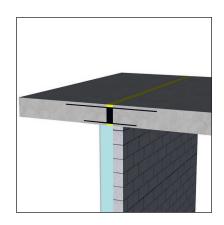
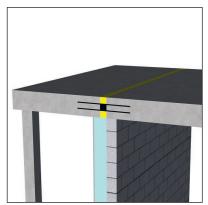
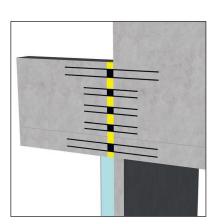
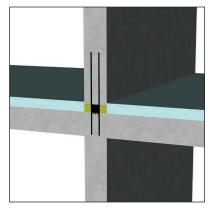
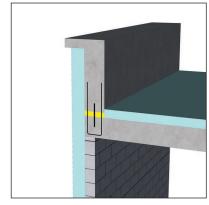
au Systeme

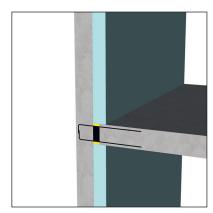

00

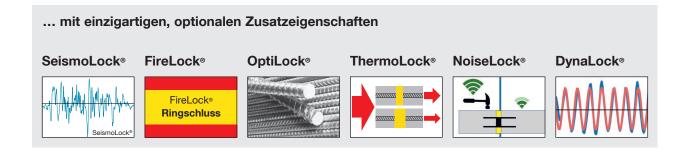

BASYS


Ausgabe 2025 - CH


Wärmedämmende Bauteilanschlüsse


Grundlagen





BASYS AG, Bausysteme Industrie Neuhof 33 3422 Kirchberg www.basys.ch

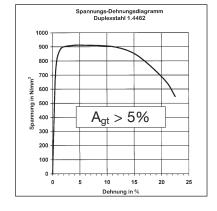
Tel. 034 448 23 23 Fax 034 448 23 20 e-mail: info@basys.ch

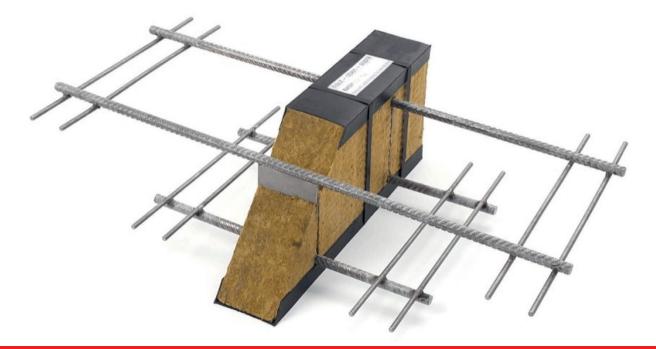
Systemaufbau: Profilträgersystem (PTS)

PTS-Eigenschaften	Konsequenzen für den BASYCON-Anschluss
steif	· kein Knicken im Druckbereich
schlank	· gutes Verhalten bei Einwirkung von Horizontalkräften, z. B. infolge Temperaturdehnungen des Balkons
stabil	· statische IST-Höhe auf der Baustelle = rechnerische SOLL-Höhe
	· Übertragung von positiven und negativen Kräften
symmetrisch	· einbausicher auf der Baustelle (fehlervermeidend)
offen	· verlegefreundlich, problemloses Einbringen der Randarmierung
aus Stahl 1.4462	\cdot exzellente $\Psi\textsc{-Werte}$ der Anschlüsse, ab 0,081 W/mK für K-Typen, ab 0,036 W/mK für Q-Typen
	· hohe Korrosionsbeständigkeit

Materialwahl: hochkorrosionssichere Stahlgüte

Stahl 1.4462 gerippt nach DIN EN 1993-1-4 mit folgenden Eigenschaften:


- · Fliessgrenze $R_{p0.2} > 750 \text{ N/mm}^2$, d. h. hoch belastbar
- Wärmeleitfähigkeit λ = 15 W/mK,
 d. h. 4-mal weniger als Baustahl B500


Deutsche bauaufsichtliche Zulassungs-Zulassungs-Nr. Z 30.3-6

- Bruchdehnung A₁₀ > 10%
 d. h. sehr zähe und duktile Eigenschaften
- Korrosionsklasse IV, Konstruktionstabelle SZS C5/05 resp. KWK 4, gemäss Merkblatt SIA 2029
- · Anwendungsbeispiele: Offshorebereiche, chemische Industrie und Bauindustrie

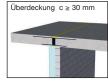
Dämmung aus hartgepresster Steinwolle

- · Wärmeleitfähigkeit λ_D = 0,04 W/mK
- · Klassierung Brand A1: nicht brennbar
- · Rohdichte ca. 150 kg/m³, stabile Isolation

Die nachfolgende Dokumentation enthält Standardtypen. Für spezielle geometrische Formen und statische Anforderungen stehen unsere erfahrenen Ingenieure gerne zur Verfügung.

Inhalt		Seite
Übersicht		4–5
Sortimentswahl		6
Übersicht optiona	ale Zusatzeigenschaften	7
Statisches Model	II	8
Bruchversuche		8
Tragsicherheit P1		8
Baustellensicherh		9
Anwendungsvors	chriften	9
Table 1 leaves	Erdbebensicherheit und Stabilisierung	10
SeismoLock®	Zusatzeigenschaft SeismoLock® SL-LFA und SL-LFB	11
	Brandschutz	12
FireLock® Ringschluss	Zusatzeigenschaft FireLock®	12–13
	Korrosionssicherheit	14
	Zusatzeigenschaft OptiLock®	15
	Wärmebrücken	16–17
	Zusatzeigenschaft ThermoLock®	17
	Schallbrücken	18
<u>→</u>	Zusatzeigenschaft NoiseLock®	19
	Verformungen / Steifigkeiten	20
₩₩	Zusatzeigenschaft DynaLock®	20
Übersicht Dokum	nentationen Heft 1 bis 5	21
Bezeichnungen w	vichtigste Abmessungen	22
Beantragung Son	ndernummern	23
Bestellliste		24


Übersicht


BASYCON

Ausgabe 2025 - CH

Kragplattenanschlüsse

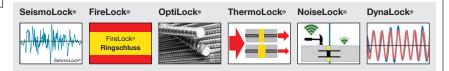
Heft 1

Kragplattenanschlüsse K Normalelemente

Kragplattenanschlüsse K-C30

Überdeckungen erhöht auf ≥ 30 mm: REI90-REI120

Kragplattenanschlüsse K-PMC30

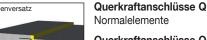

Volle positive und negative Momente, Überdeckungen erhöht auf ≥ 30 mm: REI90 – REI120

Kragplattenanschlüsse K-45°

Elemente mit Höhenversatz

Zusatzeigenschaften

Querkraftanschlüsse


Heft 2

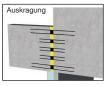
Stabilisierung

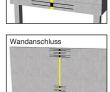
Stabilisierung

Querkraftanschlüsse Q-45° Elemente mit Höhenversatz

Querkraftanschlüsse SeismoLock® LFA und LFB Elemente mit Erdbebenstabilisierungen SeismoLock® längs Fuge

Querkraftanschlüsse SeismoLock® NF

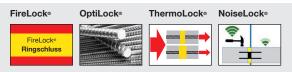

Elemente mit Erdbebenstabilisierungen SeismoLock® rechtwinklig zur Fuge


Zusatzeigenschaften

Wandanschlüsse

Heft 3

Normalkraftelemente WZS, WZL, WDS und WDL Elemente für Zug- und Druckkräfte

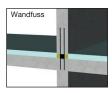

Querkraftelemente WQS, WQL und WQP Elemente für Schubkräfte

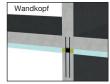
Biegemomentanschlüsse WMS und WML

Elemente für Biegemomente

Kombinierte Wandanschlüsse WKS, WKM und WKL Elemente mit Zug-, Druck- und Querkraftübertragung

Zusatzeigenschaften


Übersicht


BASYCON

Ausgabe 2025 - CH

Normalkraftanschlüsse

Heft 4

Normalkraftanschlüsse N

Elemente für hohe Normalkräfte und Deckenstärke ≥ 24 cm

Normalkraftanschlüsse N

Elemente für hohe Normalkräfte und Deckenstärke ≥ 16 cm

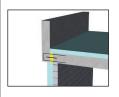
Normalkraftanschlüsse UZ

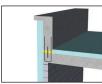
Elemente für erhöhte Normalkräfte oder erhöhte Biegemomente

