Probability & Counting (Advanced)

- 1. For all positive integers a and b, the expression $(a^b)!$ is equivalent to one of the following expressions. Which one?
 - **A.** $(a!)^b$
 - **B.** (*ab*)!
 - C. b(a!)
 - **D.** $a^b(-1-2-3...)$
 - **E.** $[a^b(a^b-1)(a^b-2)(a^b-3)....(1)]$
- 2. Five balls numbered 1, 2, 3, 4, and 5 are placed in a bin. Two balls are drawn at random without replacement. What is the probability that the sum of the numbers on the balls drawn is 6?
 - A. $\frac{1}{5}$
 - **B.** $\frac{2}{5}$
 - C. $\frac{4}{5}$
 - **D.** $\frac{5}{9}$
 - **E.** $\frac{4}{25}$
- 3. Clayton and Zella are members of a school committee that will be meeting this afternoon. The 7 members will be seated in 7 chairs in a circle. If seats are assigned randomly, what is the probability that Clayton and Zella will NOT be seated next to each other?
 - **A.** $\frac{1}{3}$
 - **B.** $\frac{2}{3}$
 - C. $\frac{1}{6}$
 - **D.** $\frac{5}{6}$
 - **E.** $\frac{1}{2}$

4. For the first 6 values of x, the table below gives the probability, P(x), that a certain factory machine will make x errors on any given workday.

x errors	P(x)
0	0.0745
1	0.1111
2	0.2398
3	0.2264
4	0.2003
5	0.1175

Which of the following values is closest to the probability that this machine will make at least 2 errors on any given workday?

- **A.** 0.2398
- **B.** 0.4582
- **C.** 0.6443
- **D.** 0.7840
- **E.** 0.8144
- 5. A fair spinner with 5 equally sized regions and an arrow has regions numbered 1, 2, 3, 4, and 5, respectively, and a second fair spinner with 6 equally sized regions numbered 1, 2, 3, 4, 5, and 6, respectively. The arrows are both spun at the same time, and the numbers the 2 arrows land on are multiplied together. What is the probability that this product is an even number?
 - A. $\frac{1}{2}$
 - **B.** $\frac{3}{8}$
 - C. $\frac{3}{9}$
 - **D.** $\frac{7}{10}$
 - E. $\frac{9}{10}$

- **6.** Let G and H be independent events. Denote P(G) as the probability that Event G will occur, and denote $P(G \cap H)$ as the probability that Events G and H will both occur. Which of the following equations *must* be true?
 - **A.** P(G) = P(H)
 - **B**. P(G) = 1 P(H)
 - C. $P(G \cap H) = P(G) + P(H)$
 - **D.** $P(G \cap H) = P(G) \cdot P(H)$
 - **E.** $P(G \cap H) = P(G) + P(H) P(G) \cdot P(H)$
- 7. A committee of 8 will be selected from a group of 8 women and 6 men. What of the following equations would compute the probability that the committee consisted of 4 women and 4 men?
 - **A.** $_{8}C_{4}$
 - **B.** $_8C_6$
 - C. $_{8}C_{4} + _{6}C_{4}$
 - **D.** $\frac{{}_{8}C_{4}\times{}_{6}C_{4}}{{}_{14}C_{8}}$
 - **E.** $\frac{{}_{8}C_{4}+{}_{6}C_{4}}{{}_{14}C_{8}}$
- **8.** Which of the following expressions give the number of distinct permutations of the letters in HIERARCHY?
 - **A.** 9!
 - **B.** 5! (5!)
 - C. $\frac{9!}{4!}$
 - **D.** $\frac{9!}{2!}$
 - **E.** $\frac{9!}{(2!)(2!)}$

- 9. A business is choosing a committee of 6 people from the company and wishes to ensure that it consists of 3 women and 3 men. If there are 22 women and 24 men currently employed in the company, how many different committees could be chosen?
 - **A.** 528
 - **B**. 3,168
 - **C.** 3,116,960
 - **D.** 9,366,819
 - **E.** 112,210,560
- **10.** Of the 18 balloons in a party store, 5 are red, 3 are blue, 4 are green, and 6 are purple. Jose will buy 4 balloons, chosen at random, for his daughter's birthday party. What is the probability that Jose will rent 1 of each of the 4 colors of balloons?
 - A. $\frac{1}{204}$
 - **B.** $\frac{1}{18}$
 - C. $\frac{2}{17}$
 - **D.** $\frac{2}{9}$
 - E. $\frac{1}{4}$