Quadratics (Advanced)

1. You are given the following system of equations:

$$y = x^2$$
$$px + qy = -z$$

where p, q, and z are integers. For which of the following will there be more than one (x, y) solution, with real-number coordinates, for the system?

A.
$$p^2 + 4qz > 0$$

B.
$$q^2 - 4pz < 0$$

C.
$$p^2 - 4qz > 0$$

D.
$$q^2 + 4qz > 0$$

E.
$$q^2 + 4pz < 0$$

2. Which of the following are linear factors of $ghx^2 + (gn + hm)x + mn$, a general quadratic expression in x?

A.
$$(gx-m)(hx-n)$$

B.
$$(gx-m)(hx+n)$$

C.
$$(gx + m)(hx - n)$$

D.
$$(gx + m) (hx + n)$$

$$\mathbf{E.} \ (gx-n) (hx-m)$$

3. Given that x = 4 is a solution to $x^2 + bx - 8 = 0$, which of the following polynomials is a factor of

$$x^2 + bx - 15$$
?

A.
$$x - 3$$

B.
$$x - 1$$

C.
$$x + 3$$

D.
$$x + 4$$

E.
$$x + 5$$

4. Given constants g, h, r, s such that $x^2 + rx + g$ has factors of (x + 3) and (x + 1), and $x^2 + sx + h$ has factors of (x - 2) and (x + 5), what is rs?

A.
$$-30$$

- 5. Which of the following most accurately describes the roots of the equation $8x^2 + 5x 3 = 0$?
 - A. One rational double root
 - **B.** One irrational double root
 - **C.** Two irrational roots
 - **D.** Two rational roots
 - E. Cannot be determined from the given information
- **6.** Which of the following quadratic equations has the complex number $1 + \sqrt{-1}$ as a solution?
 - **A.** $x^2 + 1 = 0$
 - **B.** $x^2 + x + 1 = 0$
 - C. $x^2 x + 1 = 0$
 - **D.** $x^2 2x + 1 = 0$
 - E. $x^2 2x + 2 = 0$
- 7. If r + s = 8 and r s = 4, what is the value of $(r + s)(r^2 s^2)$?
 - **A.** 4
 - **B.** 16
 - **C.** 32
 - **D.** 256
 - E. 512
- **8.** If $9x^2 + bx + 16 = 0$, where *b* is a constant, has exactly one solution, what is a possible value of *b*?
 - **A.** 3
 - **B.** 16
 - **C.** 24
 - **D.** 25
 - E. 144
- 9. In the xy-plane, the graph of $y = x^2 + bx + c$, where b and c are constants, has roots at x = -5 and x = 6. What is the value of b?
 - **A.** -30
 - **B.** −1
 - **C.** 1
 - **D.** 11
 - **E.** 30

$$x - 3\sqrt{x} - 4 = 0$$

- 10. What value of x satisfies the equation above?
 - **A.** 4
 - **B.** 8
 - **C.** 16
 - **D.** 25
 - **E.** 36

$$y = -6t^2 + 24t + 30$$

- 11. The equation above gives the height of a football above the ground y, in feet, t seconds after it is released from a player's hand. How many seconds after it is thrown does the ball reach the ground?
 - **A.** 0
 - **B.** 3
 - **C.** 5
 - **D.** 6
 - **E.** 30

$$g(x) = x^3 + ax^2 + bx + c$$

- 12. The function g is defined above, where a, b, and c are integer constants. If the zeros of the function are -4, 5, and -7, what is the value of c?
 - **A.** −140
 - **B.** −1
 - **C.** 1
 - **D.** 140
 - E. Cannot be determined from the given information
- 13. In the standard (x, y) coordinate plane, the graph of $y = 24(x + 12)^2 21$ is a parabola. What are the coordinates of the vertex of the parabola?
 - A. (24, -21)
 - **B.** (24, 21)
 - C. (12, -21)
 - **D.** (-12, -21)
 - E. (-12, 21)

$$4(x + a) + 6(x^2 - a) = 6x^2 + 4x + 10$$

- **14.** In the equation above, a is a constant. If the equation is true for all values of x, then what is the value of a?
 - **A.** -5
 - **B.** −4
 - **C.** 4
 - **D.** 6
 - E. 10
- 15. Which of the following is an equation of a parabola that passes through the 3 points in the standard (x, y) coordinate plane below?

- **A.** $y = 2(x + 2)^2$
- **B.** $y = \frac{1}{2}(x+2)^2$
- C. y = 2(x + 2)(x 2)
- **D.** $y = \frac{1}{2}(x+2)(x-2)$
- E. $y = 2x^2 2x + 2$
- 16. What are the solutions of the quadratic equation

$$(x-3)^2 - 9 = 0?$$

- **A.** x = -6 and x = 6
- **B.** x = 6 and x = 0
- **C.** x = 6 and x = 3
- **D.** x = 0 and x = 3
- **E.** x = -6 and x = 6