Brüstungsanschlüsse U vertikal

Anschlüsse vertikal mit erhöhten Tragwiderständen

Zusatzeigenschaften





Brüstungsanschlüsse

Heft 5

Anschlüsse horizontal

Brüstungsanschlüsse B vertikal

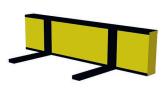
Anschlüsse vertikal

Brüstungsanschlüsse U horizontal

Anschlüsse horizontal mit erhöhten Tragwiderständen

Brüstungsanschlüsse U vertikal

Anschlüsse vertikal mit erhöhten Tragwiderständen


Zusatzeigenschaften

BASYSOL-Dämmkörper D, T, S und E

Heft 1 bis 5

BASYSOL D

Dämmkörper ohne Kunststoffwinkel

BASYSOL T

Trennelement mit 2 Kunststoffwinkel

BASYSOL S

Stirnabschalelement mit 3 Kunststoffwinkel

BASYSOL E

Dämmkörper vorbereitet für Rohrdurchführungen ohne Kunststoffwinkel

Sortimentswahl

Ausgabe 2025 - CH

Sortimentswahl: flexibel und kurzfristig lieferbar

		Standardsortiment	frei wählbare Optionen	optionale Zusatzeigenschaften
	Elementlänge	1,00 m	von 0,20 bis 1,40 m	1
	Bauteildicke	15, 16, 18, 20, 22, 24, 25, 26, 28 und 30 cm	von 15 bis 60 cm	
ng	Dämmungsstärke	80 mm bei K-, Q-, U-, N-, W-Typen 60 mm bei B-Typen	40, 60, 100, 120 und 140 mm bei K-, Q-, U-, N-, W-Typen 40 mm bei B-Typen	
Aufbau	Isolationsmaterial	hartgepresste Steinwolle	XPS, Foamglas	1
AL	Stahlqualität	nichtrostender Stahl 1.4462		
	Elementform	gerade und symmetrisch, Höhenversatz	vielfältige Möglichkeiten für verschiedenste Anschlussgeometrien	
	Verankerungen	mit Quereisen/gerade	ohne Quereisen/abgebogen	
	Dauerhaftigkeit	Korrosionsklasse IV	Monitoring-System für effiziente Zustandserfassung	OptiLock® für Planung der optimalen Unterhaltsmassnahmen
	Steifigkeit	PTS-System	PTS-System mit weiterer Erhöhung Steifigkeit	DynaLock® für Reduktion Schwingungsrisiko
Eigenschaften	Brandschutz	REI 60-RF1 (Überdeckung mind. 20 mm) REI 90-RF1 bis REI 120-RF1 (Überdeckung mind. 30 mm)	brennbare Isolation (XPS): mit Brandschutzplatte	FireLock® für Einbausicherheit und Heissbemessung, Zulassung VKF NR. 26270
Eiger	Erdbebensicherheit	Kraftübertragung in beide Richtungen gemäss PTS-System	Stabilisierungen in weiteren Achsen	SeismoLock® mit Beleg der dynamischen Eigenschaften
	Schallübertragung	Schalldämmwerte gemäss Tabellen	weitere Verbesserung der Schalldämmwerte	NoiseLock® zur Reduktion der Trittschallübertragung
	Wärmedämmung	Wärmedämmwerte gemäss Tabellen	weitere Reduktion der Wärmeleitfähigkeit	ThermoLock® zur weiteren Reduktion der Wärmeverluste
Beispiel	Wandfuss			SeismoLock® FireLock® Ringschluss

Sortimentswahl

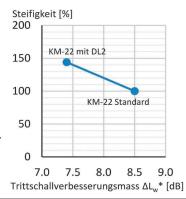
Ausgabe 2025 - CH

Übersicht optionale Zusatzeigenschaften 3)

Standardsortiment 3)	SeismoLock® LFA und LFB	FireLock®	OptiLock®	ThermoLock®	NoiseLock®	DynaLock®
Heft 1: Kragplattenanschlüsse						
K	JA	JA	JA	JA	JA	JA
K-C30	JA	JA	JA	JA	JA	JA
K-PM C30	JA	JA	JA	JA	JA	JA
K-45°	JA ¹⁾	JA ²⁾	NEIN	JA	JA	NEIN
Heft 2: Querkraftanschlüsse						
Q	JA	JA	JA	JA	JA	NEIN
Q-45°	JA ¹⁾	JA ²⁾	NEIN	JA	NEIN	NEIN
Heft 3: Wandanschlüsse						
Normalkraftelemente WZS, WZL, WDS, WDL	NEIN	JA	JA	JA	JA	NEIN
Querkraftelemente WQS, WQL, WQP	NEIN	JA	JA	JA	JA	NEIN
Biegemomentanschlüsse WMS, WML	NEIN	JA	JA	JA	JA	NEIN
Kombinierte Wandanschlüsse WKS, WKM, WKL	NEIN	JA	JA	JA	JA	NEIN
Heft 4: Normalkraftanschlüsse						
N	JA	JA	JA	NEIN	NEIN	NEIN
UZ	JA	JA	JA	NEIN	NEIN	NEIN
U vertikal	JA	JA	JA	NEIN	NEIN	NEIN
Heft 5: Brüstungsanschlüsse						
В	JA	JA	JA	NEIN	NEIN	NEIN
U	JA	JA	JA	NEIN	NEIN	NEIN
Heft 1–5: BASYSOL-Dämmkörp	er					
D, T, S, E	NEIN	JA	NEIN	JA	NEIN	NEIN

- 1) ab Deckenstärke/Balkonstärke 24 cm
- 2) ab Deckenstärke/Balkonstärke 20 cm
- 3) mit Isolation hartgepresste Steinwolle

Wichtig: Umgang mit kombinierten Zusatzeigenschaften


Es sind Einschränkungen je nach gewähltem BASYCON-Typen möglich, gemäss jeweiligem Beschrieb der Zusatzeigenschaft und nach Rücksprache mit den Ingenieuren der BASYS AG.

Kombinationen mehrerer Zusatzeigenschaften sind nach Rücksprache mit den Ingenieuren der BASYS AG teilweise möglich.

Die BASYCON-Elemente sind mit Standardlayout hinsichtlich obiger Eigenschaften optimiert. Die Variation in eine Richtung kann daher auch gleichzeitig zu einer Verschlechterung in einer anderen Richtung führen. Es ist daher wichtig, entsprechende Prioritäten zu setzen.

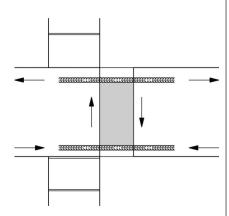
Von den weiteren Eigenschaften unberührt ist hingegen FireLock, wobei auch OptiLock nur sehr geringe Auswirkungen hat.

Beispiel KM-22 mit DynaLock® DL2

Tragsicherheit und Gebrauchstauglichkeit

BASYCON

Ausgabe 2025 - CH

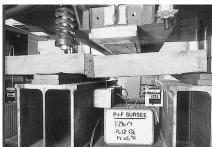

Statisches Modell

Während für die Brüstungsanschlüsse (B-Typen) ein herkömmliches Rahmenmodell mit Bügel und Dorne gewählt wurde, kommt bei den Kragplattenanschlüssen (K-Typen), bei den Querkraftanschlüssen (Q-Typen) und bei den Wand- und Konsolanschlüssen mit erhöhten Tragwiderständen (U-Typen) das sogenannte Profilträgersystem (PTS) zur Anwendung

Das PTS besteht aus einem Zug- und einem Druckstab, die schubsteif mit einer Platte verbunden sind. Dabei wirken die beiden Stäbe wie die Flansche und die Platte wie der Steg eines IPE-Profils.

Dadurch werden wesentliche Vorteile erzielt:

- · vertikal sehr steif, da Wirkungsweise scheibenähnlich (keine Schubverformung)
- enorm hohe vertikale Querkräfte übertragbar (positive und negative Querkräfte)
- keine Stabilitätsprobleme (Knicken), da Druckstäbe seitlich gehalten (erlaubt auch Dämmstärken bis zu 140 mm)
- quer zum PTS-System weich, für eine optimale Aufnahme von Temperaturzwängungen (im statischen Modell mitberücksichtigt!)
- stabiles und sehr flexibles System mit hohen Bruchsicherheiten



Einfaches, sicheres und patentiertes PTS (Profilträgersystem).

Bruchversuche

Um die Sicherheit der BASYCON-Anschlüsse zu untermauern, wurden verschiedene Bruchversuche bei Prüfinstituten und an Hochschulen im In- und Ausland durchgeführt.

