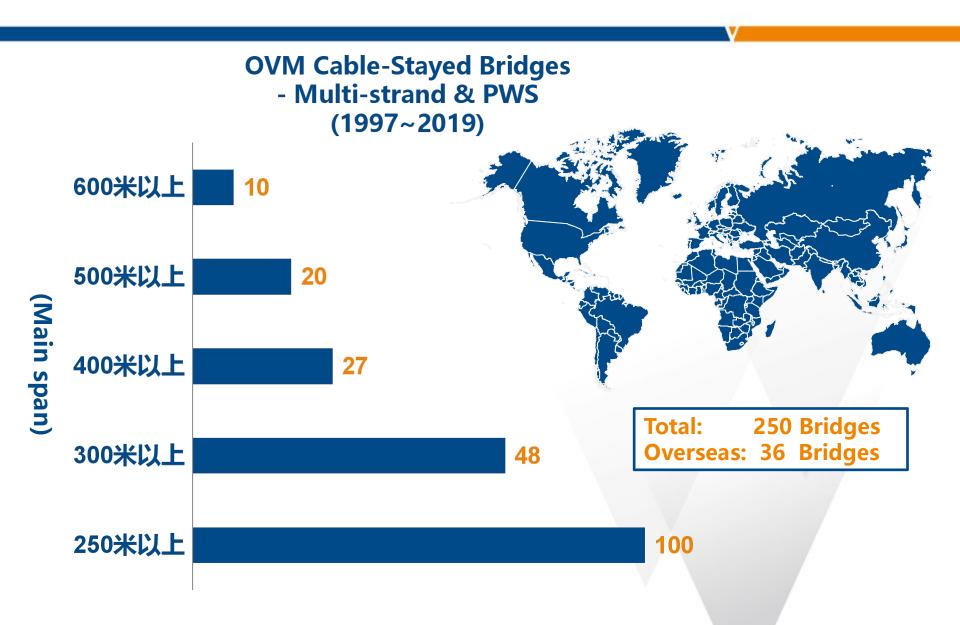
2016

2018

South-to-North Water Diversion Bridge

Fudiankou Bridge, the main span is 270m.

Wulongjiang Bridge, Fuzhou, Fujian

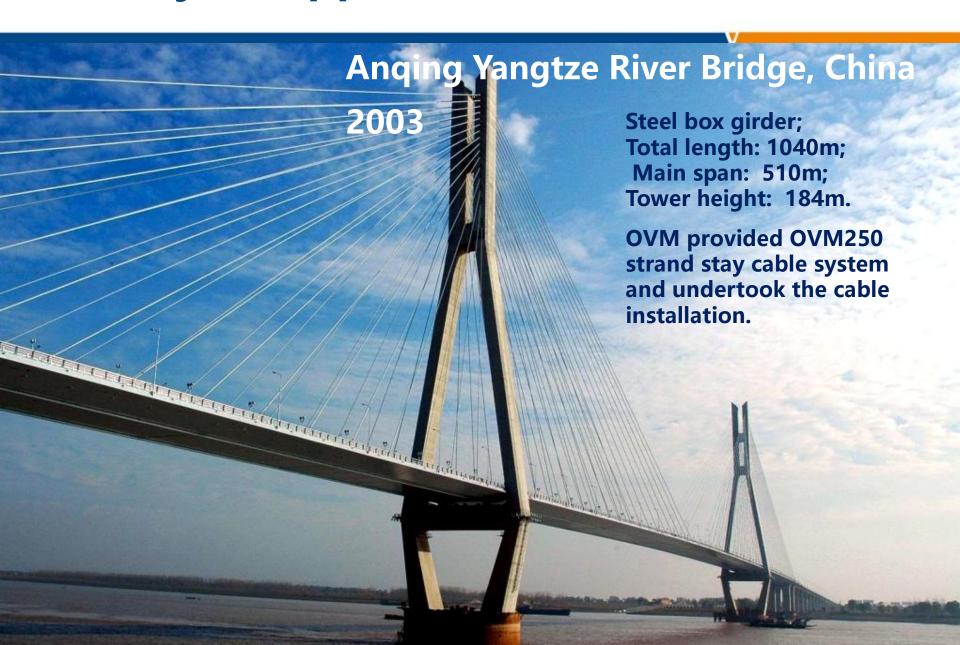

CONTENTS

02 Project Application

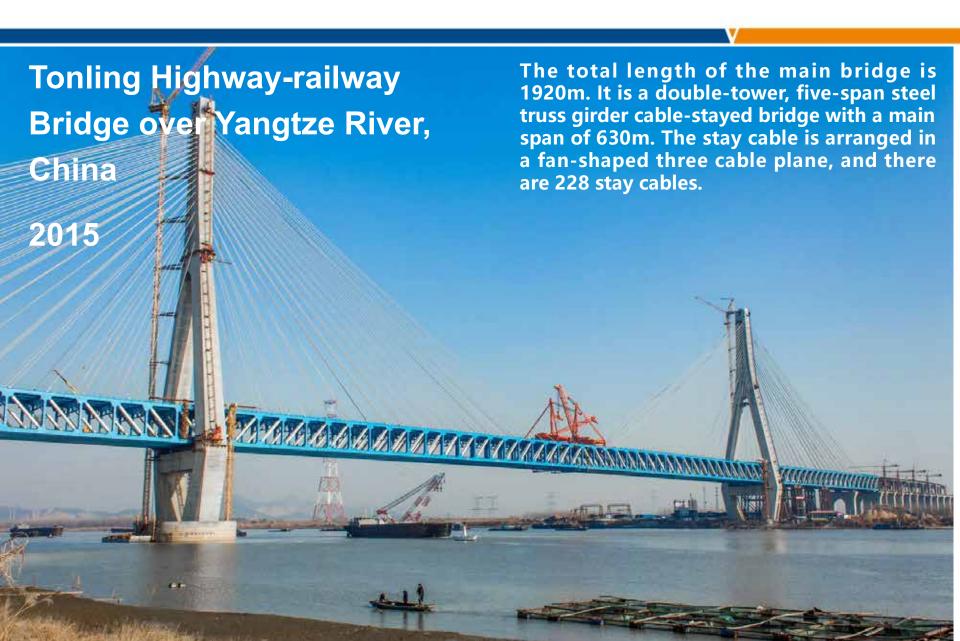
03 OVM Capacities

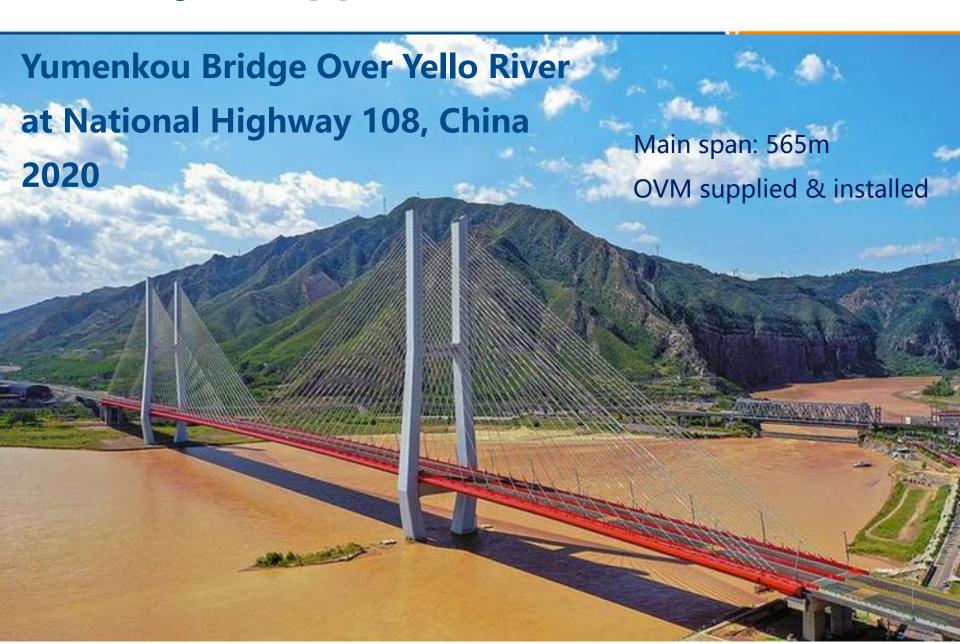
04 System Introduction

From 2001 to 2019, OVM have been successfully applied cable for 150 extradosed bridges all over the world, among them, 25 are overseas projects, which are distributed in Korea, India, Colombia, Bangladesh, Taiwan and other countries and regions. There are 30 projects with main span more than 200m (including 200m).

