

The Discriminant

Multiple Choice

1. $3x^2 + 23x - 13 = 0$

How many distinct real solutions does the given equation have?

- A. Exactly one
- **B.** Exactly two
- C. Exactly three
- **D.** Zero
- E. Infinitely many
- 2. If the quadratic equation $x^2 kx + 25 = 0$ has one real solution, which of the following is a possible value of k?
 - **A**. −15
 - **B.** −5
 - **C.** 0
 - **D.** 10
 - **E.** 15
- 3. Which of the following most accurately describes the number of roots of $3x^2 + 3x + 1 = 0$?
 - A. Exactly one
 - **B.** Exactly two
 - C. Exactly three
 - **D.** Zero
 - E. Infinitely many

4.
$$y = x^2$$
$$px + qy = -z$$

In the above system of equations, p, q, and z are integers. For which of the following will there be more than one real solution for the system?

- **A.** $p^2 + 4qz > 0$
- **B.** $q^2 4pz < 0$
- C. $p^2 4qz > 0$
- **D.** $q^2 + 4pz < 0$
- **E.** $q^2 + 4pz = 0$

- 5. For what values of c does the equation $x^2 + cx + 4 = 0$ have no real solutions?
 - **A.** All c < 0
 - **B.** All c < 4
 - C. -4 < c < 0
 - **D**. 0 < c < 4
 - **E.** -4 < c < 4
- **6.** How many real solutions does the equation $-4x^2 x + 3 = 0$ have?
 - A. Exactly one
 - B. Exactly two
 - C. Exactly three
 - **D.** Zero
 - E. Infinitely many

7.
$$4x^2 + bx + 169 = 0$$

In the given equation, b is a positive integer. The equation has one real solution. What is the value of b?

- **A.** 0
- **B.** 4
- **C.** 13
- **D.** 52
- **E.** 169

8.
$$-x^2 + 5x + k = 0$$

In the given equation, k is a constant. One of the solutions can be written as $\frac{1}{2}(5-\sqrt{53})$. What is the value of k?

- **A.** -7
- **B.** 0
- **C.** 5
- **D.** 7
- **E.** 53
- 9. If the quadratic equation $-9x^2 + kx 441 = 0$ has one real solution, what is the value of k, where k is a positive integer?
 - **A.** 9
 - **B.** 21
 - **C.** 49
 - **D.** 126
 - E. 441

10.
$$-x^2 + bx - 625 = 0$$

In the given equation, b is a positive integer. The equation has no real solutions. What is the greatest possible value of b?

- **A.** 25
- **B.** 48
- **C.** 49
- **D.** 50
- **E.** 625