Die dabei erzielten Bruchwerte lagen im Durchschnitt um 80 % höher als die rechnerischen Bemessungswerte des Tragwiderstandes.

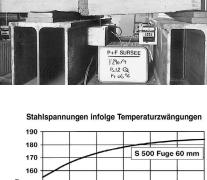
Zusätzliche Versuchssicherheitsbeiwerte von 1,8 für totale Sicherheit!

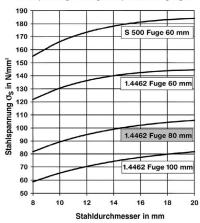
Tragsicherheit PTS-System

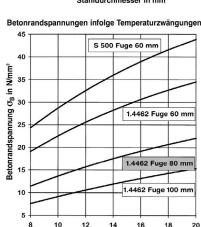
Der Tragsicherheitsnachweis wird in 2 Teile getrennt, nämlich in einen vertikalen und einen horizontalen Teil. Die beiden Teile beinhalten gemäss SIA 260 und 261 folgende Einwirkungen:

- vertikal: Einwirkungen aus Eigengewicht, Nutzlast und Auflasten, Mit Hilfe der Tragwiderstandstabellen kann der geeignete Typ bestimmt werden.
- horizontal: Einwirkungen aus Temperaturdifferenzen (Tag/Nacht und Sommer/Winter), die zu Zwangsschnittkräften führen. Es genügt dabei nicht, nur den Dehnfugenabstand anzugeben, sondern es ist nachzuweisen, dass sowohl Stahl als auch Beton diese Zusatzspannungen aufnehmen können.

Allgemeiner Nachweis:


$$\boldsymbol{R}_{d} \geq \boldsymbol{E} \; \{ \boldsymbol{\gamma}_{G} \, \cdot \, \boldsymbol{G}_{k}, \, \boldsymbol{\gamma}_{Q1} \, \cdot \, \boldsymbol{Q}_{k1}, \, \boldsymbol{\psi}_{0i} \, \cdot \, \boldsymbol{Q}_{ki}, \, \boldsymbol{X}_{d}, \, \boldsymbol{a}_{d} \}$$


wobei in $\psi_{0i} \cdot Q_{ki}$ die Temperaturzwängungen als Begleiteinwirkungen mitberücksichtigt werden. Die Zusatzspannungen sind in den beiden nebenstehenden Grafiken dargestellt.


Schlussfolgerungen:

- kleine Dämmstärken (z. B. 60 mm) und grosse Durchmesser (14 mm und mehr) führen zu hohen Spannungen in Stahl und → ungünstiges Verhalten
- grosse Dämmstärken (80 mm und mehr) und kleine Durchmesser (12 mm und weniger) führen zu kleinen Spannungen in Stahl und → günstiges Verhalten

Die Schwierigkeit besteht nun darin, dass diese Erkenntnisse normalerweise zu hohen Schlankheiten des Druckstabes führen würden (grosse Knicklängen und kleine Trägheitsradien) und somit einen enormen Abfall der Tragwiderstände zur Folge hätten. Hohe Betonspannungen können auch zu Rissen führen, was wiederum die Korrosionsgefahr, vorallem bei lokalem Korrosionsschutz, massiv erhöhen würde. Das Wasser kann nachweislich mehrere cm eindringen! Durch den Einsatz des PTS (Profilträgersystems) aus nichtrostendem Stahl 1.4462 werden alle Anforderungen erfüllt, nämlich die Einhaltung der Betonrandspannungen und die Mitberücksichtigung der Stahlspannungen ohne Stabilitätsverlust.

Die Zwangsspannungen sind bei den tabellierten Bemessungswerten des Tragwiderstandes für Balkonlängen von 6 Meter voll einberechnet!

Tragsicherheit und Gebrauchstauglichkeit

BASYCON

Ausgabe 2025 - CH

Baustellensicherheit

Durch die Verwendung des BASYCON-Anschlusses ergeben sich auf der Baustelle folgende Vorteile:

- statische SOLL-Höhe entspricht immer der statischen IST-Höhe, weil die im PTS-Profil eingebaute Schubplatte ein Einsinken der Zugstäbe infolge Auftritt der Bauarbeiter wirkungsvoll und dauerhaft verhindert
- freier Zugang für die Längsarmierung, da der Korb offen und ohne störende Zusatzeisen ausgebildet ist
- symmetrisches System verhindert verkehrten Einbau (Deckenseite/Balkonseite)
- robustes System, ähnlich einem Trägerrost, erlaubt ein baustellenübliches Handling
- keine Korrosionsprobleme infolge langer Baustellenlagerung, da komplett aus nichtrostendem Stahl 1.4462

Anwendungsvorschriften

- alle Angaben beruhen auf einer Betonqualität von mindestens C25/30 bis maximal C50/60.
- Für die Krafteinleitungen wird ein guter Verbund, wo naheliegend unter Berücksichtigung von Querdruck und den angeschweissten Querstäben der Elemente, gemäss SIA 262, vorausgesetzt.
- BASYCON-Elemente dürfen ohne Rücksprache mit der BASYS AG weder geschnitten noch verkürzt werden. Dies gilt auch für die angeschweissten Quereisen.
- Die Bauteile sollten, um übergrosse Temperaturzwängungen zu vermeiden, die folgenden, maximalen Anschlusslängen nicht überschreiten:

K-Typen 6 m Q-Typen 12 m W-Typen 6 m U- und B-Typen 6 m

N-Typen 6 m, je nach berücksichtigtem Temperati

sichtigtem Temperaturunterschied auch längere Bauteile möglich

- Die Bemessung der Bauteile beidseits der BASYCON-Elemente erfolgt durch den Bauingenieur gemäss SIA 262 (v.a. Querkraft- und Momentenbeanspruchung, Aufhängebewehrung, Längsarmierung im Krafteinleitungsbereich, eventuelle Querzugarmierung, Mindest- resp. Höchstbewehrung).
- Im Speziellen ist den Bauteilwiderständen besondere Beachtung zu schenken. Je nach Geometrie können diese die Tragfähigkeit der BASYCON-Elemente beschränken.
- Die Anschlussbewehrungen (z. B. Bügel, Biegebewehrung mit Endhaken, u. dgl.) sind möglichst unmittelbar an die PTS-Elemente anzuordnen, um eine effiziente Schubeinleitung zu gewährleisten.
- Die Weiterleitung der Kräfte (z. B. Moment, Querkraft) ist durch den Bauingenieur nachzuweisen.

- Die Beratungen der BASYS AG sind als möglicher Vorschlag zu betrachten. Dieser ist durch den Bauingenieur auf Richtigkeit zu prüfen. Die Beurteilung des statischen Modells (Tragsicherheit und Gebrauchstauglichkeit) obliegt dem Bauingenieur.
- Die Elemente sind mit Kunststoffabdeckungen ausgerüstet. Diese dienen zum Schutz der Dämmung und dürfen entfernt werden. Die Elemente sind je nach Bauablauf vor Nässe, Witterungseinflüssen und dergleichen zu schützen.

Tragsicherheit und Gebrauchstauglichkeit

BASYCON

Ausgabe 2025 - CH

Erdbebensicherung und Stabilisierung

Einwirkung Erdbeben

Für ein gutes Erdbebenverhalten ist nicht nur die Bemessung, sondern auch ein erdbebengerechtes Tragwerkskonzept von Bedeutung. Dies gilt sowohl für ein Tragsystem als Ganzes betrachtet, als auch für Bauteilverbindungen.

So dürfen beispielsweise die bei Erdbebenbelastungen beobachteten Plastifizierungszonen im Krafteinleitungsbereich nicht zu einem Versagen des Systems führen.

Einwirkungen

Horizontalkräfte:

SIA 261, 16.7 Sekundäre Bauteile

Bestimmung der möglichen Horizontalkraft für sekundäre Bauteile wie Fassadenbauteile, Schornsteine etc.

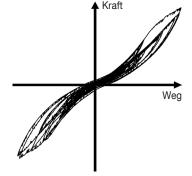
Vertikalkräfte:

SIA 261, 16.5.4 Vertikalkomponente der Erdbebeneinwirkung

Berücksichtigung von vertikalen Erdbebeneinwirkungen z.B. bei horizontalen Kragarmen.

Ausserordentliche Verhältnisse wie z.B. lokale Bodeneffekte müssen allenfalls zusätzlich betrachtet werden; eine Verstärkung der Elemente wird empfohlen.