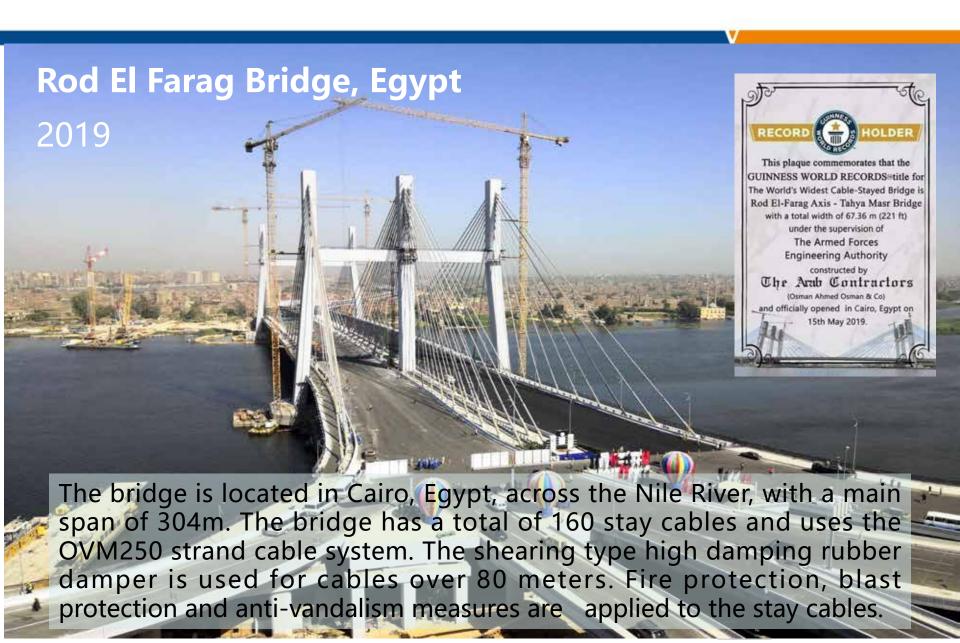


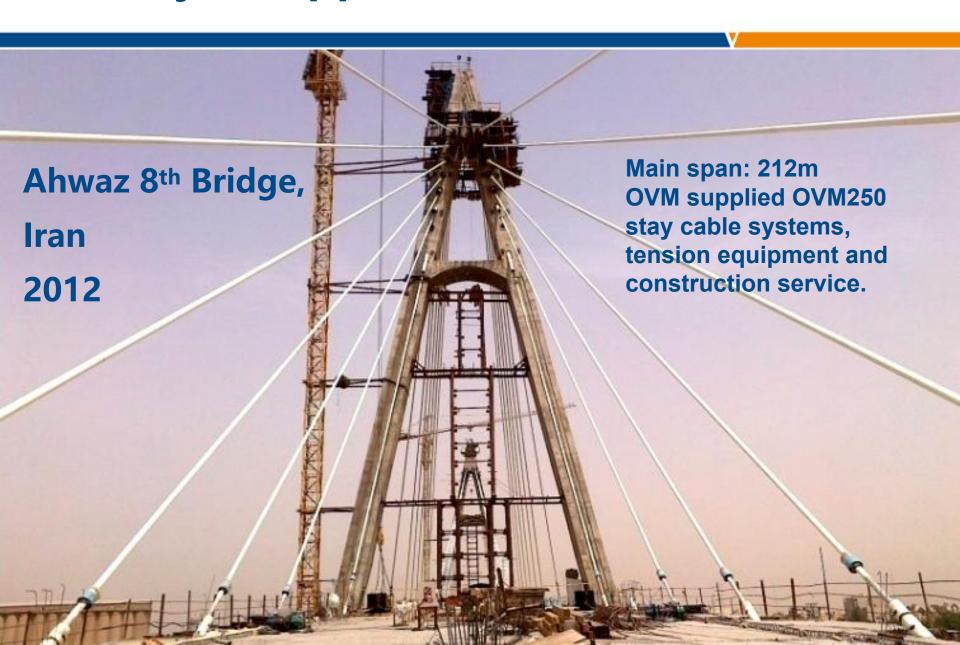
Shantou Queshi Bridge 1999

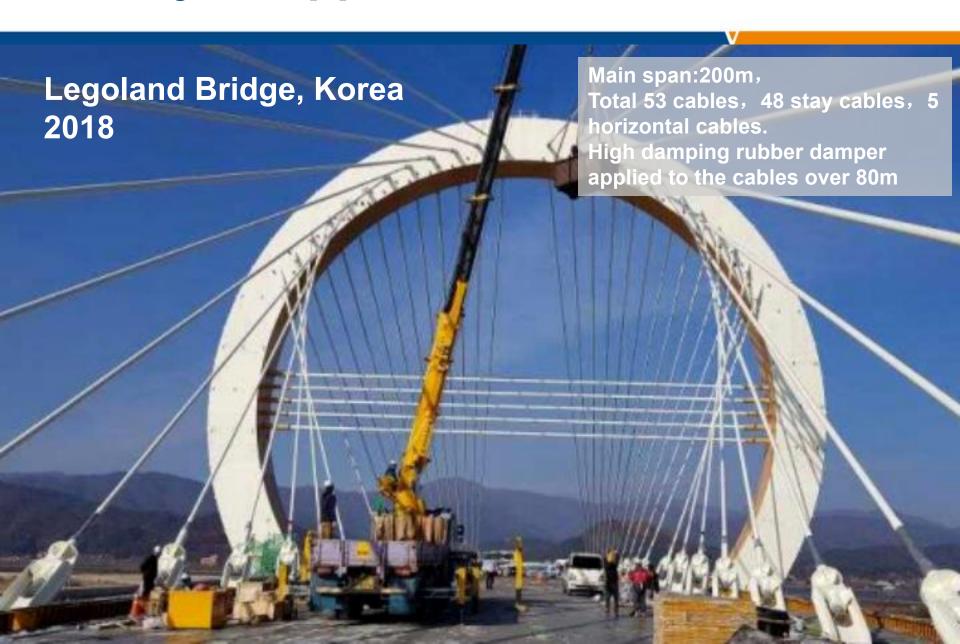

Main span 518m, total 160 cables. OVM provided OVM250 strand stay cable system and undertook the cable installation.

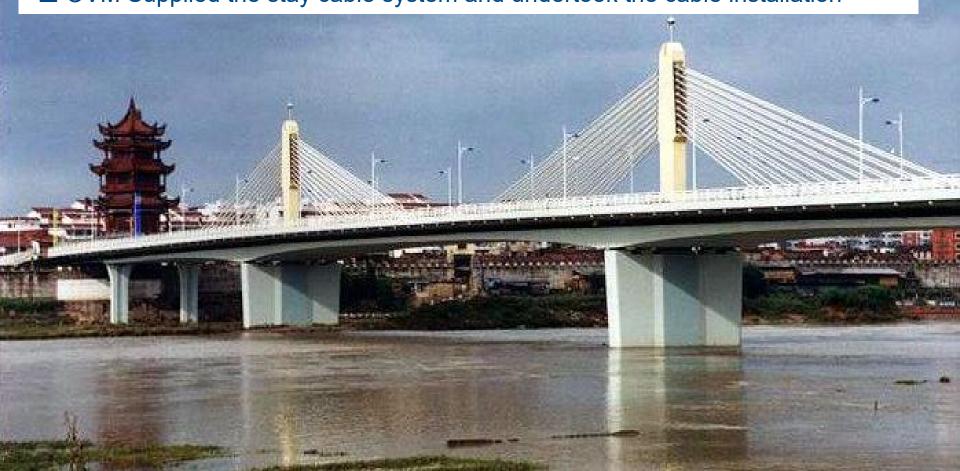


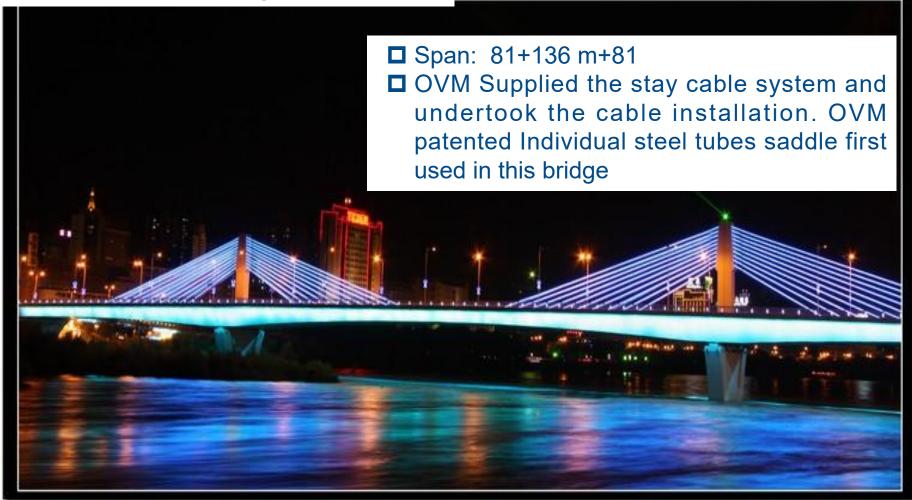











ZHANGZHOU WAR PREPARATION BRIDGE, CHINA, 2001

- ☐ First extra-dosed bridge of China
- □ Span: 81+132+81m
- □ OVM Supplied the stay cable system and undertook the cable installation

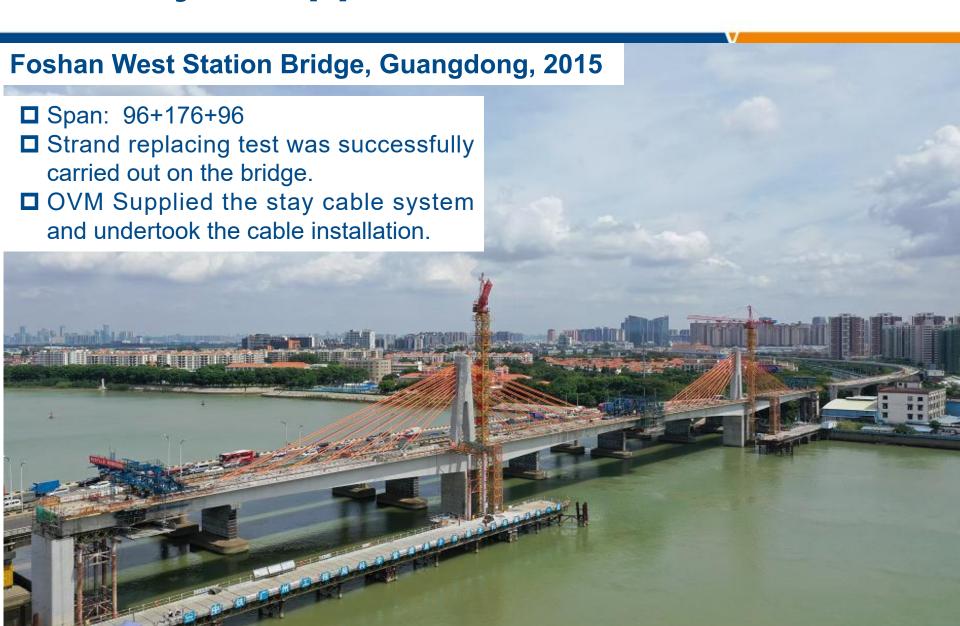
Lanzhou Xiaoxihu Bridge, Gansu, 2003

Chaoyang Bridge, Jiangxi, Nanchang, 2015

- □ Span: 79+5x150+79
- □ OVMAT-99 stay cable is the biggest cable has ever been used in China.
- OVM Supplied the stay cable system and undertook the cable installation.

