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ABSTRACT

All animals evaluate the salience of external stimuli and
integrate them with internal physiological information
into adaptive behavior. Natural and sexual selection
impinge on these processes, yet our understanding of
behavioral decision-making mechanisms and their evo-
lution is still very limited. Insights from mammals indi-
cate that two neural circuits are of crucial importance
in this context: the social behavior network and the
mesolimbic reward system. Here we review evidence
from neurochemical, tract-tracing, developmental, and
functional lesion/stimulation studies that delineates
homology relationships for most of the nodes of these

two circuits across the five major vertebrate lineages:
mammals, birds, reptiles, amphibians, and teleost fish.
We provide for the first time a comprehensive compara-
tive analysis of the two neural circuits and conclude
that they were already present in early vertebrates. We
also propose that these circuits form a larger social de-
cision-making (SDM) network that regulates adaptive
behavior. Our synthesis thus provides an important
foundation for understanding the evolution of the neural
mechanisms underlying reward processing and behav-
ioral regulation. J. Comp. Neurol. 519:3599-3639, 2011.
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Throughout their lives, all animals constantly face sit-
uations that provide either challenges (e.g., aggression,
predation) or opportunities (e.g., reproduction, foraging,
habitat selection) (for a detailed review, see O’Connell
and Hofmann, 2011). In all cases, environmental cues are
processed by sensory systems into a meaningful biologi-
cal signal while internal physiological cues (e.g., condi-
tion, maturity) and prior experience are integrated at the
same time. This process usually results in behavioral
actions that are adaptive, i.e., beneficial to the animal. To
accomplish this, an animal’s nervous system must evalu-
ate the salience of a stimulus and elicit a context-appro-
priate behavioral response. Despite tremendous progress
in understanding the ecology and evolution of social
behavior (Lorenz, 1952; Tinbergen, 1963; Lehrman,
1965; von Frisch, 1967; Krebs and Davies, 1993; Ste-
phens, 2008), it is less understood where in the brain
these decisions (e.g., about mate choice or territory
defense) are made and how these brain circuits have
arisen over the course of vertebrate evolution.

Recent research has begun to decipher the neural
basis of social decision-making. In mammals in particular,

© 2011 Wiley-Liss, Inc.

the neural circuits that evaluate stimulus salience and/or
regulate social behavior have been uncovered to some
degree: the mesolimbic reward system and social behav-
ior network (Fig. 1). It is becoming increasingly clear that
the reward system (including but not limited to the mid-
brain dopaminergic system) is the neural circuit where
the salience of an external stimulus is evaluated (Deco
and Rolls, 2005; Wickens et al.,, 2007), as appetitive
behavior seems to be regulated by this network. In mam-
mals, this circuit contains mostly telencephalic brain
regions and dopaminergic projections from the midbrain
ventral tegmental area. The neural substrate of social
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Figure 1. Interactive nodes of the networks regulating social de-
cision-making. Brain regions in the social behavior network (left)
and mesolimbic reward system (right), as well as brain regions
involved in both systems (center), are shown. Arrows indicate an-
atomical connections between these brain regions within each
system in mammals. AH, anterior hypothalamus; bIAMY, basolat-
eral amygdala; BNST/meAMY, bed nucleus of the stria termina-
lis/medial amygdala; HIP, hippocampus; LS, lateral septum;
NAcc, nucleus accumbens; PAG/CG, periaqueductal gray/central
gray; POA, preoptic area; Str, striatum; VMH, ventromedial hypo-
thalamus; VP, ventral pallidum; VTA, ventral tegmental area.
[Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]
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behavior has been described by Newman (1999) as a
“social behavior network” (SBN) in mammals, and has
been expanded to reptiles, birds, and teleosts (Crews,
2003; Goodson, 2005). The core nodes of Newman’s net-
work are involved in multiple forms of social behavior
(sexual behavior, aggression, and parental care), are
reciprocally connected, and—by definition—contain sex
steroid hormone receptors. Unfortunately, very little is
known about the neural basis of other opportunistic non-
social behaviors, such as foraging or habitat selection.
However, there is evidence that some of these amygdalar
and hypothalamic regions also regulate feeding behavior
(Buntin et al., 1999; Choi and Kim, 2010).

Social decision-making requires the evaluation of stim-
ulus salience before an adaptive behavioral response can

Abbreviations
AH Anterior hypothalamus
bIAMY Basolateral amygdala
BNST Bed nucleus of the stria terminalis
HIP Hippocampus
LS Lateral septum
meAMY Medial amygdala
NAcc Nucleus accumbens
PAG/CG Periaqueductal gray/central gray
POA Preoptic area
STR Striatum
VMH Ventromedial hypothalamus
VP Ventral pallidum
VTA Ventral tegmental area