Nachweis Erdbebensicherheit

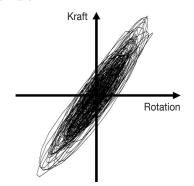

Güte des Erdbebenverhaltens ≈ Duktilität x Widerstand

Eigenschaften von BASYCON-Elementen

- umfangreich dynamisch und pseudodynamisch geprüft.
- jeweils eindrückliche, stabile Hysteresekurven
- elastische Dämpfung durch Plastifizierungszonen
- grosse Robustheit (SIA 260)
- Beleg der dynamischen Federeigenschaften
- Beleg der notwendigen, lokalen Duktilitäten

Horizontalkräfte

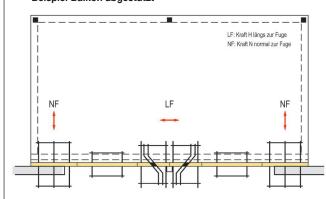
Stabilisierung längs Fuge

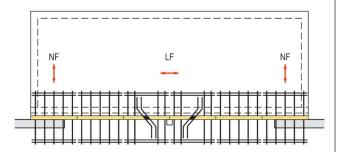


Hysteresekurve als Antwort der SeismoLock SL-LFA und SL-LFB auf dynamische Einwirkungen.

Vertikalkräfte

Kragplattenanschlüsse K-Typen


Die Nachweise für vertikale Belastungen im Erdbebenfall (korrekte Bemessung für Situation andauernd und vorübergehend vorausgesetzt) sind im BASYCON PTS-System bereits enthalten.


Hysterese der BASYCON-Kragplattenanschlüsse bei vertikalen Schwingungen.

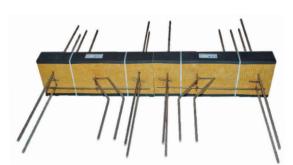
Beispiele

Beispiel Balkon abgestützt

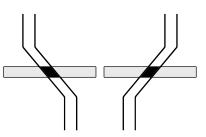
Beispiel Balkon frei auskragend

Tragsicherheit und Gebrauchstauglichkeit

BASYCON


Ausgabe 2025 - CH

SeismoLock® SL-LFA und SL-LFB


Stabilisierungen längs Fuge

- einfache Bemessung basierend auf dynamischen Versuchen und der entsprechenden Antwort des Systems
- Bestimmung q-Wert durch mehrere verschiedene Versuche
- erträgt mehrfache Belastungen durch verschiedene Erdbebensituationen
- Versuche zeigen selbst nach massiver Überlastung und Verformung noch eine hohe Widerstandsfähigkeit
- endgültiges Versagen im Versuch erst durch Bruch der Verankerungsstäbe

An dieser Stelle sei darauf hingewiesen, dass parallel durchgeführte Versuche an nicht erdbebengerechten Tragsystemen zu einem instabilen Verhalten ohne Hysterese und damit zu einem Kollaps im Erdbebenfall führten.

BASYCON Querkraftanschlüsse SeismoLock®

Anwendung SL-LFA und SL-LFB schematisch

Seisma ock®

Bemessungswerte des Tragwiderstandes

	Horizon	ıtalkraft
	Gewöhnlich H _{Rd} [kN]	Ausser- gewöhnlich H _{Rd} [kN]
1x SL-LFA	+/- 28.0	- 130.0
1x SL-LFB	+/- 28.0	+ 130.0

Um die Verformungen im Erdbebenfall zu begrenzen und Reserven für unvorhergesehene Einwirkungen, wie z.B. Anprall etc. vorzusehen, ist häufig eine Begrenzung sinnvoll auf

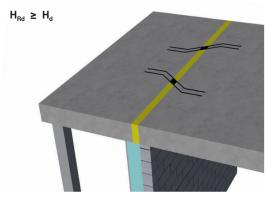
 $H_{Rd,acc} = -70.0 \text{ kN für } 1x \text{ SL-LFA}$

 $H_{Rd,acc} = + 70.0 \text{ kN für } 1x \text{ SL-LFB}$

Bemessung der Anzahl SL-LFA und SL-LFB

aus Erdbeben

gemäss SIA 261, 16.7.2 für alle Erdbebenzonen in der Schweiz, (γ_f =1.2)


Z = aufgerundet (m_{äquiv} [t] / 10 [t])

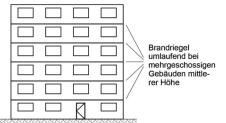
Z = notwendige Anzahl SeismoLock®-Längselemente (je Z x SL-LFA und Z x SL-LFB)

m_{āquiv} = Masse in Tonnen des befestigten Bauteils (inkl. befestigte Massen aus Nutzung und dgl.)

Die Begrenzung für oben genannte unvorhergesehene Einwirkungen ist bereits enthalten.

für andauernde und vorübergehende Bemessungssituationen

Bestimmung Anzahl SL-LFA und SL-LFB zur Stabilisierung horizontal.

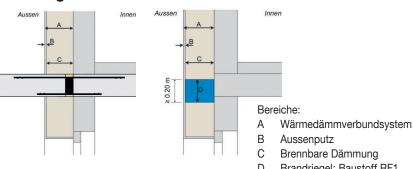

Brandschutz

BASYCON

Ausgabe 2025 - CH

Brandverhalten BASYCON mit Isolation Steinwolle ca. 150 kg/m³

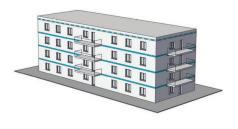
Gemäss geltender Brandschutznorm nimmt der umlaufende Brandriegel bei Gebäuden mittlerer Höhe bei Verwendung von brennbarer, aussenliegender Isolation mit Verputz, je nach Situation, eine wichtige Funktion wahr. Dieser muss aus nichtbrennbarem Material RF1 bestehen, wobei die Balkonanschlüsse in der Regel die lückenlose Fortführung gewährleisten müssen.

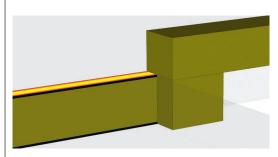

Aufgrund der vielfältigen und verschiedenen Anforderungen, je nach Situation und Gebäudetyp, kommt dem Zusatz RF1 eine grosse Bedeutung zu.

Die Anwendbarkeit der BASYCON gemäss den Schweizerischen Brandschutzvorschriften ist durch die VKF Brandschutzanwendung Nr. 26270, lautend auf REI 120-RF1 (nichtbrennbar) belegt. Dieses Nachweisdokument ist wichtig für die zu erbringende Übereinstimmungserklärung Brandschutz.

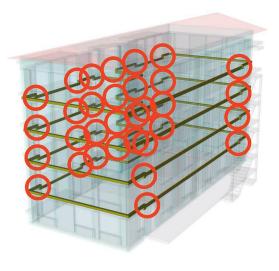
FireLock®
Ringschluss

Brandriegel


Detail mit BASYCON Anschluss RF1

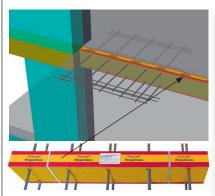

D Brandriegel: Baustoff RF1, Schmelzpunkt ≥ 1000 °C

FireLock®


Ringschluss - Konzept

- Der Brandschutz ist in der Regel nur so gut, wie der umlaufende Brandriegel auch wirklich geschlossen ist.
- Der sichere Ringschluss des Riegels im Bereich der Anschlüsse wird vereinfacht durch das auffallende und gut sichtbare FireLock® System sowie einfache und baustellengerechte Details.
- Um einen Ringschluss zu erreichen, müssen die nach VKF zertifizierten Elemente (mit Isolation Steinwolle, 150 kg/m³) satt gestossen werden und durchgängig einen Anschluss von mindestens 20 cm Höhe an die seitlichen Brandriegel aufweisen (vgl. VKF Vorschriften)

Einfache und robuste Details möglich, z.B. Übergang Balkonanschluss mit Brandriegel der Fassade (Höhe Isolation mindestens 20 cm)



Viele Branddetails sind problematisch. Mit den modernen Planungsmöglichkeiten (3D) können diese schonungslos offengelegt und identifiziert werden.

Brandschutz

Ausgabe 2025 - CH

Kennzeichnung der Elemente als Teil des Brandschutzkonzeptes

Optisch gut erkennbarer Ringschluss für eine einfache Baukontrolle.

BOSSYCON SOUTH TO SENSO A STATE OF THE SENSO A STAT

Bestellliste BASYCON

Bestellliste als Nachweisdokument für die Übereinstimmungserklärung Brandschutz

Zertifiziertes System nach VKF Nr. 26270 mit Heissbemessung der Elemente

Bemessungssituation Brand SIA 262, Ziff. 4.3.10

- Minimale Betonüberdeckungen: R60 20 mm
 R90–R120 30 mm
- Die Tragwerke sind so zu konzipieren und durchzubilden, dass Temperaturdehnungen und Zwängungen nicht zu einem vorzeitigen Versagen führen.
- Die Tragsicherheit von Dübeln und Ankern ist anhand der gemäss Ziffer 4.3.10.2 reduzierten Baustoffeigenschaften zu überprüfen. Beanspruchungen infolge ungleichmässiger Temperaturverteilung im Bauteil und Schwächungen infolge von Abplatzungen und Rissen sind zu berücksichtigen.