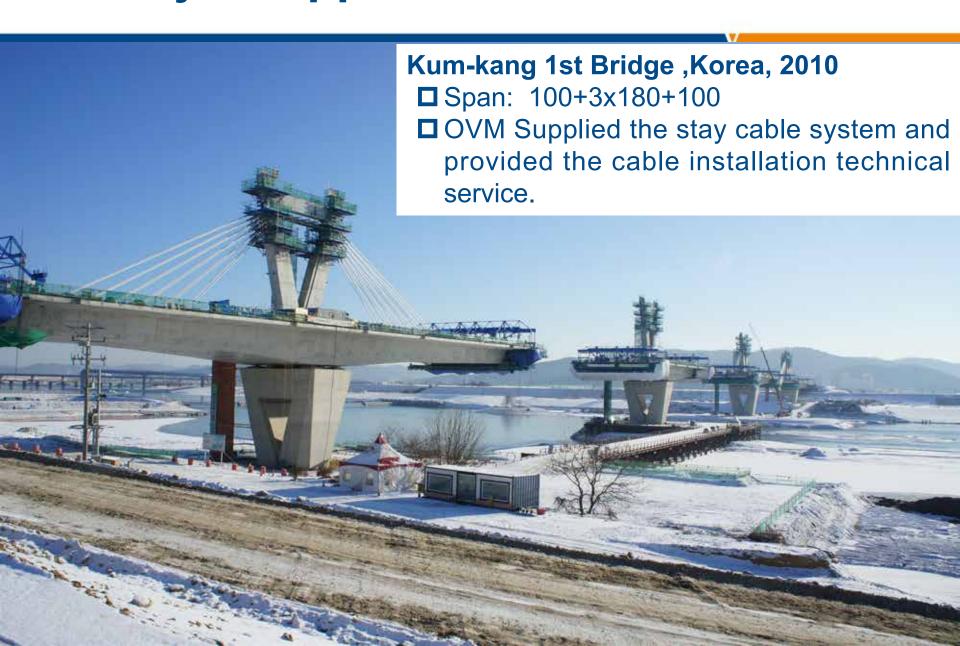
Gandel Yellow River Bridge, Inner Mongolia, 2017

- ☐ Span: 80+5x120+80
- ☐ The first suspended cantilevered large-armed winged extra-dosed bridge in China.
- OVM Supplied the stay cable system and undertook the cable installation.



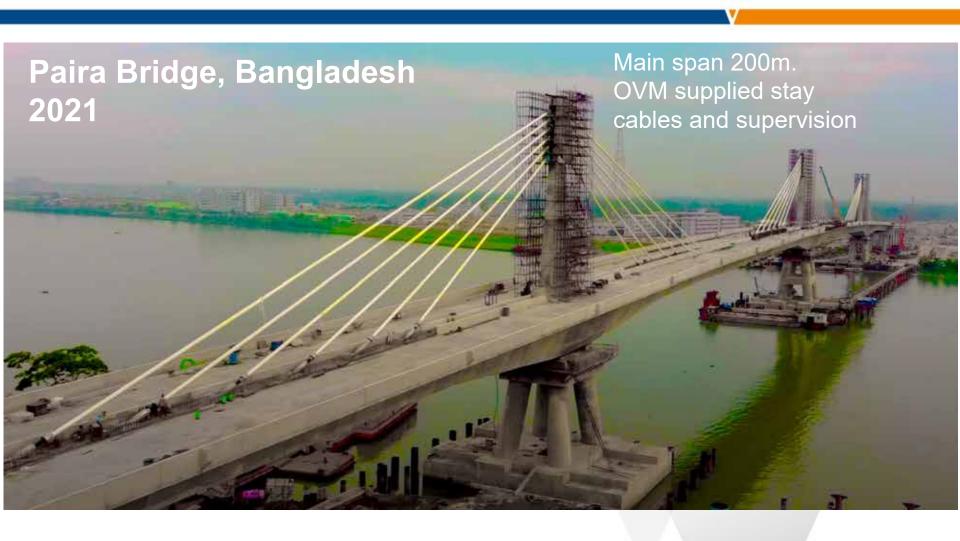
TAIWAN XIAO BANTIAN BRIDGE, CHINA, 2013

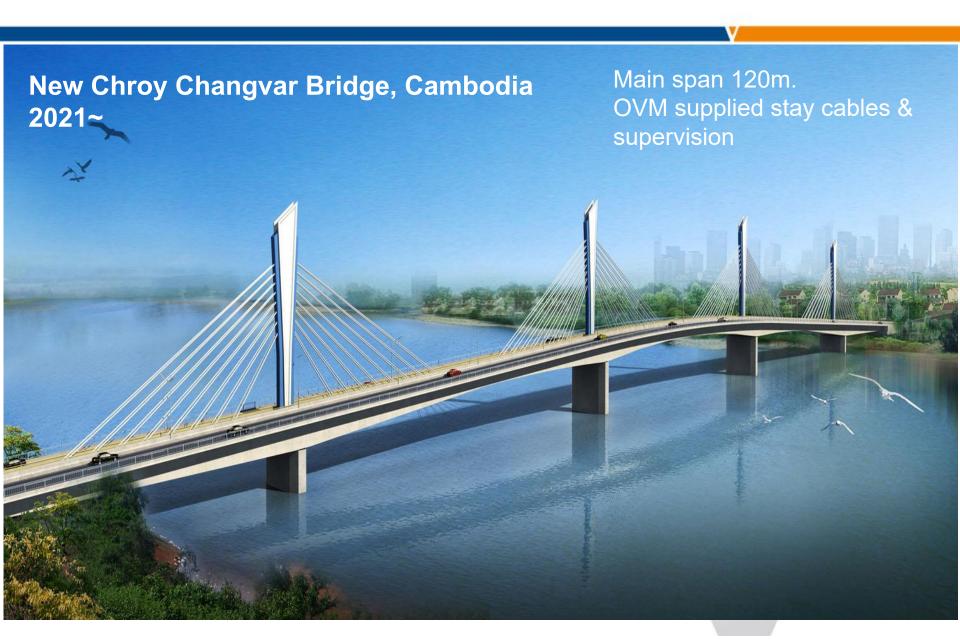
- □ Span: 90+180+90
- ☐ The replaceable one-side two-way anti-slipping device first applied to this bridge
- □ OVM Supplied the stay cable system and provided the cable installation technical service.



Wangjiahe Grand Bridge, Shaanxi, 2021

- ☐ Span: 125m+4x230m+125m, tallest pier 188.5m
- □ OVM250AT-43/55
- □ OVM supplied 150 sets stay cable system and undertook the cable installation.





The statistics of the cable stayed bridges with the main span more than 500m that OVM250 multi-strand stay cable system were / are to be used.

No.	Project	Main span	World ranking	Cable size	Finishing time
1	Wuhu second Bridge, Anhui	806m	2	OVM250-22~43	2017
2	Yachihe Bridge, Guizhou	800m	4	OVM250-43~85	2016
3	Beipanjiang Bridge, Guizhou	720m	6	OVM250-22~43	2016
4	Tongling Yangtze River Bridge	630m	10	OVM250-61~127	2015
5	Liupanhe Bridge, Guizhou	580m		OVM250-27~73	2017
6	Nanxi Yangtze River Bridge	572m		OVM250-43~85	在建
7	Yumenkou Yellow River Bridge	565m		OVM250-37~91	在建
8	Shanghai Lupu Bridge	550m		OVM250-7~55	2002
9	Shantou Queshi Bridge	518m		OVM250-19~43	2000
10	Anqing Yangtze River Bridge	510m		OVM250-22~55	2004
11	Hongshuihe Bridge, Guizhou	508m		OVM250-27~73	2017

01 Development Path

02 Project Application

03 OVM Capacities

04 System Introduction

R&D Capabilities

Academician Workstation

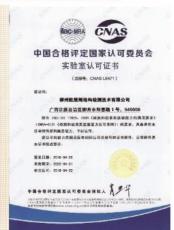
Technology Innovation Platform

Postdoctoral Research Station

Nationally Recognized Technology Center

Tongji University - OVM Prestressing Research Center

Dongnan University - OVM Prestressing Research Center


R&D Capabilities

Test center

• OVM test center has CMA and CNAS certified Qualification. We have more than 400 sets of various equipments and can carry out impartial testing services. It is the most professional and most complete laboratory in prestressing field of China.

Production capacity

Four production bases of OVM

The company occupies a total area of 461,254m², Production area of 198,000m²

Quality Assurance System

ISO9000 Quality Certificate

Environmental management System Certificate

BSI Quality Certificate

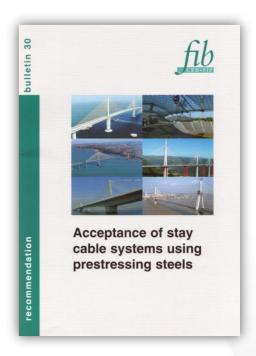
CNAS Laboratory Certificate

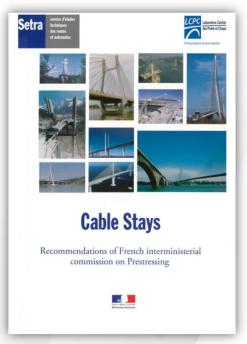
Occupational Health management
System Certificate

