Trigonometry (Advanced)

Multiple Choice

- 1. A ramp in a skate park is 9 feet long and has a vertical lift of 4 feet. Which of the following expressions is closest to the angle of elevation between the base of the ramp and the horizontal ground?
 - A $\sin^{-1}\frac{4}{9}$
 - B. $\cos^{-1} \frac{9}{4}$
 - C. $\tan^{-1} \frac{9}{4}$
 - D. $\tan^{-1} \frac{4}{9}$
- 2. Given that $\sin \beta = \frac{12}{13}$ and $\frac{\pi}{2} < \beta < \pi$, what is the value of $\cos \beta$?
 - A) $-\frac{13}{12}$
 - B) $-\frac{5}{13}$
 - C) $\frac{5}{13}$
 - D) $\frac{13}{12}$

$$3. \sin(x) = \cos(P - x)$$

In the equation above, the angle measures are in radians and P is a constant. What is the value of P, in radians?

- A) 0
- B) $\frac{\pi}{4}$
- C) $\frac{\pi}{2}$
- D) $\frac{3\pi}{4}$

- **4.** In the figure below, what is the measure, in radians, of angle *AOB*?
 - A) $\frac{\pi}{4}$
 - B) $\frac{\pi}{2}$
 - C) $\frac{3\pi}{4}$
 - D) $\frac{5\pi}{4}$

- 5. Given that $\cos \theta = -\frac{\sqrt{3}}{2}$ and $\pi < \theta < \frac{3\pi}{2}$, what is the value of $\tan \theta$?
 - A) $-\sqrt{3}$
 - B) $-\frac{\sqrt{3}}{3}$
 - C) $\frac{\sqrt{3}}{3}$
 - D) $\sqrt{3}$
- 6. A 45-foot-long rectangular swimming pool with vertical sides is 5 feet deep at the shallow end and 13 feet deep at the deep end. The bottom of the pool slopes downward at a constant angle from horizontal along the length of the pool. Which of the following expressions gives this constant angle? (Note: For $-\frac{\pi}{2} < x < \frac{\pi}{2}$, $y = \sin x$ if and only if $x = \sin^{-1} y$.)
 - A) $\tan^{-1} \frac{8}{45}$
 - B) $\sin^{-1} \frac{2}{5}$
 - C) $\tan^{-1} \frac{4}{9}$
 - D) $\sin^{-1} \frac{5}{2}$

$$7. \qquad \cos x = \frac{5}{13}$$

Which of the following answer choices contains an equivalent solution for x in the equation above? (No Calculator)

A)
$$\cos x = \frac{12}{13}$$

$$B) \sin x = \frac{13}{12}$$

$$C) \sin x = \frac{5}{12}$$

D)
$$\sin x = \frac{12}{13}$$

8.

In the given figure, θ is an angle. If $\cos \theta = \frac{\sqrt{2}}{2}$, what is $\tan \theta$?

- A) 1
- B) $\frac{\sqrt{2}}{2}$
- C) $-\frac{\sqrt{2}}{2}$
- D) -1

9.

In triangle ABC shown, what is tan C? (No Calculator)

- A) $\frac{1}{2}$
- B) $\frac{6}{6\sqrt{3}}$
- C) $\frac{6\sqrt{3}}{6}$
- D) 6

10. What is the value of $\tan \frac{2\pi}{3}$? (**No Calculator**)

- A) $-\sqrt{3}$
- B) $-\frac{\sqrt{3}}{3}$
- C) $\frac{\sqrt{3}}{3}$
- D) $\sqrt{3}$

Grid-In

- **11.** In triangle KLM, angle L is a right angle. If $\sin K = .72$, What is the value of $\cos M$? (**No Calculator**)
- 12. Isosceles triangle ΔDEF has an altitude of h inches, a base of 28 centimeters, and two base angles measuring 68° each, as shown in the figure below. What is the value of h, to the nearest tenth?

13.

The angles show above are acute and $sin(x^\circ) = cos(y^\circ)$. If x = 6z + 30 and y = 2z - 8, what is the value of z?

14. In the *xy*-plane, *O* is the center of the circle below and the angle AOB measures $\frac{\pi}{a}$ radians. What is the value of a? (**No Calculator**)

15.

In the figure, \overline{DG} and \overline{FE} intersect at point G, DG = 4, and EG = 3. What is the value of $\sin F$? (**No Calculator**)