Es muss sichergestellt werden, dass die Elemente nicht Einwirkungen ausgesetzt sind, für welche diese nicht bemessen sind.

Eine erteilte VKF Brandschutzanwendung allein genügt nicht, es braucht die konsequente Anwendung der Normen und Vorgaben!

Der Brandfall zeigt Lücken im System schonungslos auf!

Bemessungswerte des Tragwiderstandes (vgl. BASYCON K- und Q-Typen)

Die thermische Einwirkung im Brandfall ist gemäss SIA 261 als aussergewöhnliche Leiteinwirkung zu behandeln. Durch die aussergewöhnlichen Bemessungssituationen werden die Bemessungswerte aus andauernden und vorübergehenden Bemessungssituationen auf unter 60 % abgemindert. Damit können im Brandfall je nach möglichen Spannungen (Heiss-

bemessung Elemente) zusätzliche Kräfte übernommen werden.

Die in den entsprechenden Abschnitten definierten Schnittkräfte für Zwängungen gründen auf der Annahme, dass die bei den normalen K- und Q-Typen tabellierten Schnittkräfte im Brandfall nur zu 60 % ausgenützt werden. Die W-Typen hingegen werden mit 70 % der Einwirkungen bei dauernder Belastung (höherer Eigenlastanteil) ausgenützt.

Die in den Dokumentationen angegebenen Widerstandswerte basieren auf den Brandversuchen an BASYCON-Elementen an der EMPA und Wärmeflussuntersuchungen.

Beispiel zu Abminderung im Brandfall:

Betonplatte h = 25 cm, 5 cm Zementüberzug: $g_d = 1.35 \times (0.25 \times 25 + 0.05 \times 24) = 10.1 \text{ kN/m}^2$

Nutzlast 3.0 kN/m²: $p_d = 1.5 \times 3.0 = 4.5 \text{ kN/m}^2$ Total gewöhnlich und andauernd: $q_{d \text{tot}} = 10.1 + 4.5 = 14.6 \text{ kN/m}^2$

Brand aussergewöhnlich: γ_G = 1.0, γ_d = 0.3 Total verteilte Last aussergewöhnlich

 $q_{d,tot,acc} \ = \ 1.0 \ x \ (0.25 \ x \ 25 \ + \ 0.05 \ x \ 24) \ + \ 0.3 \ x \ 3.0 \ = 8.4 \ kN/m^2$

somit Verhältnis $\, q_{d,acc}/q_d = 8.4$ / 14.6 = 0.57 = Ausnutzung im Brandfall zu $57\,\%$ < $60\,\%$

Dauerhaftigkeit

BASYCON

Ausgabe 2025 - CH

Korrosionssicherheit

Das gesamte Profilträgersystem (PTS) des BASYCON-Anschlusses besteht aus einem nichtrostendem Stahl der Güte 1.4462 (DIN) resp. X2CrNiMo 22-5-3 (Euronorm). Die genaue Bezeichnung der Stahlgüte spielt eine wichtige Rolle, da mit der veralteten Bezeichnung V4A eine Vielzahl von Qualitätsgüten möglich sind. Ausschlaggebend für die Stahlgüte sind die chemische Zusammensetzung und die mechanischen Werte. Der Stahl 1.4462 hat ein Mischgefüge Austenit/Ferrit und wird deswegen auch Duplexstahl

genannt. Er weist wesentliche Vorteile gegenüber klassischen Austeniten (z.B. 1.4571) auf:

- hohe Beständigkeit gegenüber allgemeiner sowie Loch- und Spaltkorrosion
- geringe Gefährdung gegenüber chloridinduzierter Spannungsrisskorrosion (Tausalze)
- weitgehende Unempfindlichkeit gegenüber wasserstoffinduzierter Spannungsrisskorrosion
- erhöhte Beständigkeit gegenüber interkristalliner Korrosion

Zudem ist der Stahl 1.4462 (Korrosionsklasse IV, gemäss SZS-Tabelle) aufgrund des sehr wichtigen hohen Molybdänanteils hinsichtlich dieser Korrosionsarten wesentlich beständiger als beispielsweise Duplexstahl 1.4362 (Korrosionsklasse III)

Die hohe Festigkeit und Gefügestabilität, auch im geschweissten Zustand, sowie die hohe Beständigkeit gegenüber lokaler und über Rissbildung verlaufender Korrosion, machen den Stahl 1.4462 für den Ingenieurbau äusserst interessant und sicher.

Auszug aus der «Allgemeinen bauaufsichtlichen Zulassung Nr. Z-30.3-6 vom 5. März 2018

	Korrosions- beständigkeits-		
Werkstoff- nummer	Kurzname Gruppe		klasse
1.4301	X5CrNi18-10	A2	
1.4307	X2CrNi18-9	A2L	U / # 0i
1.4567	X3CrNiCu18-9-4	A2L	II / mäßig
1.4541	X6CrNiTi18-10	А3	
1.4401	X5CrNiMo17-12-2	A4	
1.4404	X2CrNiMo17-12-2	A4L	
1.4578	X3CrNiCuMo17-11-3-2	A4L	
1.4571	X6CrNiMoTi17-12-2	A5	III / mittel
1.4362	X2CrNiN23-4	2)	III / Mittel
1.4062	X2CrNiN22-2	2)	
1.4162	X2CrMnNiN21-5-1	2)	
1.4662	X2CrNiMnMoCuN24-4-3-2	2)	
1.4439	X2CrNiMoN17-13-5	2)	
1.4462	X2CrNiMoN22-5-3	2)	IV / stark
1.4539	X1NiCrMoCu25-20-5	2)	
1.4565	X2CrNiMnMoN25-18-6-5	2)	٧/
1.4529	X1NiCrMoCuN25-20-7	2)	sehr stark

Zuordnungen gemäss «Stahlbau-Kalender: Neue Regeln nach Eurocode für nichtrostende Stähle», 2016

	CRF Korrosions- beständigkeits- faktor	CRC Korrosions- beständig- keitsklasse	Werkstoff Stahlsorte
	CRF = 1	I gering	1.4003 1.4016
	0 ≥ CRF > -7	II mässig	1.4301 1.4307 1.4482
_	–7 ≥ CRF > –15	III mittel	1.4401 1.4062 1.4162 1.4362
(-15 ≥ CRF > -20	IV	1.4462
		stark	1.4439 1.4539
	CRF < -20	V sehr stark	1.4529 1.4578

Korrosionsbeständigkeitsfaktor CRF

CRF = F1 + F2 + F3

F1 Risiko gegenüber Chloriden, z. B. aus Auftausalzen Frage des Expositionsrisikos hinsichtlich Chloriden: nicht auszuschlies-

sen, abhängig von vielen Faktoren, z. B. Windverfrachtung, Aufaddierung etc., F1 = -10

- F2 Risiko gegenüber Schwefeldioxid, z.B. Industrie gering, F2 = 0
- F3 Exposition gegenüber Abwaschen durch Regen kein Abwaschen F3 = -7

CRF = (-10) + 0 + (-7) = -17, somit CRC IV stark

Vergleich mit SIA 2029, nichtrostender Betonstahl (Nutzungsdauer 50 Jahre):

Tiefbauten mit möglichem Chlorideintrag (Expositionsklasse XC4 (CH), XD3 (CH), XF2/4 (CH) und Überdeckung ≥ 20 mm: KWK 4 als Richtwert, entspricht ebenfalls CRC IV, vgl. auch 3.5.3 und 3.5.4

Vorhersage und Dauerhaftigkeit

- SIA 260, Ziff. 2.3.1 wirtschaftlich, robust, zuverlässig und dauerhaft
- SIA 260, Ziff. 2.3.2
 Nutzungsdauer zu vereinbaren, Richtwerte 50–100 Jahre
- SIA 2029, Ziff. 3.5.2
 Für eine Nutzungsdauer von mehr als 50
 Jahren sind [..] weitergehende Massnahmen
 wie [..] eine höhere Korrosionswiderstandsklasse zu prüfen.
- Vorhersage möglicher Schadstoffe mit grosser Unsicherheit
- grosse Gefährdung im Versagensfall
- Aufaddierung von Schadstoffen auf der Stahloberfläche kann hohe Konzentrationen ergeben
- Beurteilung der Edelstahlteile allein durch Augenschein nicht möglich.