01 Development Path

02 Project Application

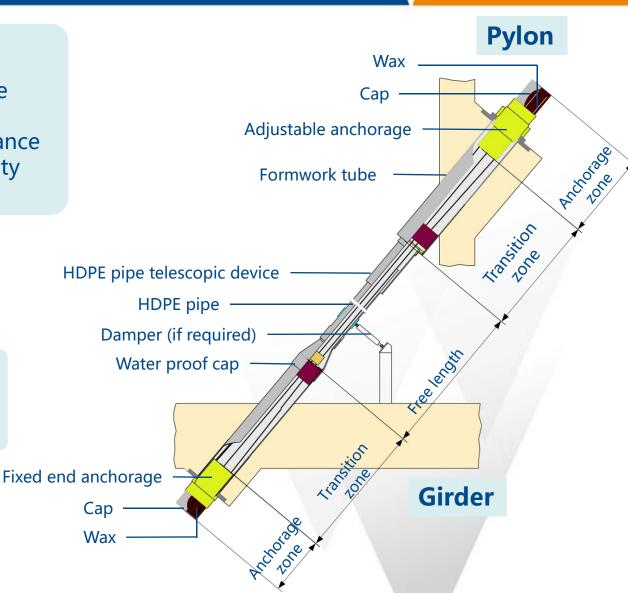
03 OVM Capacities


04 System Introduction



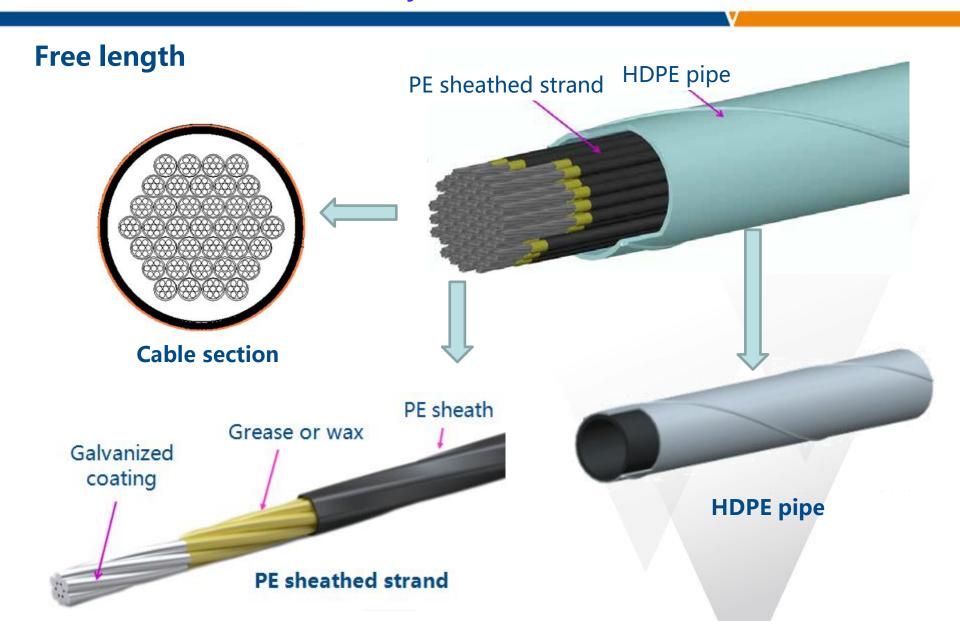
Design basis of OVM250 stay cable system

PTI fib CIP

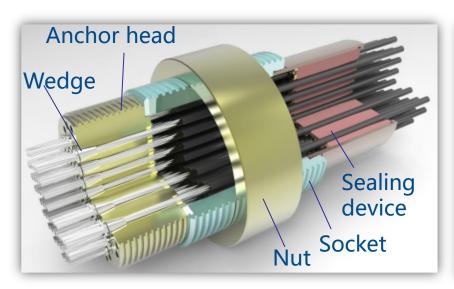


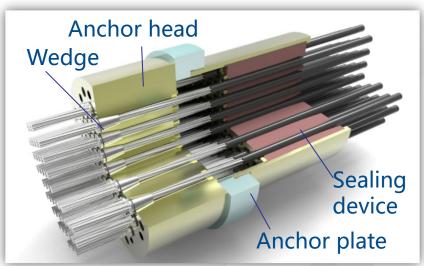
4.1 OVM250 Multi-Strand Cable System

Characteristics


- Excellent static and fatigue performance
- Excellent sealing performance
- Reliable corrosion durability
- Good wind resistance
- Anchorage zone:
 Anchorage, cap,
 corrosion material
- Transition zone:

 damper, waterproof cap,
 PE pipe telescopic device
- Free length:
 PE-sheathed strands,
 HDPE pipe

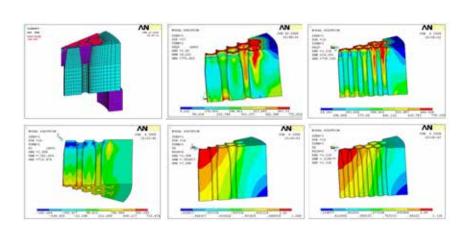

4.1 OVM250 Multi-Strand Cable System



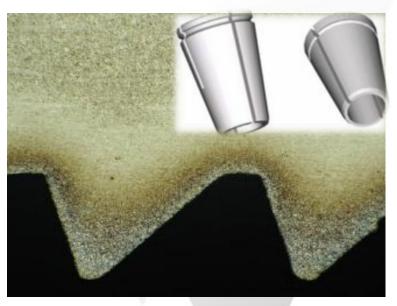
OVM250 multi-strand cable anchorage

Adjustable anchorage

Fixed-end anchorage



4.1 OVM250 Multi-Strand Cable System


(1) Static and fatigue performance

The following measures ensure the high performance of anchorage

- Anchorage designed by reliability method and finite element analysis.
- Carburization applied to ensure the requirement for wedge of both hardness of teeth and toughness inside.
- The wedge can resist 300MPa stress amplitude at upper stress of 45% ultimate strength for 2 million cycles.

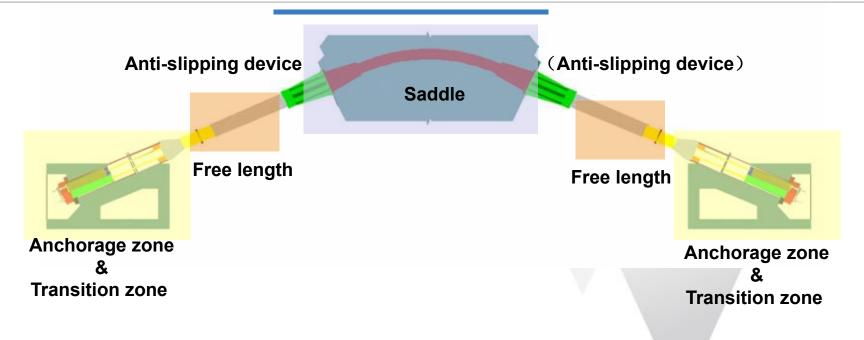
Finite element analysis

Carburized layer of the wedge teeth

4.1 OVMAT Multi-Strand Cable System

Structure of OVMAT Stay Cable system

Anchorage zone: anchorage, cap, anti-corrosion material


Transition Zone:

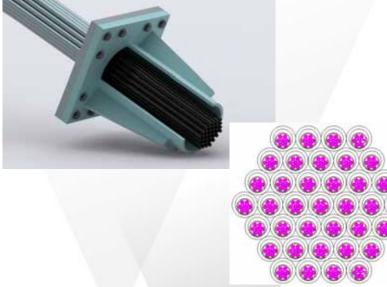
at girder end: waterproof cap, damper (or deviator), collar, etc.

at pylon end: anti-slipping device, telescopic device for HDPE pipe

Free length: HDPE pipe, PE sheathed strand (galvanized and waxed)

Saddle: individual steel tube saddle

4.1 OVMAT Multi-Strand Cable System


One-sided two-way anti-slipping device

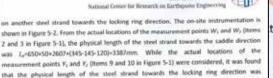
Advantages

- 1. Good static and fatigue performance
- 2. Safe and reliable anti-slipping
- 3. Achieving anti-slipping during construction
- 4. Strand can be replaced individually
- 5. Easy installation

Cross section of saddle

4.1 OVMAT Multi-Strand Cable System

Invention patent of one-sided and two-way anti-slipping device: China, international PCT, Colombia, India, Korea and Indonesia


4.1 OVMAT Multi-Strand Cable System

國家地震工程研究中心 NATIONAL CENTER FOR RESEACRCH ON EARTHQUAKE ENGINEERING

Slip Resistance Tests of an Anti-slipping Device in OVM's **Cable System for Extradosed Bridge**

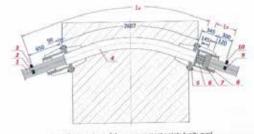


Figure 5-1 Locations of the measurement points (unit: mm)

(=120+300=420mm

Figure 5-2 On-site photos of the instrumentation

p-principalities pic secure, necessar, 2400 km, 2600 km, 4650. SANCES. CARLETONICS. UTWEENAGES. ON WER, DUMANIAL PRINCIPLE PRINCIPLE.

5.2 试验资期度各部分

武汉市三官汉江公路大桥

主塔节段模型试验

ERGALVESTABERSATUR GROW, WANTE

MIN REPRESENT

ARREST AND THE PROPERTY AND THE PARTY AND TH 要用、可保与水产生理样、这种抗溶液实现使力有最大500mm 症状次化。1 号 2 号器

(3) MNAN 设计存载下有批评逻辑或效值载论是。

①有抗溶物新点 1878AN 设计设计或数下产生 140%AN的预防分下 1 号机经经搬送台 每度在前覆为2.00mm。用设计算在每度化自复为1.05mm。2.号据效性测试包接变化为 Januari、理论计算应移文化为1.00mm。 硫铝抗增键点 形线电池设计或有了提供 Henrick 民津力时的位都安化是大为 Linknam。专定制率恢复自私着提供货由多个组构资金。但 五至介存在一定公司。由广生多个组构员加的物类型。该可以清键未广生排移、处理 机冷装度使力有能大中的mos 衍移变化、前乘后被剪引58kN 使计信仰性、1号2号数点 的信息基本可以教育的政策包

位正代排除例 ;与明初经期这代据变化为 6.2km/m。 2 与保险规则这只得变化为 0.33mm,克利亚市智在 35%N 投计直接可靠值 140%N 机激力考虑到多个结构的意思 爱用,可提为采产支债权,武振状市监狱未受力工位核发化。

