Absolute Value (Basic)

- 1. |13 9| |9 13| = ?
 - **A.** −16
 - **B.** −8
 - C. -4
 - **D.** 0
 - **E.** 8
- **2.** |3(-5) + 3| = ?
- A. -18
 - **B.** −12
 - **C.** 7
 - **D.** 12
 - **E.** 18

$$|x - 10| = 4$$

- **3.** If c and d are the solutions to the equation above, what is the value of |c d|?
 - **A.** 0
 - **B.** 6
 - **C.** 8
 - **D.** 10
 - **E.** 14
- **4.** -3|6-9|=?
 - **A.** −45
 - **B.** −9
 - \mathbf{C} . 0
 - **D.** 9
 - **E.** 45
- 5. For all nonzero values of x and y, the value of which of the following expressions is *always* negative?
 - A. x-y
 - **B.** -x-y
 - C. |x|-y
 - **D.** x-|y|
 - **E.** -|x| |y|

- **6.** If x > |y|, which of the following is the solution statement for x when y = -7?
 - **A.** x < -7
 - **B.** -7 < x < 7
 - **C.** x < 7
 - **D.** 7 < x
 - **E.** -7 < x
- 7. It costs x dollars for an adult ticket to a Patriots game and y dollars for a children's ticket. The difference between the cost of 15 adult tickets and 20 children tickets is \$44. Which of the following equations represents this relationship between x and y?
 - **A.** 15x 20y = 44
 - **B.** |15x 20y| = 44
 - C. |15x + 20y| = 44
 - **D.** |20y 15x| = 44
 - **E.** |20y + 15x| = 44
- **8.** If x < y, then |x y| is equivalent to which of the following?
 - A. x + y
 - **B.** -(x + y)
 - C. $\sqrt{x-y}$
 - $\mathbf{D.} \qquad x-y$
 - **E.** -(x y)
- **9.** For real numbers c and d, when is the equation
 - |c + d| = |c d| true?
 - **A.** Always
 - **B.** Only when c = d
 - C. Only when c = 0 or d = 0
 - **D.** Only when c = 0 and d = 0
 - E. Never

$$-10|v-5| = -60$$

- **10.** If x and y are the solutions to the equation above, what is the value of x + y?
 - A. -5
 - **B.** −1
 - C. 5
 - **D.** 10
 - **E.** 11

11. Which of the following inequalities is equivalent to

$$(|x| + 4)^2 \le 25 ?$$

A.
$$-9 \le x \le -1$$

B.
$$-9 \le x \le 9$$

C.
$$-1 \le x \le 1$$

D.
$$-9 \le x \le 1$$

E.
$$-1 \le x \le 9$$

12. The solution set of which of the following equations is the set of real numbers that are 10 units away from -8?

A.
$$|x + 8| = 10$$

B.
$$|x - 8| = 10$$

C.
$$|x + 10| = 8$$

D.
$$|x - 10| = 8$$

E.
$$|10 - x| = 8$$