Spannungsrisskorrosion in einem Edelstahl

Korrosionsprobleme perfekt im Griff, dank Duplexstahl 1.4462!

Dauerhaftigkeit

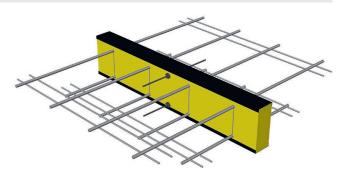
BASYCON

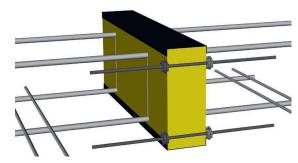
Ausgabe 2025 - CH

OptiLock®

Situation

- schwer voraussehbare, zukünftige Korrosionsrisiken
- hohe Sanierungskosten und Umtriebe
- geringe Kosten OptiLock®


Monitoring durch OptiLock®


- besteht aus zusätzlich im BASYCON-Element eingebauten Edelstahlstäben mit Durchmesser 6 mm
- haben keine statische Funktion
- dieselbe Edelstahlqualität und Lage wie die tragenden BASYCON-Stähle
- erhalten damit dieselben Spannungen und dieselben korrosiven Einwirkungen wie die Tragstäbe

Empfehlung

Immer alle Elemente eines Bauvorhabens mit OptiLock® ausrüsten!

- Für die Zustandserfassung können die zu untersuchenden OptiLock®-Stäbe frei gewählt werden.
- Auch nach einer Untersuchungskampagne sind genügend verbleibende OptiLock®-Stäbe für spätere Zustandserfassungen vorhanden.

OptiLock® Monitoring-System

Bauphysik

BASYCON

Ausgabe 2025 - CH

Wärmebrücken

Grundsätzlich sind 3 Lösungen möglich:

- Durchbetonieren mit Isolationseinlage
- Wärmedämmkorb aus Baustahl B500
- Wärmedämmkorb aus Edelstahl z. B. nichtrostender Stahl 1.4462

Um die Effizienz dieser Lösungsmöglichkeiten zu quantifizieren, wurden anhand von Computersimulationen verschiedene Wärmebrückenprobleme untersucht und in der SIA-Dokumentation D078 veröffentlicht (Seiten 79 bis 105). Dabei wurden die Linienzuschläge k_{lin} (heute Ψ) und die Oberflächentemperaturen an der inneren Deckenunterseite berechnet.

Um das Risiko von Schimmelpilzbildung zu eliminieren und den Wärmefluss zu minimieren, sind tiefe Ψ -Werte und hohe Oberflächentemperaturen gefordert (siehe Beispiel einer einschaligen Bauweise mit Aussendämmung).

Schlussfolgerungen:

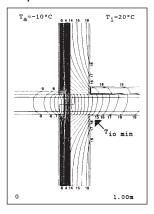
- Wärmedämmkörbe aus Baustahl bringen keine nennenswerte Verbesserungen des Problems. Sowohl die Linienzuschläge als auch die Oberflächentemperaturen werden nicht wesentlich verändert.
- Wärmedämmkörbe aus Edelstahl hingegen halbieren die Linienzuschläge und erhöhen die Oberflächentemperaturen merklich.

Die Erklärung liefert dabei die Wärmeleitfähigkeit λ der verschiedenen Materialien:

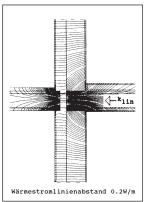
• Baustahl $\lambda = 60 \text{ W/mK}$ • Edelstahl 1.4462 $\lambda = 15 \text{ W/mK}$

• unarmierter Beton $\lambda = 1.8 \text{ W/mK}$

Das heisst, der Weg des geringsten Widerstandes ist in jedem Fall immer der Stahl!


Auszug aus SIA 380/1 Tab. 3

längenbezogener Wärmedurchgangskoeffizient Ч	Grenzwert Ψ _{ii} W/(mK)	Zielwert Ψ ta W/(mK)
Typ 1 Auskragungen in Form von Platten oder Riegeln (z.B. Balkone, Vordächer, vertikale Riegel)	0.30	0.15


Auszug aus der Dokumentation D078 mit Genehmigung des SIA Copyright® 1992 by SIA Zürich

minimale Oberflächentemperturen und Linienzuschläge:				
Korb aus:	T _{io min} [°C] Baustahl	Edelstahl	k _{lin} [W/mK] Baustahl	Edelstahl
1.3 % Armierungsgehalt :	13.7	16.0	0.55	0.26
f [%]	16.1-1.8 x f	17.5-1.2 x f	0.23+0.24 x f	0.09+0.13 x f

Temperaturkarte

Wärmestromlinien

Wärmebrückenzuschlag Dokumentationen

Allgemeines

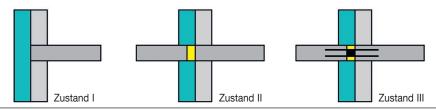
Aufgrund der vielen verschiedenen Anschlussdetails der heutigen Bauten macht es Sinn, die jeweiligen Anteile der Wärmebrücken genauer zu quantifizieren.

Es ergeben sich folgende Zustände:

- **Zustand I:** Fassade ungestört, ohne Balkon, Wand, Brüstung oder dergleichen
- Zustand II: Fassade im Bereich der Befestigung gestört: lokale Verkleinerung der Isolationsstärke auf Breite der BASYCON-Isolation
- Zustand III: Fassade lokal gestört, zusätzlich ist eine Befestigung enthalten, die eine zusätzliche Wärmebrücke verursacht

Dieses Vorgehen hat den grossen Vorteil, dass das Gesamtmass der Wärmebrücke wesentlich genauer abgeschätzt werden kann, wenn die Geometrie der Fassade von der Modellannahme abweicht (z.B. Fenster, andere Isolationsstärken, etc.)

Nachfolgend sind die zugrunde liegenden Fassadendetails mit den entsprechenden Zuschlägen aufgelistet, von Zustand I, vollständig ungestört zu Zustand II, gestört ohne BASYCON-Stahlteile.

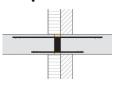

Die Werte von Zustand II zu Zustand III sind in den Dokumentationen Heft 1 bis Heft 5 ersichtlich.

Berechnung

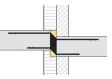
Die Berechnung erfolgte für die Referenztypen mit 3D-Volumenmodellen, welche als Verifizierung für die Berechnungsparameter dienten. Um die FEM-Modelle möglichst klein zu halten, wurden die quasi endlosen Anschlussteile (Befestigungen) geschnitten und mit der jeweiligen Körpertemperatur ohne Übergangswiderstände belegt.

Berechnungsparameter:

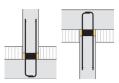
Innenwand Backstein, 15 cm	0.300 W/mK
Innendecke Stahlbeton 160–300 mm	2.300 W/mK
Aussendämmung Steinwolle	0.034 W/mK
Balkon Stahlbeton	2.300 W/mK
Dämmung BASYCON	
Steinwolle	0.040 W/mK
Edelstahl	15.000 W/mK

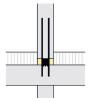


Bauphysik

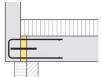

BASYCON

Ausgabe 2025 - CH

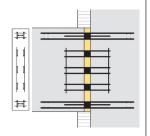

Beispiele $\Psi ext{-Werte}$ Zustand I / Zustand II


Decken- stärke	Ψ [W/mK]
16	0.052
18	0.056
20	0.060
22	0.066
24	0.070
25	0.073
26	0.075
28	0.079
30	0.084

Decken- stärke	Ψ [W/mK]
16	0.050
18	0.054
20	0.059
22	0.064
24	0.068
25	0.071
26	0.074
28	0.078
30	0.082


Wand- stärke	Ψ [W/mK]
16	0.052
18	0.056
20	0.060
22	0.066
24	0.070
25	0.073
26	0.075
28	0.079
30	0.084

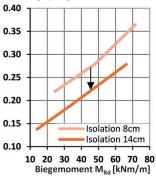
Wand- stärke	Ψ [W/mK]
16	0.052
18	0.056
20	0.060
22	0.066
24	0.070
25	0.073
26	0.075
28	0.079
30	0.084


Decken- stärke	Ψ [W/mK]
16	0.041
18	0.044
20	0.049
22	0.052
24	0.055
25	0.057
26	0.058
28	0.063
30	0.066

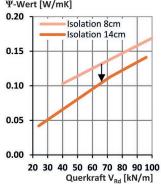
Decken- stärke	Ψ [W/mK]
16	0.060
18	0.063
20	0.068
22	0.071
24	0.074
25	0.076

Brüstungs- stärke	Ψ [W/mK]
12	0.053
15	0.058
18	0.063
20	0.068

Wand- stärke	Ψ [W/0.2mK]
16	0.016
18	0.017
20	0.018
22	0.020
24	0.021
25	0.022
26	0.023
28	0.024
30	0.025


ThermoLock®

Verbesserung Wärmebrückenthematik


- Eine Vergrösserung der Isolationsbreite der BASYCON-Elemente bewirken eine Verkleinerung der Ψ-Werte.
- Selbstverständlich gilt die VKF Brandschutzanwendung Nr. 26270 auch für Fugen bis 140 mm Breite.