(6) 热增试验给观查期, 在核型素等的 A. 具具分别连接加载水平载力时。根板效 广告的农籍成功与政府发展的势,且农县保助市政党层外之间。校都董事等小、农工故 而做的 A 拥有有抗溶黄鱼 综合组加裁判 Jeous N 批對力制、抗溶破率产生的解散量,获 用望说装置的被人放弃要失化为 e.Diemon。后在文化是非常小。将我而知载形 Ji Yokn 说 计磁旁,后分表数恢复的最高的。未出现代明力失败的现象,知道武汉《官汉代史明大 校期试费品车架双向到海锁回整置在 1.4 使设计等级存用 5 框框或定设订到得更多 1 征 试验条款 1260kNO,具有可靠路线磨棒性。实际的实时,需在力抗度力运 1400kN,压区 馬丁溫設計數處。產分後所該學數在的批別雖同報案內的此時雙州到於藉的經過作用最

(1) Static and fatigue performance

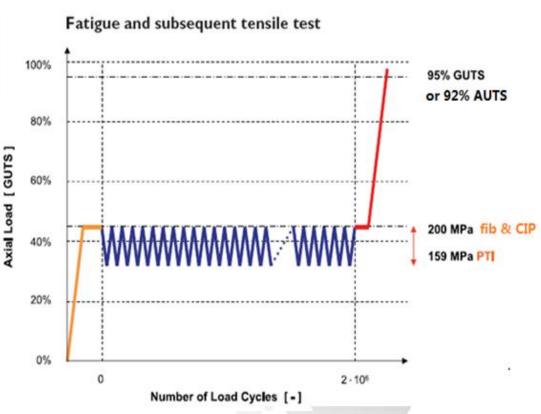
OVM250 anchorage conforms to the latest Criteria PTI, fib and CIP

Static	η	3
performance	≥95%	€apu≥2%

Fatigue performance:

Upper load: 45%GUTS

Stress amplitude: 200MPa.


Cycles: 2 million

Wire breaking: ≤ 2%

Static test after fatigue

Max force:

Lager one: 95% GUTS, 92% AUTS

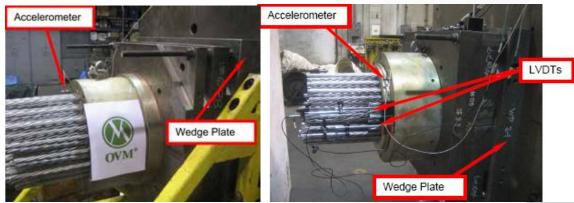
4.2 Key Technology

Anchorage size	OVM250-55	Upper load	0.45f guтs
Laboratory	CTL(USA)	Stress amplitude	200MPa
Referring Criteria	CIP	Angular deviation	10mrad(0.6°)



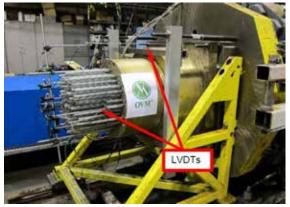
4.2 Key Technology

Anchorage size	OVM250-73	Upper load	0.45f guтs
Laboratory	CTL(USA)	Stress amplitude	200MPa
Referring Criteria	fib bulletin 30	Angular deviation	10mrad(0.6°)



4.2 Key Technology

Anchorage size	OVM250-109	Upper load	0.45f guтs
Laboratory	CTL(USA)	Stress amplitude	200MPa
Referring Criteria	fib bulletin 30	Angular deviation	10mrad(0.6°)

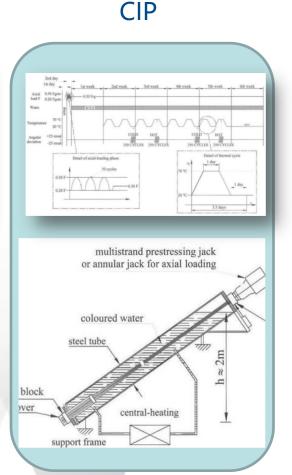


4.2 Key Technology

Anchorage size	OVM250-139	Upper load	0.45f guтs
Laboratory	CTL(USA)	Stress amplitude	250MPa
Referring Criteria	fib bulletin 30	Angular deviation	10mrad(0.6°)

4.2 Key Technology

S/N	TYPE	LAB	CRITERIA	UPPER STRESS	STRESS RANGE MPA	YEAR
1	OVM250-31	EMPA	PTI	0.45GUTS	159	2006
2	OVM250-31	CTL/USA	PTI	0.45GUTS	159	2006
3	OVM250-42	EMPA	PTI	0.45GUTS	159	2007
4	OVM250-55	CTL/USA	CIP	0.45GUTS	200	2009
5	OVM250-43	CTL/USA	PTI	0.55GUTS	140	2010
6	OVM250-55	CTL/USA	PTI	0.45GUTS	159	2010
7	OVM250-37	CTL/USA	fib	0.45GUTS	200	2011
8	OVM250-109	CTL/USA	fib	0.45GUTS	200	2011
9	OVM250-27	CTL/USA	PTI	0.55GUTS	140	2011
10	OVM250-27	CHEQIC/CHINA	PTI	0.45GUTS	200	2011
11	OVM250-19	CTL/USA	PTI	0.55GUTS	140	2012
12	OVM250-79	CTL/USA	PTI	0.45GUTS	159	2013
13	OVM250-43	CTL/USA	PTI	0.55GUTS	140	2013
14	OVM250-139	CTL/USA	fib	0.45GUTS	200	2013
15	OVM250-37	CSSRC/CHINA	PTI	0.45GUTS	159	2016
16	OVMAT-55	CTL/USA	PTI	0.45GUTS	159	2016
17	OVMAT-55	CTL/USA	PTI	0.55GUTS	140	2016
18	OVM250-37	CSSRC/CHINA	PTI	0.45GUTS	159	2017
19	OVMAT-73	CTL/USA	PTI	0.55GUTS	140	2017
20	OVM250-73	CTL/USA	fib	0.45GUTS	200	2017
21	OVM250-37	CSSRC/CHINA	CIP	0.45GUTS	200	2018
22	OVM250-55	CTL/USA	CIP	0.45GUTS	200	2018
23	OVM250-61	CTL/USA	CIP	0.45GUTS	200	2018
24	OVM250-15	CSSRC/CHINA	PTI	0.45GUTS	200	2018
25	OVM250-55	CTL/USA	PTI	0.55GUTS	140	2018
26	OVM250-22	CSSRC/CHINA	PTI	0.45GUTS	200	2019
27	OVM250-55	CTL/USA	PTI	0.45GUTS	200	2019
28	OVM250-55	CSSRC/CHINA	fib	0.45GUTS	280	2019
29	OVM250-55	CSSRC/CHINA, CTL/USA	PTI	0.45GUTS	200	2021

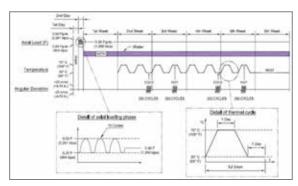

4.2 Key Technology

(2) Water-tightness performance

PTI **Test** Sank 96 hours method after fatigue test the actual level of water(3200) steel tube Red-dyed water **Test** 3200 the anchorage after fatague test setup

fib LOAD HISTORY FOR ANYA, LOADING MONTH BLOCK ON SLIDING PLATE OVEO-WATER STEEL TUBE WITH GLIDE DEVIATOR A SEALING AND-YOR BLOCK ALTERNATIVE WITHOUT QUIDE DEVIATOR

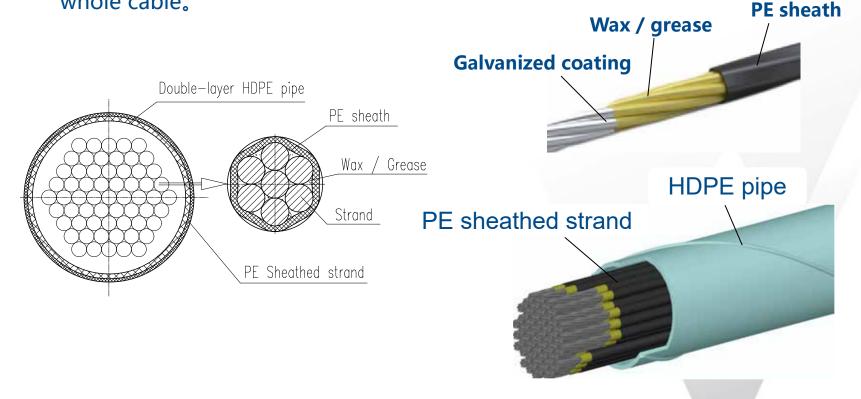
4.2 Key Technology



(2) Water-tightness performance

Water-tightness test:

OVM250-37 anchorage, according to CIP, the height of water of 3m. OBM250-55 anchorage, according to fib bulletin 30, the height of water of 3m



(3) Corrosion protection

Multi-layer protection system

OVM250 strand cable system has four layers corrosion protection, galvanized coating, wax and PE sheath of individual strand, and the HDPE pipe for the whole cable.

4.2 Key Technology

(3) Corrosion protection

Corrosion for anchorage

The surface of anchorage parts are treated with thermal spraying of zinc coating, and the internal of the anchorage is injected with the same wax used for the strands.

The strand terminations out of the anchorage are to be entirely covered by a cap. The cap is removable for inspection of the strand terminations.


4.2 Key Technology

(3) Corrosion protection

Sealing at joints

The HDPE pipe connector covers to the waterproof cap and the waterproof cap covers to the formwork tube with a lapping length, which can ensure the water can not enter the cable.

