ESM

Geometry (Intermediate)

Use the information below to answer questions 1 - 3.

In the diagram below, $\overline{BD} \parallel \overline{AE}$ and $\overline{AB} \parallel \overline{CD}$ and ΔCDE is equilateral.

- **1.** What is the perimeter of *CBDE*?
 - **A.** 24
 - **B.** 28
 - **C.** 34
 - **D.** $8 + \frac{40\sqrt{3}}{3}$
 - **E.** $8 + 40\sqrt{3}$
- **2.** What is the area of *ABDC*?
 - **A.** 16
 - **B.** 24
 - **C.** 32
 - **D.** 48
 - **E.** 60
- **3.** What is the sum of $m \angle EDC$ and $m \angle BCE$ in degrees?
 - **A.** 120°
 - **B.** 145°
 - $\text{C. }150^{\circ}$
 - **D.** 160°
 - **E.** 170°

- 4. The equilateral triangle $\triangle ABC$ is shown to the right. \overline{BD} is the perpendicular bisector of \overline{AC} , and \overline{BD} measures $8\sqrt{3}$ inches. What is the perimeter of $\triangle ABC$ in inches?
 - **A.** 16
 - **B.** 24
 - **C.** $24\sqrt{3}$
 - **D.** 48
 - **E.** $64\sqrt{3}$

5. In the figure below, $\triangle ABC \sim \triangle EFG$, sides \overline{EF} and \overline{FG} are both 4.8 cm long, side \overline{AB} is 9.6 cm long, and the measure of $\angle ABC$ is 45°. What is the measure of x?

- **A.** 60°
- **B.** 65°
- **C.** 67.5°
- **D.** 72.5°
- **E.** 75°
- **6.** In the diagram to the right, \overline{CB} is tangent to circle A at point B, and $\angle CAB = 56.49^{\circ}$. What is the measure of $\angle ACB$ to the nearest degree?
 - **A.** 23°
 - **B.** 29°
 - **C.** 34°
 - **D.** 37°
 - **E.** 45°

- 7. The height of the triangle to the right is 12 units. What is its area in square units?
 - **A.** 72
 - **B.** 84
 - **C.** 168
 - **D.** 240
 - E. Cannot be determined from the given information

- **8.** An angle is bisected, and each of the resulting angles is trisected. The final angle measure of each resulting angle is 12.5°. What was the measure of the original angle?
 - **A.** 58°
 - **B.** 65°
 - **C.** 72°
 - **D.** 75°
 - **E.** 82°
- 9. In the figure to the right, \overline{XZ} is the perpendicular bisector of ΔWXY , and $\overline{WY} = 24$. What is the ratio of the area to the perimeter of ΔWXY ?
 - **A.** 6: 5
 - **B.** 4:3
 - **C.** 3: 5
 - **D.** 2: 3
 - **E.** 1:2

- **10.** How much larger is the smallest angle created by the hour and minute hand at 7:00 than the smallest angle created by the hour and minute hand at 1:00?
 - **A.** 100°
 - **B.** 120°
 - **C.** 130°
 - **D.** 140°
 - **E.** 150°

Use the information below to answer questions 11 - 12

In the diagram, $\triangle ABC$ is inscribed between two overlapping circles with center points A (3, 2) and B (7, 2). $\triangle ABC$ is an equilateral triangle.

11. What is the circumference of the circle with center point

A?

- **A.** 4π
- **B.** 8π
- C. 12π
- **D.** 14π
- **E.** 16π
- **12.** What is the length of the arc between points *B* and *C* on circle *A*?
 - A. $\frac{1}{2}\pi$
 - Β. π
 - C. $\frac{4}{3}\pi$
 - **D.** 2π
 - **E.** 4π

13. In the figure to the right, $\triangle ABC$ is an equilateral triangle. $\overrightarrow{AB} \parallel \overrightarrow{EF}$, E bisects \overrightarrow{AC} and F bisects \overrightarrow{BC} . What is the ratio of the area of $\triangle EFC$ to that of $\triangle ABC$?

14. A circle is inscribed in a square, which has a perimeter of 40 cm. What is the area of the circle?

$$\mathbf{B}.25\pi$$

$$C.40\pi$$

$$\mathbf{D}$$
. 50π

E.
$$100\pi$$

15. Point R exists at some distance from a circle. Lines are drawn from point R and run tangent to the circle at points P and Q. If $\angle PRQ$ is 50°, what is the measure of $\angle RPQ$?

16. Two cylinders both have a height of 4, but the first cylinder has a radius of 3, and the second has a radius of 5. What is the ratio of the volume of these cylinders?

17. In $\triangle ABC$, $\overline{AB} = 5$ cm, $\overline{AC} = 10$ cm, $m \angle A = 60$, and \overline{AC} is the longest side. Which of the following statements about the measures of the angles in $\triangle ABC$ must be true?

A.
$$m \angle A = m \angle B = m \angle C$$

B.
$$m \angle B > m \angle A > m \angle C$$

C.
$$m \angle B = m \angle C > m \angle A$$

D.
$$m \angle B > m \angle C = m \angle A$$

E.
$$m \angle C > m \angle A > m \angle B$$

- **18.** Given the circle below with AB = 6, and $\angle BAC = 60^{\circ}$ find the length of arc BC.
 - **A.** $\frac{\pi}{6}$
 - $\mathbf{B}.\frac{\pi}{2}$
 - C. π
 - D. 2π
 - E. 6π

19. A 5-inch-by-5-inch square grid shown below is divided into 25 squares, each with a side length of 1 inch. Each vertex of the two shaded triangles lies at an intersection of 2 grid lines. What fractional part of the 5-inch-by-5-inch square is shaded?

- **A.** $\frac{1}{3}$
- **B.** $\frac{9}{25}$
- C. $\frac{1}{2}$
- **D.** $\frac{3}{5}$
- **E.** $\frac{3}{4}$

- **20.** What is the perimeter of an isosceles right triangle with hypotenuse $5\sqrt{2}$ feet long?
 - **A.** 10
 - **B.** 15
 - **C.** 5 + $5\sqrt{2}$
 - **D.** $10 + 5\sqrt{2}$
 - **E.** $15 + 5\sqrt{2}$
- **21.** In quadrilateral ABCD shown below, $\overline{AD} \mid \mid \overline{BC}$, BC = 18 centimeters, AD = 26 centimeters, and the distance between \overline{AC} and \overline{AC} is 6 centimeters. What is the area, in square centimeters, of quadrilateral ABCD?

- **A.** 108
- **B.** 132
- **C.** 156
- **D.** 264
- **E.** 468