Die Ψ-Werte in den nebenstehenden Grafiken beinhalten den kompletten Linienzuschlag von ungestörter Fassade zu Fassade mit Balkon und BASYCON-Anschlüssen (Zustand I zu Zustand III).

Beispiel Kragplattenanschlüsse Wärmebrückenzuschlag Ψ-Wert [W/mK]

Beispiel Querkraftanschlüsse Wärmebrückenzuschlag Ψ-Wert [W/mK]

Bauphysik

BASYCON

Ausgabe 2025 - CH

Schallbrücken

genommen.

Messungen an ausgeführten Objekten

Das patentierte PTS-System erlaubt eine sehr effiziente Kraftübertragung mit optimal eingesetztem Edelstahl. Da die Schubplatten bewusst auf die Isolationsbreite limitiert sind und nicht in die Betonkonstruktion eindringen, werden unnötige Schallbrücken vermieden. Um die ausgezeichnete Schalldämmwirkung der BASYCON-Anschlüsse zu belegen, wurden Messungen an ausgeführten Bauobjekten vor-

Dieses Vorgehen hat sich in der Praxis gut bewährt, da die bauüblichen «Nebenwege» mitberücksichtigt werden, was bei reinen Labormessungen nicht der Fall ist. Hierzu erwähnt die SIA 181 nur, dass durch ausreichende Projektierungstoleranzen die Abweichungen zwischen Labor- und Bauwerten zur sicheren Seite hin abzufangen sind. Bauakustisch ergibt sich somit eine bedeutend bessere Sicherheit bezüglich der erforderlichen SIA-Grenzwertgarantie als mit reinen Laborwerten.

Beurteilung der Messresultate gemäss SIA 181 - 2006 für den Wohnungsbau mit Sonderregelung gemäss SIA 181 Ziff. 3.2.2.5.

Balk	cone
Mindestanforderung L'	erhöhte Anforderung L'
63 dB	60 dB
Laube	ngänge
Mindestanforderung L'	erhöhte Anforderung L'
53 dB	50 dB

Messresultate Trittschallübertragung:

Bewertung nach ISO 717-2 / SIA181 - 2006

BASYCON-Typ	L'tot
QM-24 Querkraftanschluss	46 dB
KS-24 Kragplattenanschluss	53 dB

Für die ausgeführten Beispiele werden die Grenzwerte nach SIA 181 – 2006 mit guter Sicherheit erfüllt.

Die Messwerte sind als Anhaltspunkte zu verstehen.

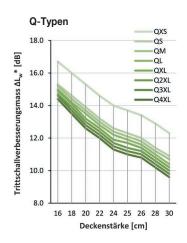
Schnellepegelmessungen

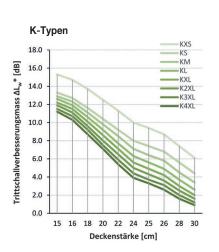
Ausserdem wurden zusätzlich umfangreiche Schnellepegelmessungen an einem breiten Spektrum der Produktepalette durchgeführt (Auswertung für Empfangsraum 140 m³).

Diese Messungen belegen die Effizienz der PTS-Elemente und erlauben dem Bauphysiker eine grobe Abschätzung der Bauteilverbindungen.

Naturgemäss weisen die Messresultate je nach Geometrie eine grössere Streubreite auf, «Ausreisser» sind möglich.

Die angegebenen Werte sind als Anhaltspunkte zu verstehen, die tatsächlichen Verhältnisse können davon abweichen.


Auszug Messresultate, Werte ≥ 10 dB


BASYCON-Typ	Deckenstärke	M _{Rd} [kNm]	V _{Rd} [kN]	N _{Rd} [kN]	ΔL _w * [dB]
Q2XL-16	160		+/- 120.0	+/- 12.5	15
Q2XL-24	240		+/- 168.0	+/- 12.5	11
KL-18	180	-37.1 / +19.6	+/- 67.1		12
NSL-24	240			- 558.4	10

Auswertung

Durch Auswertung der umfangreichen Messreihen konnten semiempirische Formeln für die BASYCON-Elemente gefunden werden, die es erlauben, zusätzlich mit Pegeladditionen für alle BASYCON-Typen das mögliche Trittschallverbesserungsmass abzuschätzen. Die entsprechenden Werte sind in den Dokumentationen ersichtlich.

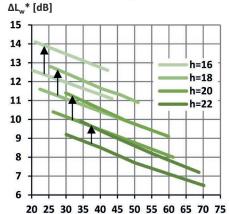
Bei verschiedenen Bauteilstärken beidseits der Fuge wird vom dünneren Bauteil ausgegangen, bei den liegenden Brüstungsanschlüssen BSH, BMH und BLH wurde von einer Deckenstärke von 20 cm ausgegangen.

Bauphysik

BASYCON

Ausgabe 2025 - CH

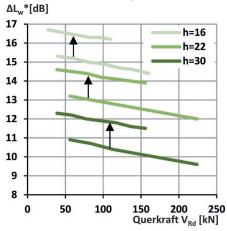
NoiseLock®


Beschreibung

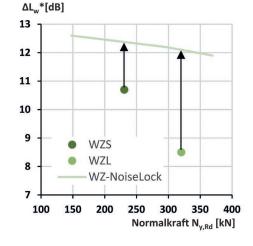
- Es hat sich herausgestellt, dass das schallmässig sehr effiziente PTS-System teilweise weiter schalloptimiert werden kann.
- Die Grafiken zeigen die klaren Verbesserungen, wobei die Bemerkungen gemäss Seite 18 gelten.
- Es sind folgende Typen mit der Zusatzeigenschaft NoiseLock® erhältlich:

Kragplattenanschlüsse Querkraftanschlüsse Wandanschlüsse

• B- und U-Typen sind bereits konzeptionell schalloptimiert


Beispiel Kragplattenanschlüsse Trittschallverbesserungsmass

Biegemoment M_{Rd} [kNm]


Beispiel Querkraftanschlüsse

Tritts chall verbesser ung smass

Beispiel Wandanschlüsse

Trittschallverbesserungsmass

Tragsicherheit und Gebrauchstauglichkeit

BASYCON

Ausgabe 2025 - CH

Verformungen / Steifigkeiten

Allgemeines

Die Verformungen in den Krafteinleitungszonen und die Deformationen der Betonplatten unterliegen einer Vielzahl von Einwirkungen, die rechnerisch nur schwer zu erfassen sind. Es sind gegebenenfalls folgende Einflüsse zu beachten (SIA 262, Ziff. 4.4.3.2.3): Kriechen und Schwinden des Betons, sukzessive Rissbildung und deren Auswirkungen auf die Querschnittssteifigkeiten, Lasten und Art der Lastaufbringung, Temperatureinwirkungen und Variation der Baustoffeigenschaften etc.

Ausserdem kann die Tragstruktur eines Gebäudes einen erheblichen Einfluss sowohl auf die Verformungen als auch auf das Schwingungsverhalten haben.

Rotationsfedersteifigkeiten

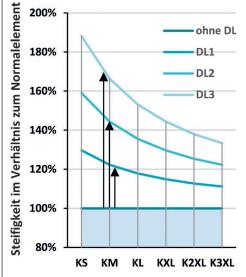
Die jeweils angegebenen Rotationsfedersteifigkeiten wurden mit Schwingungsmessungen an vorbelasteten Betonelementen und den entsprechenden Auswertungen und Berechnungsmodellen bestimmt. Sie gelten für den jeweiligen Bauteilanschluss und pro Element.

Schubsteifigkeiten

Die Schubsteifigkeiten wurden anhand von Tragversuchen ermittelt und können ebenfalls variieren. Zudem ist die Art der Krafteinleitung zu berücksichtigen. Eine direkte Krafteinleitung in eine darunterliegende Betonwand kann sich für einen Querkraftanschluss beispielsweise erheblich steifer verhalten als eine Krafteinleitung über Lastzentrierlager in eine Mauerwerkswand.