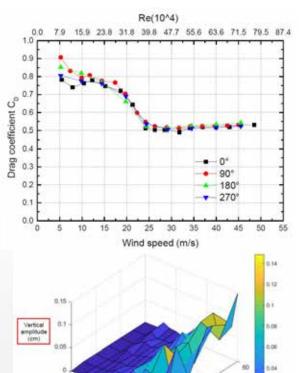
(4) Vibration controlling

Aerodynamic measures, structural measures and mechanical measures are mainly used to restrain the vibration caused by wind and rain excitation. In order to effectively control the vibration of the cable, the international regulations put forward the following requirements for the vibration control of the cable:

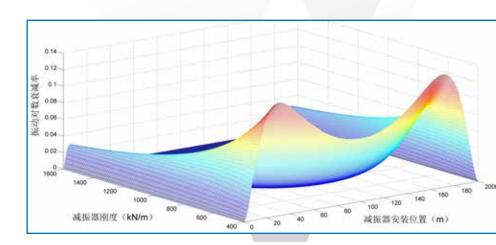
Criteria	Drag coefficient	Logarithmic decay rate	Amplitude	Lifetime
PTI	$C_D = 0.6 \sim 0.8$ Recommend: $C_D = 0.7$ (clause 5.1.5)	$S_c = \frac{m\delta}{2\pi\rho D^2} \geqslant 5$		
CIP	In subcritical range: $C_D = 1.2$ In Supercritical range: $C_D = 0.5 \sim 0.6$ Recommend: $C_D = 0.7$ (clause 4.1.1)	δ≥3%	Not exceed 10mm at wind speed of 15m/s (Clause 4.4).	15 yeas
fib		δ=3~4%	±L/1700 at the first and second order (Clause 3.6)	25 years (Clause 4.5.2)

4.2 Key Technology

(4) Vibration controlling


The wind load performance of the cable is deeply studied through wind tunnel test, and the surface shape of the cable is optimized. The reasonable spiral design makes the drag coefficient of the cable meet the requirement of CD≤0.6.

b) Inclination angle o=25 " and yow angle B=35 "



(4) Vibration controlling

The installation of the damper is one of the most effective measures to control the vibration of the cable. The commonly used dampers are listed here after.

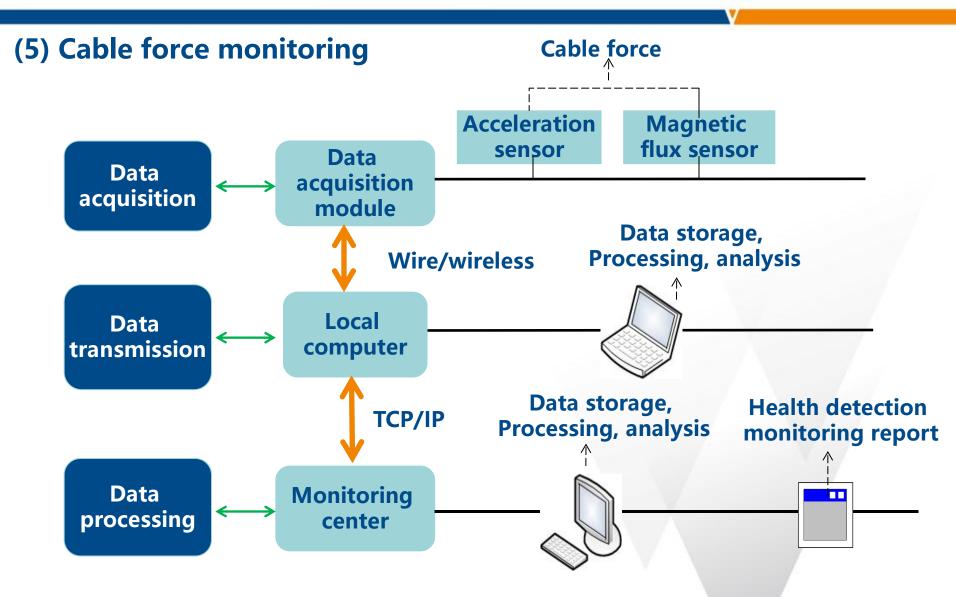
Rubber damper (Deviator)	Viscous damper	MR damper	High damping rubber damper (shear type)	Viscous damper (shear type)	Friction damper

OVM has carried out a comprehensive study on the cable vibration controlling and designed cable vibration damping products that meet the requirements of international regulations.

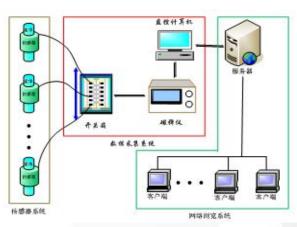
4.2 Key Technology

(4) Vibration controlling

OVM viscous type, MR type and shearing high damping rubber type and other cable dampers have good vibration-reducing performance through test and verification, and meet the vibration-reduction requirements of domestic and foreign engineering projects.



4.2 Key Technology

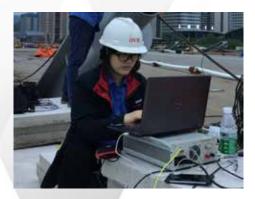

4.2 Key Technology

(5) Cable force monitoring

The magnetic flux sensor measures the cable force by utilizing the principle of magnetoelastic effect of ferromagnetic materials. The stress (or cable force) is to be measured through measuring the magnetic permeability changes correspond to the impulse voltage applied to the sensor.

4.2 Key Technology

(5) Cable force monitoring


Acceleration sensor: By collecting the vibration frequency under different cable forces, the curve relationship between the cable force and the vibration frequency is obtained; The cable force value can be calculated by measuring the vibration frequency of the cable.

4.2 Key Technology

(6) Fire Protection

The terrorist activities and accidental fires and explosions frequently cause serious threats to the bridge structure. Permanent damage to the bridges and even bridge collapses can result in casualties, affecting traffic quality and causing huge economic losses.

In order to ensure the safety of the cable, the international regualtions put forward the requirements for fire, blast & vandalism protection

PTI	4.5 Fire resistance qualification testing The rating shall be stated as a time of protection of the stay cable specimen from an external source of 1100°C. The proposed fire resistant stay cable specimen must demonstrate fire endurance of 30 minutes or greater, as determined by the time required to reach a temperature of 300°C. The cable shall be tensioned to 0.45Muts at a temperature of 300°C and held for no less than 30 minutes. The load test phase is acceptable if the cable is able to resist the applied load for 30 minutes without slip or failure of anchorage components.
fib	3.1.2 Fire, impact, vandalism 4.4.5 Anti-vandalism pipes
CIP	3.1.4 Fire near cable stays

4.2 Key Technology

(6) Fire Protection

- ➤ OVM successfully developed the fire test equipment of 1100 °C and the anchorage performance test equipment under 300 °C.
- Fire endurance test with 1100 °C in 90 minutes and anchorage performance test at 0.45MUTS with 300 °C for 30 minutes were witnessed by the third party.

Anchorage performance test at 0.45MUTS under 300 °C

Fire endurance test with 300 °C

4.2 Key Technology

(7) QA&QC

2-1010g - 20010100 A	ITP for Fabrication of	Doc. No.	Rambungan-ITP=2020-11
OVM欧维姆	OVM250AT Stay Cable	REV.	C.
		PAGE	1/22

Inspection and Test Plan Submission

Part A: Liuzhou OVM Machinery Co., Ltd.

(as Supplier, hereafter call or state as "OVM")

Add:No.1, Yanghui Road, Liuzhou, Guangxi, 545006, P.R.China

Email: sales@ovm.cn Website: http://www.ovm.cn

Tel: +86 772 3116402 Fax: +86 772 3118665

The following document is hereof submitted to the ENGINEER for review in according with the Requirements in the Contract.

Sub: Inspection and Test Plan for Fabrication of OVM250AT Stay Cable of Batang - Rambungan Bridge, Malaysia

Our Version Control

REV.	VERSION DESCRIPTION	PREPARED BY	CONTROLLED	APPROVED BY	APPROVED DATE
А	First issued				
В	Sencond issued				
¢	Third issued				
c	Third issued				
Т					

	W	m	原存存性性的	
_	v		欧维姆	

Table 2: ITP for PE sheathed strand

Act No	Applicable Category Standardor Document		Standarder	Characteristics and acceptance collects	lest method	frequency	Documentation		
				Density at 23 Coo.54 g/on3	00 1183	307	MC and/or previous		
			Part Control	Melt flow index of 5kg at 190℃<0.15g/10min	150 1133	1	report		
			Batang - Bambombin Specification, UX NA to 85 EN 1993-3-11, clause NA.2.34 and Table NA.1. and NA.2.	Tensile strength at yield point at 23℃>1965a Eongation at break at 23℃≥500%	190 527-2	3 tests every 10 tons. Test report		3 tests every 10 tons.	Test report
		(PE sheath)		Ultraviolet radiation stability(of external layer)+ condition E	ASDM D 3350	*	MC and/or previous report		
99	Raw	PE100		Carbon-black content: 2.3±0.3% by weight	150 6964				
20	material			Certon-black dispersion index: <3	i50 4437				
				Carbon-black dispersion lever:≪C2	190 4437				
				oxidative induction time at 20017->20m in	ASOM 0 3350				
		Galvenized	NF A 35-035 , fib	Nominal diameter:15.7(-0.2/+0.4)mm	OVM drawing & Earthungen	21 test every 20 tons.	MC and/or Self report		

OVM欧维姆

Inspection and Test Plan for Fabrication of	Doc. NO.	Rambungan-ITP-2020-11
OVM250AT Stay Cable	REV.	C
OVM20041 Stay Gable	PAGE	21/22

able 4: ITP for Performance Test on assembled cable

Mo	Category	Applicable Standard or Document	Characteristics and acceptance criteria	Test method	frequency	Documentation
1	Fatigue and tensile tests for (DVM15.7-55)	PTI.2002	F11,3013	PTI,2012	Iunit	Prior test report
	fatigue and tensile tests for (OVM15.7-73)	fib Bulletin 30, 2005	fib Bulletin 30, 2005	fib Bulletin 30, 2005	Iunit	Prior test report
2	Water-tightness test (OVM15.7-37)	CIP 2002 , fib Builletin 30, 2005	CIP 2002	CIP 2002	Turk	Prior test report
	Slip Resistance and Strand Replacement Tests (OVM15.7-43)	16 Bulletin 30, 2005	50 Sulletin 30, 2005	fib Bulletin 30, 2005	Tunit	Prior test report
á	High Temperature Heat insulation Test for OVM Stay Cable System (OVM15.7-73)	PTI 0C45.3-18	60 minutes at a temperature of 1300°C, does not exceed 300°C	PTI DC45.1-18	tone	Prior fast report
	High Temperature (300°C) Load Test (OVM15.7-79)	PTI 0C45.3-38	0.45 MUTS at a temperature of 300 degrees C and held for no less than 30 minutes	PTI DC45.3-18	Tunt	Prior test report
	Wind tunnel testing on stay pipe (Cable wind load performance test and Wind-rain	JTGT 3360-01-2018 Wind-resistant Design	,	i i	1 test	Prior test report

OVM

3-2-4

3-2-5

3-3

3-3-1

3-3-2

4.2 Key Technology

(7) QA&QC

QA Document, OVM

Mile Highly (1983) 200700-6-Auchonge 1" Ref

QUALITY CERTIFICATE 质量保证书

Client 客产名称: The Arab Contractors "Osman Ahmed Osman & Co."

