Exponents and Radicals (Advanced)

- **1.** For a positive real number z, where $z^6 = 3$, what is the value of z^{18} ?
 - **A.** $\sqrt[3]{18}$
 - **B.** 6
 - **C.** 9
 - **D.** 18
 - **E.** 27
- **2.** For all positive m and n, $m^{\frac{4}{3}}n^{\frac{1}{4}}$ can be written in which of the following radical forms?
 - **A.** $\sqrt[12]{m^4n}$
 - **B.** $\sqrt[12]{m^4n^3}$
 - C. $\sqrt[12]{m^4n^4}$
 - **D.** $m^{12}\sqrt{m^4n^3}$
 - **E.** $mn^{12}\sqrt{m^7n^7}$
- **3.** For all positive x, which of the following expressions is equivalent to $\sqrt[6]{x^5}(\sqrt[3]{x^5})$?
 - **A.** $\chi^{\frac{9}{10}}$
 - **B.** *x*
 - C. $x^{\frac{10}{9}}$
 - **D.** $x^{\frac{9}{5}}$
 - **E.** $x^{\frac{5}{2}}$
- **4.** The digit in the ones place of 3^{74} is 9. What is the digit in the ones place of 3^{72} ?
 - **A.** 1
 - **B.** 3
 - **C.** 6
 - **D.** 7
 - **E.** 9

- 5. If s > 0 and t > 0, $\sqrt{\frac{s}{t}} + \sqrt{\frac{t}{s}}$ is equivalent to which of the following?
 - **A.** 1
 - **B.** $\frac{s+t}{st}$
 - C. $2\sqrt{ts}$
 - $\mathbf{D.} \ \frac{2\sqrt{ts}}{t+s}$
 - **E.** $\frac{s+t}{\sqrt{st}}$
- **6.** For all y > 0, which of the following expressions is NOT equivalent to $\sqrt[3]{\sqrt[2]{y^3}}$?
 - A. \sqrt{y}
 - **B.** $\sqrt[4]{y^2}$
 - C. $\sqrt[3]{y^3}$
 - **D.** $y^{\frac{1}{3}}$
 - **E.** $y^{\frac{1}{2}}$
- 7. If c and x are positive rational integers such that $c^{3x} = 4$, then $c^{9x} = ?$
 - **A.** 8
 - **B.** 12
 - **C.** 16
 - **D.** 36
 - **E.** 64
- **8.** For how many integers x is the equation $9^{3x+6} = 27^{2x+4}$ true?
 - **A.** 0
 - **B.** 1
 - **C.** 2
 - **D.** 3
 - E. An infinite number

- 9. The expression $\frac{x^{-3}y^{\frac{1}{2}}}{x^{\frac{1}{2}}y^{-1}}$, where x > 1 and y > 1, is equivalent to which of the following?
 - **A.** $\frac{(\sqrt[3]{x})(y\sqrt{y})}{\sqrt{x}}$
 - $\mathbf{B.} \ \frac{y\sqrt{y}}{x^3\sqrt{x}}$
 - $\mathbf{C.} \ \frac{x^3 \sqrt{x}}{y \sqrt{y}}$
 - $\mathbf{D.} \ \frac{\left(\sqrt[3]{x}\right)(\sqrt{y})}{y\sqrt{x}}$
 - **E.** $\frac{\sqrt[2]{x^7}}{\sqrt[2]{y^3}}$
- **10.** Whenever l and m are positive integers such that $(\sqrt[3]{5})^l = 125^m$, what is the value of $\frac{l}{m}$?
 - A. $\frac{1}{9}$
 - **B.** $\frac{1}{3}$
 - **C.** 1
 - **D.** 3
 - **E.** 9
- 11. $(\sqrt[m]{2})3^{\frac{2}{m}}$

If m is a positive integer, which of the following is the equivalent to the expression above?

- **A.** $2^{\frac{1}{m}}$
- **B.** $6^{\frac{1}{m}}$
- **C.** $\sqrt[m]{9}$
- **D.** $\sqrt[m]{18}$
- **E.** $\sqrt[m]{216}$

- 12. If $\frac{\sqrt{y^5}}{\sqrt[3]{y^2}} = y^{\frac{j}{k}}$ for all positive values of y, what is the value of $\frac{j}{k}$?
 - **A.** $\frac{3}{13}$
 - **B.** 1
 - C. $\frac{11}{6}$
 - **D.** $\frac{15}{4}$
 - **E.** $\frac{13}{3}$
- **13.** If $\frac{x^{c^2}}{x^{d^2}} = x^{20}$, x > 1, and c d = 5, what is the value of
 - c + d?
 - **A.** 4
 - **B.** 10
 - **C.** 15
 - **D.** 20
 - **E.** 25
- **14.** If 4y 2x = 14, what is the value of $\frac{16^y}{4^x}$?
 - **A.** 2^7
 - **B.** 2^{14}
 - **C.** 4
 - **D.** 4¹⁴
 - **E.** The value cannot be determined from the information given.
- **15.** Let a and b be nonzero real numbers such that $3^{b+1} = 3a$. Which of the following is an expression for 3^{b+3} in terms of a?
 - **A.** $\frac{1}{9a^3}$
 - **B.** $\frac{1}{6a}$
 - **C.** a^{3}
 - **D.** $6a^2$
 - **E.** 27a