
Distance and Midpoint Formulas

1. What is the length of the line segment in the graph below?

- **A.** $\sqrt{10}$
- **B.** $\sqrt{12}$
- **C.** $\sqrt{19}$
- **D.** $\sqrt{34}$
- **E.** $2\sqrt{17}$
- 2. What is the length of the line segment with endpoints (12, -4) and (-7, 5)?
 - **A.** 26
 - **B.** 106
 - **C.** $\sqrt{26}$
 - **D.** $\sqrt{106}$
 - **E.** $\sqrt{442}$
- **3.** The coordinates of the endpoints of \overline{GH} , in the standard (x, y) coordinate plane, are (-7, -2) and (3, 4). What is the *x*-coordinate of the midpoint of \overline{GH} ?
 - **A.** -4
 - **B.** -2
 - **C.** 0
 - **D.** 2
 - **E.** 5

- **4.** If the midpoint of the line segment \overline{AB} is (3, 5) and point *B* has coordinates (6, 2), what are the coordinates of *A*?
 - **A.** (0,8)
 - **B.** (9, -1)
 - C. (4.5, 3.5)
 - **D.** (9, 7)
 - **E.** (2, -4)
- 5. In the standard (x, y) coordinate plane, what is the distance, in coordinate units, from $A\left(4\frac{1}{3}, -4\right)$ to

$$B\left(-2\frac{5}{9},-4\right)?$$

- **A.** $\frac{8}{9}$
- **B.** $2\frac{2}{9}$
- **C.** $3\frac{5}{9}$
- **D.** $6\frac{8}{9}$
- **E.** $9\frac{4}{9}$
- **6.** Two boats leave the marina and head for docks at different points of the lake. The first boat moors at a dock that is 2 miles north and 3 miles east of the marina. The second boat moors at a dock that is 4 miles south and 2 miles east of the marina. How many miles apart are the boats when they are docked?
 - **A.** 6
 - **B.** $\sqrt{37}$
 - **C.** $\sqrt{53}$
 - **D.** 8
 - **E.** $\sqrt{71}$
- 7. What is the distance, in coordinate units, between 1 2i and 5 + 3i in the complex plane?
 - **A.** 6
 - **B.** 11
 - **C.** $\sqrt{27}$
 - **D.** $\sqrt{41}$
 - **E.** $\sqrt{63}$

- **8.** A circle in the standard (x, y) coordinate plane has center C(-3, 4) and passes through A(4, 7). Line segment \overline{AB} is a diameter of this circle. What are the coordinates of point B?
 - **A.** (-5, -1)
 - **B.** (-10,1)
 - C. (0,1)
 - **D.** (3,5)
 - **E.** (6, -2)
- **9.** In the standard (x,y) coordinate plane, the 3 distinct points A(2,7), B(5,-4), and C are collinear, and B is equidistant to A and C. What are the coordinates of C?
 - **A.** (2, 11)
 - **B.** (3,0)
 - C. (5, -10)
 - **D.** (6, -13)
 - E. (8, -15)
- 10. The equation $(x-3)^2 + (y-5)^2 = 9$ is that of a circle that lies in the standard (x, y) coordinate plane. One endpoint of a diameter of the circle has a y-coordinate of 7. What is the y-coordinate of the other endpoint of that diameter?
 - **A.** -7
 - **B.** 0
 - **C.** 3
 - **D.** 8
 - **E.** 11