Stark unterschiedliches Verhalten völlig identischer Balkone aufgrund verschieden steifer Deckenkonstruktionen

Wichtig


Aufgrund der oben beschriebenen Faktoren ist mit grösseren Variationen der effektiven Werte zu rechnen. Diese Variationen sind in die Berechnungen miteinzubeziehen. Durch die Interpretation der Resultate ergibt sich die korrekte Bestimmung der Anschlusselemente.

Für weitere Auskünfte stehen unsere Ingenieure gerne zu Ihrer Verfügung.

DynaLock®

Erhöhung Rotationsfedersteifigkeit

- positive Beeinflussung des Verhaltens eines Balkons durch die Erhöhung der Drehfedersteifigkeit der Befestigung eines auskragenden Balkons möglich, je nach statischen Gegebenheiten
- stufenweise erhöhte Drehfedersteifigkeit durch Verwendung von BASYCON DynaLock-Elementen
- **DL1:** DynaLock Stufe 1 resp. DL 1 weist auf der Zug- und Druckseite je ein zusätzliches DynaLock-Eisen auf
- DL2: DynaLock Stufe 2 resp. DL 2 weist auf der Zug- und Druckseite je zwei zusätzliche DynaLock-Eisen auf
- **DL3:** DynaLock Stufe 3 resp. DL 3 weist auf der Zug- und Druckseite je drei zusätzliche DynaLock-Eisen auf

Die Bemessungswerte des Tragwiderstandes der zugrunde liegenden K-Typen sind auf den technischen Seiten im Heft 1 «Kragplattenanschlüsse» ersichtlich. Die Erhöhung des Biegewiderstandes ergibt sich aus obiger Tabelle.

Tyro	DI	L1	D	L2	DI	L3
Тур	Δk_R	ΔM_{Rd}	Δk_R	ΔM_{Rd}	Δk_R	ΔM_{Rd}
KS, KS-C30, KS-PMC30	+30%	+17%	+59%	+35%		
KM, KM-C30, KM-PMC30	+22%	+13%	+44%	+25%	+66%	+38%
KL, KL-C30, KL-PMC30	+18%	+10%	+36%	+20%	+53%	+30%
KXL, KXL-C30, KXL-PMC30	+15%	+9%	+30%	+17%	+44%	+25%
K2XL, K2XL-C30, K2XL-PMC30	+13%	+7%	+25%	+15%	+38%	+22%
K3XL, K3XL-C30, K3XL-PMC30	+11%	+7%	+22%	+13%	+33%	+19%

 $\Delta k_{_{\rm R}}$ [kNm/rad], (gemittelte Werte, kleine Unterschiede je nach Deckenstärke) $\Delta M_{_{\rm Bd}}$ [kNm]

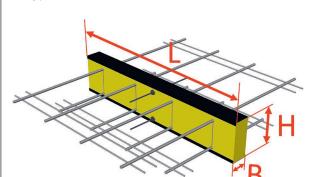
Planung/Bestellung

Übersicht Dokumentationen

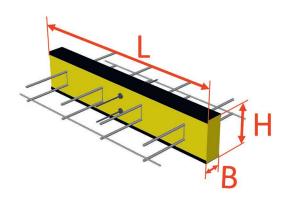
BASYCON

Ausgabe 2025 - CH

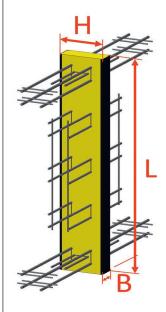
Planung/Bestellung

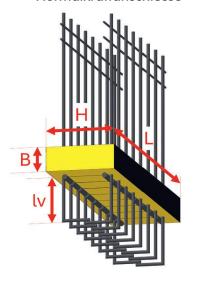

Abmessungsbezeichnungen

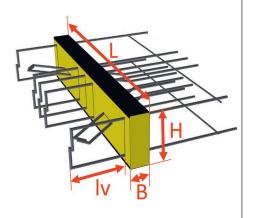
BASYCON

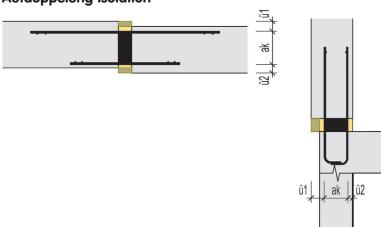

Ausgabe 2025 - CH

Bezeichnungen wichtigste Abmessungen


Kragplattenanschlüsse


Querkraftanschlüsse


Wandanschlüsse


Normalkraftanschlüsse

Brüstungsanschlüsse

Aufdoppelung Isolation

ak = Aussenkante PTS (= Plattenhöhe + Øu + Øo)

mit PTS komplett aus Stahl 1.4462!

BASYS AG, Bausysteme Industrie Neuhof 33

BASYCON Beantragung Sondernummern

Ausgabe 2025 – CH (Änderungen vorbehalten)

Heff 3 Heft 4 Heft 5

Normalkraftanschlüsse N, UZ, U

Brüstungsanschlüsse U, B

Wandanschlüsse WN, WQ

Kragplattenanschlüsse K Querkraftanschlüsse Q

Heft 2 Heff 1

www.basvs.ch / info@basvs.ch

3422	3422 Kirchberg		' }	www.bas	sys.ch / ir	www.basys.ch / info@basys.ch	_				BASYS	BASYSOL-Dämmkörper	1	Heff 1-5
<u> </u>		Plan Nr.:				Ingenieurbüro:							Bezeichnungen	
Objek	Objekt und Bauteil:					zuständige Person:	:-						Um Unklarheiten zu vermeiden.	iden.
PLZ, Ort:	Ort:												stellen wir Ihnen die Element- bläne mit den gewünschten	ent-
								Zusatze	Zusatzeigenschaften				Anpassungen vor Produktions-	-suo
						Seismo- Lock®	Fire- Lock®	Opti- Lock®	Thermo- Lock®	Noise- Lock®	Dyna- Lock®		beginn zur Freigabe zu.	
Pos.	Тур	[m] 	B [mm]	H [cm]	lv [mm]	1x LFA und 1x LFB oder 2x LFA und 2x LFB	Ja Isolation Steinwolle	Jа	вD	Ja für KS bis K2XL	Ja für KS bis K3XL	Anzahl Elemente	Sondernummer BASYCON (durch BASYS AG bestimmt)	nmt)
BASYSC	BASYSOL-Dämmkörper / Zwischenstücke													
Beispie	Beispiel Ausführung Sonderelement													
1A	KL, u=51	1.0		27		1x LFA	Ja	Ja				1	K-186784-A	<u> </u>
18	KL, u=51	1.0		27		1x LFB	Ja	Ja				-	K-186784-B	3Z-Z(

BASYCON

mit PTS komplett aus Stahl 1.4462!

Bestellliste

Ausgabe 2025 – CH (Änderungen vorbehalten)

BASYS AG, Bausysteme Industrie Neuhof 33 3422 Kirchberg Tel. 034 448 23 23 Fax 034 448 23 20 www.basys.ch / **info@basys.ch** Kragplattenanschlüsse K Heft 1
Querkraftanschlüsse Q Heft 2
Wandanschlüsse WN, WQ Heft 3
Normalkraftanschlüsse N, UZ, U Heft 4
Brüstungsanschlüsse U, B Heft 5
BASYSOL-Dämmkörper Heft 1–5

Nr.:		Plan Nr.					Datum:					
Objekt	ekt und Bauteil:											
Strasse, Nr.:						PLZ, Ort:						
Ingenie	eurbüro:					Liefero	rt:					
zustän Bestell	dige Person: ung geprüft am:					Lieferte Kommi Lieferb						
Bauunternehmer:					Verrecl (Stahl-	nnungsstelle: oder Baumaterialh	nandel)					
Bauführer: Baustellentelefon:												
Pos.	Тур	L [m] Standard	L [m] Spez.	H [cm]	Anzahl Elemente	Pos. Typ L [m] L [m] H [cm] Anzał Elemer						
						C	Spezialausführungen					
						Spezialausführungen						
BASYS	OL-Dämmkörper	/ Zwische	nstücke			Bezeic	hnungen					
							L					
								*				
										X		
											X	
						×			The state of the s			
											H	
							X	$\times\!\!\!/\!\!\!/$		*	•	
								XIIX				
Daatall	una orhalton am:				Mail 🗆		☐ Fov ☐ Post [\ufnahma	ali i i ala		