

ESM

No and Infinite Solutions

Multiple Choice (Calculator)

1.
$$3ax + 6(2x - 8) = -48$$

In the equation above, a is a constant. For what value of a does the equation have infinitely many solutions?

- A) -6
- B) -4
- C) 4
- D) 6

2.
$$b(-2x-1) + x = 9x - 2$$

The equation above has no solutions, and b is a constant. What is the value of b?

- A) $-\frac{9}{2}$
- B) -4
- C) 0
- D) 3

3.
$$\frac{2}{3}x + \frac{3}{4}y = a$$
$$8x + by = 12$$

The system of equations above is true for infinitely many points in the xy-plane, and a and b are constants. What is the value of $\frac{a}{b}$?

- A) $\frac{1}{9}$
- B) $\frac{3}{4}$
- C) 9
- D) 12

$$0.6x - 1.8y = 0.5$$

$$ax + by = 3$$

In the system of equations above, a and b are constants. If the system of equations has no solution, what is the value of $-\frac{a}{b}$?

- A) $\frac{1}{3}$
- B) 1
- C) 2
- D) 3

5.

$$x + y = 2$$

$$3x + 3y = 2$$

How many solutions does the given system of equations have?

- A) Zero
- B) Exactly one
- C) Exactly two
- D) Infinitely many

$$21x + 10 = j(7x + 5) + 7x$$

In the given equation, j is a constant. The equation has exactly one solution. Which value could NOT be the value of j?

- A) -1
- B) 0
- C) 1
- D) 2

7. Which linear equation has exactly one solution?

- A) 3x = 3x + 6
- B) 6x = 3x + 6
- C) 3(x+2) = 3x + 6
- D) 3(x+3) = 3x + 6

8.

$$x - 2y = 6$$

$$4(x-2y)=24$$

How many solutions does the given system of equations have?

- A) Zero
- B) Exactly one
- C) Exactly two
- D) Infinitely many

9.

$$3x^2 - 6x - d = 0$$

In the equation above, d is a constant. If the equation has exactly one real solution, which of the following could be the value of d?

- A) -6
- B) -3
- C) 3
- D) 6

10.

$$3(x+g) = fx + h$$

In the equation above, f, g, and h are constants. If the equation has infinitely many solutions, which of the following must be equal to h?

- A) f
- B) *g*
- C) 3*f*
- D) 3*g*

A mentor can change everything.

Grid-In (Calculator)

11.
$$0.3x + 0.7y = 1.8$$
$$ax + 14y = 12$$

a is a constant. Find the value of a such that the system of equations above has no solution.

12.
$$0.3x + 0.7y = 0.9$$
$$ax + 14y = 18$$

a is a constant. Find the value of a such that the system of equations above has infinitely many solutions.

13.
$$\frac{2}{3}x - \frac{7}{9}y = \frac{5}{12}$$
$$ax - by = c$$

If the system of the equations above has infinitely many solutions, where a, b, and c are constants, what is the value of $\frac{a}{b}$?

14.
$$a(x-b) = 5x - 8$$

In the equation above, a and b are constants. If the equation has infinitely many solutions for x, what is the value of b?

15.
$$bx + 3 = 4x + 7$$

In the given equation, b is a constant. The equation has no solution. What is the value of b?

16. In the *xy*-plane, where *c* is a constant, the system of equations 2x - 3y = 12 and $\frac{1}{2}x - \frac{3}{4}y = c$ has infinite solutions. What is the value of *c*?

17.
$$\frac{2}{3}x + \frac{5}{9}y = 6$$

$$ax + by = 3$$

The system of equations above has no solutions. If a and b are constants, what is the value of $\frac{a}{b}$?

18. In the *xy*-plane, the equations 2x + 5y = 12 and 6x + 15y = d represent the same line for some constant *d*. What is the value of *d*?

19.
$$\frac{3}{5}x = ax - 3$$

In the equation above, a is a constant. The equation has no solution. What is the value of a?

20.
$$3j(x-3) = x-3$$

In the equation above, j is a constant. If the equation has infinitely many solutions, what is the value of j?