

Domain and Range

- 1. What are all and only the values of x that are NOT in the domain of the function $f(x) = \frac{(x-4)(x+3)}{(x+5)(x-1)}$?
 - \mathbf{A} . -4 and 3
 - **B.** −1 and 5
 - \mathbf{C} . -5 and 1
 - **D.** -4, -1, 3, and 5
 - E. -5, -3, 1, and 4
- 2. Given that the function f, defined as f(x) = 7 + 2x, has the domain $\{-4, 1, 5\}$, what is the range of f?
 - **A.** $\{-4, 1, 5\}$
 - **B.** $\{-3, 2, 8\}$
 - $\mathbf{C.} \{-2, 4, 11\}$
 - **D.** $\{-1, 9, 17\}$
 - **E.** {2, 12, 19}
- 3. The expression $\frac{3a+2b}{a+3c}$ is undefined whenever a=?
 - **A.** -3c
 - **B.** $-\frac{2}{3}c$
 - **C.** 0
 - **D.** $\frac{2}{3}c$
 - **E.** 3*c*
- **4.** In the standard (x, y) coordinate plane, for what value(s) of x, if any, is there NO value of y such that (x, y) is on the graph of $y = \frac{x+7}{(x-1)(x+4)(x-5)}$?
 - **A.** -5, -1, and 4 only
 - **B.** -4, 1, and 5 only
 - \mathbf{C} . -7 only
 - **D.** 7 only
 - **E.** There is no such value of x.

- 5. The graph of $y = \frac{3x+7}{x-4}$ in the standard (x, y) coordinate plane has a vertical asymptote at:
 - A. x = -7
 - **B.** x = -4
 - **C.** $x = \frac{7}{3}$
 - **D.** x = 4
 - **E.** x = 7
- **6.** Two real-valued functions are defined by $f(x) = \sqrt{x} 2$ and $g(x) = (x + 4)^3$. What is the domain of f(g(x))?
 - A. $[-4, \infty)$
 - **B.** [-2, ∞)
 - C. $[2, \infty)$
 - **D.** $[4, \infty)$
 - E. $(-\infty, \infty)$
- 7. A function is defined by h(a) = -3a + 8, and its domain is the set of integers from 1 through 20, inclusive. For how many values of a is h(a) negative?
 - **A.** 16
 - **B.** 17
 - **C.** 18
 - **D.** 19
 - **E.** 20
- **8.** Which of the following intervals represents all values in the domain of the function $f(x) = \log_{10}(x^2 2x + 1)$?
 - A. $(-\infty, \infty)$
 - **B.** $[0,\infty)$
 - C. $(-\infty, 1)$ and $(1, \infty)$
 - **D.** $(-\infty, 1]$ and $[1, \infty)$
 - **E.** [2, ∞)

9. If the domain of a function, f, consists of the real values of x such that $x \ge -3$, which of the following could be

A.
$$x^2 - 3$$

B.
$$\frac{x+3}{3}$$

C.
$$\frac{x-3}{3}$$

$$\mathbf{D.} \ \frac{x}{x+3}$$

$$\mathbf{E.} \ \sqrt{x+3}$$

10. The graph of $y = -4 + 6cos(x + \pi)$ is shown in the standard (x, y) coordinate plane below. What is the range of y?

A.
$$-12 \le x \le 4$$

B.
$$-10 \le x \le 2$$

C.
$$-5 \le x \le 5$$

D.
$$-12 \le y \le 4$$

E.
$$-10 \le y \le 2$$

11. If the range of a function f(x) is [-4, 30], what is the range of f(x) + 6?

A.
$$[-10, 24]$$

B.
$$[-4,30]$$

C.
$$[-4, 36]$$

E. Cannot be determined from the given information.

- 12. If the domain of the function g(x) is $[6, \infty)$, what is the domain of g(x-2)?
 - **A.** $(-\infty, -6]$
 - **B.** $[4, \infty)$
 - **C.** [6, ∞)
 - **D.** [8, ∞)
 - E. Cannot be determined from the given information.

13. The function h(x) is shown below. What is the domain of h(x-4)?

- **A.** $(-\infty, -4]$
- **B.** $(-\infty, 0]$
- C. $(-\infty, 4]$
- **D.** $[0, \infty)$
- E. Cannot be determined from the given information.