Order No./订单号: 01-0W-A.C.-2016

Project/語音名称: NOD EL FARM Project-Egypt

Address, No.) Narighal Road, Yang He Rea Subuktal Arm, Litahina, Guargas, F. S. Clara. Postcode: S45008 Tel: +06-772 SECURE Fac: 772-SECRET Small parameters, parameter (mg/mess com.cn/mg//mess.com/main/

	Catalog 目录	
No. 序唱	Content 内容	Page (N)
1	Certificate of Compliance 2.1 医服药合性声眼 2.1	1
(wedge)	OVM250VSD wedge Inspection Certificate 3.1 安月检验证书 3.1	2
2-1	Mill Certificate of raw material of wedge 実片顯材料摄图证书	3
3 (55)	OVM250A-55.0 Anchor Inspection Certificate 3.1 OVM250A-55.0 福岡格能证书 3.1	
3-1	OVM250A-SSS-1Adjustable Anchor Inspection Certificate 3.1 OVM250A-SSS-1 多拉螺螺板检验证书 3.1	4
3-1-1	Mill Certificate of raw material 即程料基理证书	5
3-1-2	Hardness Inspection Records 硬度检验记录	6
3-1-3	UT Reports 超声波探伤服务	7
3-1-4	MT Reports 組織保管規則	8
3-1-5	Couting Inspection Records 浓脂检验记录	9
3-2	OVM250A-555-4 Nut Inspection Certificate 3.1 OVM250A-555-4 细母检验证书 3.1	10
3-2-1	Mill Certificate of raw material 原材料质是证书	5
3-2-2	Hardness Inspection Records 硬度检验记录	11
3-2-3	UT Reports 超声波探伤形势	12

QA Document, OVM

OVM250A-555-3 Socket Inspection Certificate 3.1

Mill Certificate of raw material 旋材料质型证书

Hardness Inspection Records 硬度粒粒记錄

MT Reports 組織保管設備

Coating Inspection Records 沈超粒粒记录

OVM250A-555-3 支撑局检验证书 3.1

Tel: +66-772-0110402 Fac: 772-0110665 Small: pubuliforing pp, Website Nttp//www.com.printp://www.com.bina.com

	JV	m	Inspection (0.10	Certifi E 3.1		1		No./Re WM250					1.1 服号 18p. Cert	3.1	1/5-(65)
A40.1	CIN EN 10	104													
Arathur He	ed at sweet	ng mid 1912 time	MH. Speci	Suppliery?	10.0	VN250	1961								
		I-(WM-A, C, - t散: 24 pc					Proj	ici (II.II)	site Ro	D III. I	niakac i	Praject	Sayot		
Manufact fr 76	Material N.S.	Charge No. 8191/019	Element (8,31/%)	0	ä	Mt	i je	i	N.	٥	De	Sec serup sisting (SPs)	Uman eregn BEFEX (LPVL)	Broate Policy	Name to \$10
contract	100	70805767	SERVE Specified	537 5.64	6.17 6.17	130	50,000	<0.00	×61.30	6.90 1.10	63.31	2:10	Pitti	24	end Militaria
1000	****		NIE IE	0.40	0.21	0.67	0.012	1.000	0.00	0.82	8.00	7.	- 1	- 1	養証书

Year horn Mills (E.F.	Taylohad Rejultement	技术要求	Tot Res	APPER IN	Persona SI/E
Softer believe to: HERE	211 ~ 504/8#W		Yes(2)	Non	East backers impaction transis \$100.00 (East Sp. C.).
1787888	Secently textel 4 as per Table 4 specified in 研究 CONTRACTORS IN 4 中共重新性 4 ID	\$197 6452-2008	tee©	50 (Nacl UT reports REPRESENTE
MINNE	Quality class 2 specified in Table 7 of One M.E. Nacrythics + 2017 # 9 & # 7 in 11gl		Swer.	Non	Tool NT report STREET STREET
Celraciona 6519	Trickness of soming	30-40 v m	Yes C	Nex	Diel gehenleite begenten ments AMM Hill III (L.M.
Dimmin A.T.	Most the requirement of the drawing 15 th Bill \$1.00			760 11	
Agreement swilly P.B.Z.S.	Most the requirement of the streeting FF III IEEE SC			96 r	

Approval for delivery/後于您证	Yes	No Ci	
Delivery comply with the contract requirements性仓民受求交付	Yes	No. 🗆	
assenting and peckaging meet the design requirement 组进标位银行的设计更成	Yes/25	No.D	
3 1.50			

PR0.

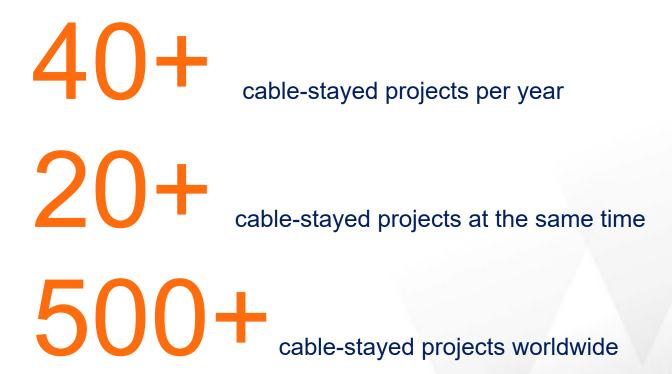
13

14

	MILL	CERTIFICAT	E
YOMER LOVIK ENTERNATIONAL LTD.			L/C No. 1
JECT NOVE : 800 ELFORING PROJECT-EGYP	Ti.		MC No.:171568
			CLASSES SHOW NOW AND

COMMUNITY : PE SHEATHED GALVANIZED STREAM GRADE - (PEJ-X-15, 7-1860) SPECIFICATION :NF ANS-SUB-TR ANS-SOT

QUANTITY : 159 COSLS									:382,630	H.	PAGE: 4			
	foat No.	Coll No.	No.	Weight	Dia		WAX DOAT	Pitch ries	Maximal Lood	0.1% Proof Load	Elongation	Elastici		
Standard Value				10	16.50 16.10 mm	1.6 2.0 mm	10 30 g/m	220 251 mn	2 279,0 kN	2 240.0 AN	3.5	185 205 GPa		
T0 16	01157)	160102-00791	POPER-SONS	3161	18.79	1,47	77	ZH	>251,0	287,7	14.5	196		
71, 10	041573	107502-03790	14,0700-04170	107	35.79	1:00	21	230	≥ 281. II	205(3	7.4.1	190		
72.16	OCOTT.	187912-23790.	163707-04163	- 2373	15,79	1:46	29	211	> 286.5	239, 8	PAS	- 198		
73.36	DHISTL	187502-02794	16,7703-04,003	3902	35,79	1.00	34	137	> 294.1	269,1	24.1	100		
74.34	31(57)	161502-03795	183795-04191	2078	15,70	1.61	29	221	283.1	203, 2	5.1	199		
71 14	mum)	197302-03796	TELETINI-DELINE	2907	15.60	1.62	71	23)	* 284, 6	260.3	7.4.5	116		
76.16	041271	perseat-context	14,000-64186	1510	15.19	1.61	- 22	132	>287.1	286.4	24.1	310		
TT H	011573	107312-01798	14JF03-94130	2309	15.50	1,00	33	231	≥282.B	286, 1	PAGE	196		
26 36	DESTI.	101302-00798	DUPUS-DURT	1998	15, 60	1.01	23	221	296.9	263,7	17.4	100		
79 30	04(87)	162102-03800	TATES - DETAIL	1808	15.80	1.00	- 29	231	296, 6	263.2	3.8	199		
80 20	minti	167302-03601	16,7703-64167	2004	15.79	3,60	21	230	* 281, E	200.0	100	100		
61 16	275316	intero-cosco	patrox-paint	1828	15.7W	1.67	25	730	>261.6	216.1	×1.1	196		
82 10	041373	167302-03803	16JF03-04194	2744	15.75	1.66	.11	231	283.9	263,5	3.3	196		
83 / 16	1341571	HISS-DWIN	162791-94396	386	15, 75	1.68	21	331	294.1	260.0	3.4	156		
84 30	0.0311	101102-03800	16JF90-94380	STREET	15.75	1.00	- 21	221	291.6	366.3	3.4	194		
55.16	172116	SALES-STROP	34,3703-04103	2148	15.75	1.86	- 25	331	263.7	265.5	5.7	199		
80.10	mintre.	Intring-count	16/900-04/98	3038	15,79	1.48		229	281.5	295.3	3.1	0.198		



4.3 Professional Team with International Experience

4.3 Professional Team with International Experience

4.4 Cable Installation

OVM

1. Brief

Rod El Farag bridge consists of double H-shaped pylons and the distance between two centers of pylons is 300m. Each pylon extends 76m above the deck. Two ski spans are 120m. The stay cables have a semi-fan arrangement and carry the deck four plans. There are totally 160 OVM250 stay cables (OVM250-55, 61, 73, 85, 9) 109, 127) and they are stressed from the top of the pylon.

The cable is blast protected at a vertical height of 3m from the deck and fi protected 8m from the deck.

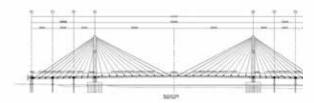


Fig. 1 Side view of Rod El Farag bridge

Rod El Farag bridge can be regarded as an integration of two stay cable bridge which will be called bridge A (left) and bridge B (right) in this document, as shown the following sketch. The stay cables on pylon R2 and R3 will be installed in the sam way, this document is taking pylon R2 as an example.

This method statement of stay cable installation for Rod El Farag bridge is based of the Cable Stayed Bridge Method Statement, which was received in May, 2017, show as appendix. This method statement is about the installation of stay cable.

The following standards or specifications are used as reference documents,

Technical Specification for Construction of Highway Bridge and Culverts (JTG: F50-2011)

Technical Conditions for Unbonded Steel Strand Stav Sable (JT/T 771 2009)

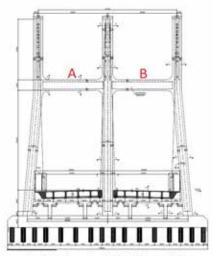


Fig. 2 Section view of Rod El Farag bridge

1. General arrangement

The stay cables will be installed by threading and stressing strands is separately, and the force will be adjusted by <u>multi</u> stressing according Strands will be cut at site, and HDPE pipe will be connected at site by at site too.

It's concrete box girder at side span, the installation of the stay cable out when the post tension tendons are stressed after the concrete res strength. It's steel – concrete composite girder at main span, the installable will be carried out when the steel girder is connected with comp girders by bolts, before or after the installation of concrete slab, which the construction design or construction sequence prepared by bridge

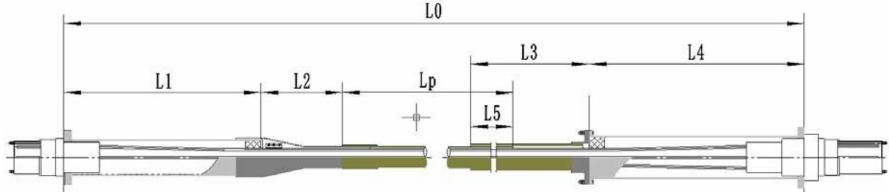
36	Light torch	Nos.	10	
37	Lights	Nos.	30	
38	Shrink brand	М	100	30mm x 2mm
39	Distressing grease	Box	4	
40	Safety belt	Nos.	25	
41	Distinguisher	Nos.	20	
42	Safety net	Set	Some	Base on site

4. Estimated construction period

According to the received construction sequence drawing and technical meeting, at middle span the installation of composite girder contains the lifting of steel girder and the installation of stay cable. Stay cable will be installed after the lifting and connection of steel girder and before the installation of concrete slab. Based on previous construction experiences in many other stay cable bridges, cable force adjusting is mostly needed after the installation of concrete slab. So one erection cycle of a composite girder is estimated to be around 16 days, shown as following table.

No.		Enection		Days.															
				1	2	3	4	5	8	7	8	9	10	11	12	13	14	15	10
1	Composite girder	Prepare the litting machine				31			1				-						
2		lift steel girder and adjust																	
3		make boll connection.																	
4		adjust the position of litting machine																	Г
5		instalt concrete slab																	
6		cast stacting and curing									П								
1		material handling	8																
2		prepare working platform	0																
3	6	cut strands	6																
4	Stay cable	weld HDPE pipe	0.																
5	Dialy Cause	instat anchorages	.0																
6		lift and install HDPE pipe.	20							-									
7		Install and stress strands	20						C										
8		adjust cable force	0																

4.4 Cable Installation


Scaffolding platform

Packing

4.4 Cable Installation

(1) HDPE Pipe Welding

Lp=L0-L1-L2-L3-L4+L5

Where:

L0-Length of stay cable (length between two bearing plates;

L1- Length of formwork tube at deck;

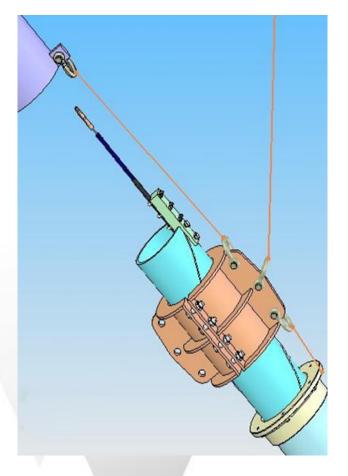
L2-length of water-proof cap (anti-vandalism tube) between formwork tube and HDPE pipe;

L3-Length of telescopic pipe;

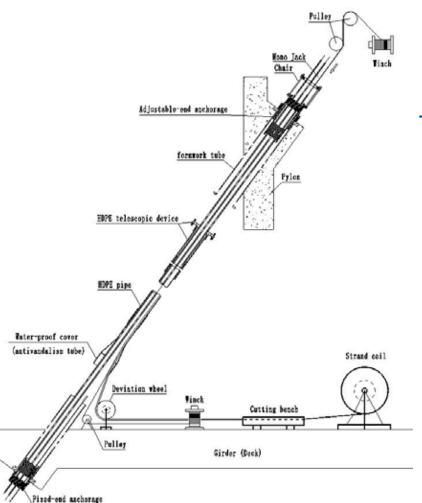
L4-Length of formwork tube at pylon

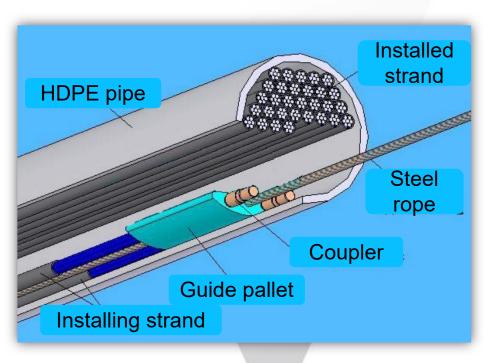
L5-Lapping length of HDPE pipe and telescopic pipe

- Welding temperature
- Endothermic time
- Welding pressure
- Bead height
- Cooling time


4.4 Cable Installation

(2) Lifting of the HDPE pipe

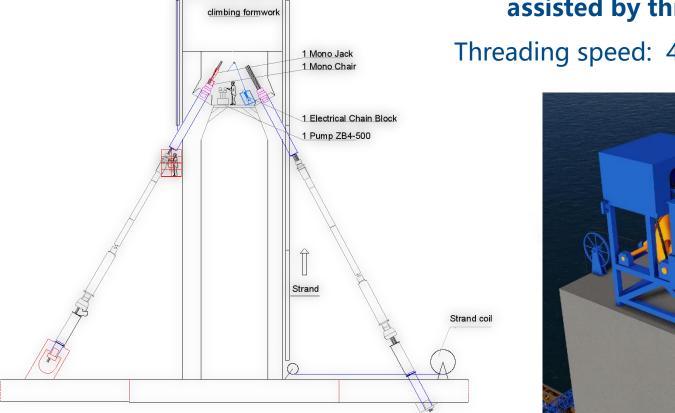


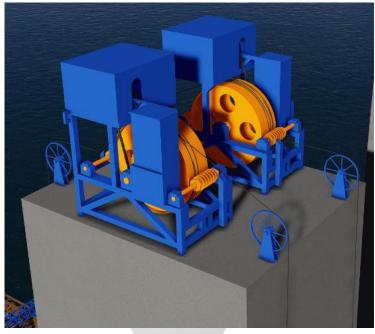


(3) Individual Strand Threading Method

Option 1: Reciprocating traction installation method

Threading speed: average 45 m / min





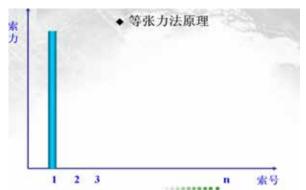
(3) Individual Strand Threading Method

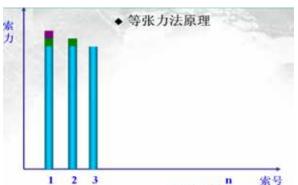
Option 2: Continuous threading method assisted by threading machine

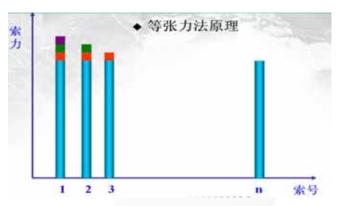
Threading speed: 40~45 m / min

4.4 Cable Installation

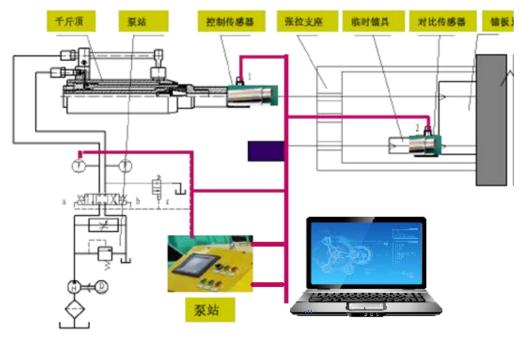
(3) Individual Strand Threading Method




Patented Threading Machine for Extradosed Bridge



(4) Principle of equal tension method



Install the pressure sensor on the first strand of the second row holes at adjustable anchorage and stress the strand to the target force. When the second strand is tensioned to about the target force, the force of the first strand will be reduced due to structural deformation and temperature change, the display value of the sensor will reduce correspondently, adjust the stressing force of the second strand according to the value change of the sensor, while the forces in two strands are the same, anchor the wedge to the conical hole. Install and stress all strands of the cable in this way, the force in all strands will be nearly the same, which can ensure the discrete force error not more than 2.5%.

4.4 Cable Installation

Individual strand tension must be carried out in accordance with the monitoring instructions.

In order to reduce the cumulative errors caused by environment, equipment and human factors during construction process, a dedicated computer-controlled tensioning system including automatic parameter acquisition, processing, analysis, calculation is recommended to use.

The discrete force error of each strand in the cable is not more than 2.5%. It is recommended that a corresponding intelligent cable force detection system is used in the construction process.

4.4 Cable Installation

Wax Injection and Protection

Liuzhou OVM Machinery Co., Ltd.

No.1, Yanghui Road, Yanghe New Industrial Area, Liuzhou, Guangxi, P.R.China

Tel: +86 772 3116402 Fax: +86 772 3118665