be carried out. We therefore argue here that the mesolim-
bic reward system and SBN are best understood as an
integrated and evolutionarily ancient social decision-mak-
ing (SDM) network that regulates and implements
responses to salient stimuli (both social and nonsocial).
The reasoning for this integration of neural circuits into a
larger framework is as follows: historically, the study of
the neural and endocrine mechanisms underlying social
behavior (aggression, parental care, sexual behavior), and
more generally, sociality (Goodson and Kabelik, 2009),
focused on specific candidate fore- and midbrain areas
(e.g., preoptic area, ventromedial hypothalamus, septal
regions). Newman (1999) was the first to propose a com-
prehensive set of criteria (see below for detailed discus-
sion) that allowed her to integrate these individual
regions into the SBN, an advance that has greatly facili-
tated our understanding of the neural and hormonal
underpinnings of social life across major vertebrate line-
ages (Newman, 1999; Crews, 2003; Goodson, 2005).
However, to be adaptive, social behavior must be rein-
forcing (or rewarding) in some way. This is where we can
take advantage of the rich literature on the mesolimbic
reward system, which shares overlapping nodes with the
SBN (lateral septum and bed nucleus of the stria termina-
lis) and has been studied extensively in mammals in the
context of addiction (Adinoff, 2004) and regulating appe-
titive behavior (Alcaro et al., 2007). This neural system
can reinforce responses to salient stimuli such as sex
with a conspecific (Paredes, 2009), winning a fight (Fuxj-
ager et al., 2010), or caring for offspring (Numan, 2007)
and—as we argue here—was likely already in place in early
vertebrates. Taken together, the SDM network as the
union of the reward system and SBN is intimately con-
cerned with regulating and implementing adaptive behav-
ioral outputs in response to salient environmental chal-
lenges and opportunities. We would therefore predict
that the SDM network is highly conserved and has played
a fundamental role in vertebrate social evolution.

In order to test this hypothesis, we must first establish
the homology relationships of the SDM network nodes
across vertebrates. In principle, this provides the oppor-
tunity to integrate insights into the neural basis of social
decision-making gathered from many species across ver-
tebrates into a comprehensive understanding of how de-
cision-making processes have evolved. This type of cross-
species comparison supports the idea that elements of
these circuits are phylogenetically ancient, with evidence
for their existence in a wide variety of vertebrates, includ-
ing both amniote and anamniote lineages. In the following
review, we will endeavor to describe what we suggest to
be homologous systems in four vertebrate groups: mam-
mals, birds/reptiles, amphibians, and fish. Specifically,
we focus on the fish subclass of teleosts, due to the
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paucity of neural studies in nonteleost fish. These verte-
brate groups should not be considered to represent a lin-
ear sequence of evolution, but instead as representatives
of four different clades that diverged at different points
during vertebrate evolution. Commonalities between
these divergent groups suggest, but do not prove, that
the circuits we describe were present in some form at the
common origin of these lineages, as our descriptions only
suggest similarity in circuitry and neurotransmitters
based on several lines of evidence. Importantly, space
does not permit a rigorous review of the limitations or
caveats on the suggested homologies that we draw, and
for this the reader should refer to the original articles ref-
erenced herein.

Efforts to determine homology relationships for nodes
of the mesolimbic reward system and SBN in other verte-
brate classes have often proved controversial and have
been hampered by inconsistent nomenclatures and
incomplete information. However, a consensus is emerg-
ing from hodological, neurochemical, and developmental
studies that provide support for putative homologies for
most of the relevant areas in the avian, reptilian, amphib-
ian, and teleost brains (Fig. 2) (Marin et al., 1998a; Redies
and Puelles, 2001; Reiner et al.,, 2004; Wullimann and
Mueller, 2004; Moreno and Gonzéalez, 2007a; Bruce and
Braford, 2009). Here we present a synthesis of decades
of research that has led to a greater understanding of the
putative homologies across the major vertebrate line-
ages. This work builds on an extraordinary body of litera-
ture in comparative neuroanatomy, but is presented here
for the first time within the functional context of a net-
work of brain regions that regulate social decision-mak-
ing. Our synthesis has four goals: First, we aim to provide
a comprehensive neuroanatomical resource to research-
ers interested in studying the neural basis of social deci-
sion-making in vertebrates. Second, we hope to provide a
framework that will facilitate the systematic comparison
of species-specific insights across vertebrate classes, so
that we may better understand how the mechanisms gov-
erning complex social decisions evolved. Third, we see
the current synthesis as part of a program that will move
the field toward comprehensive electronic repositories of
neuroanatomical, neurochemical, developmental, and
functional data on all SDM network nodes and beyond.
Finally, we discuss how this framework will increase our
understanding of variation in social decision-making
across lineages.

Before discussing the evolution of brain homologies
across vertebrates, it is important to note the caveats
that accompany such a daunting task and contentious
topic (Striedter, 1998; Wullimann and Mueller, 2004; Jar-
vis, 2005). Discussions of the homology concept itself
have often been contentious (Striedter and Northcutt,

Neuroanatomy of social behavior

1991; Striedter, 2002). Homologous traits (i.e., organis-
mal characteristics that exhibit “structural correspon-
dence” and are derived from a common ancestor; Owen,
1843) are usually discussed using morphological criteria,
which in the case of brain structures include topographi-
cal position, hodology (Fig. 3), and gene expression or
neurochemical profiles. It is important to add here that in
the case of complex characters homologies can also be
incomplete or “partial” (sensu van der Klaauw, 1966; Sat-
tler, 1984) in that the structure of interest may comprise
both subparts derived from the common ancestor as well
as other subparts that do not have this property (for a
contemporary discussion, see also Wake, 1999). It should
also be noted that inferring homology for a brain region
does not imply conserved function, although the idea of
functional homology has served molecular and develop-
mental biologists well (Striedter, 2002). In cases where
functional (i.e., lesion or stimulation) studies have deter-
mined that a given (possibly homologous) brain region
regulates similar behavioral processes across lineages
we consider it functionally similar. To further complicate
this issue, brain regions may be homologous in morphol-
ogy but may subserve different functions, whereas func-
tionally similar brain regions may not be morphologically
homologous. Thus, we use here a combination of insights
from developmental studies, tract tracing, and neuro-
chemistry to discuss brain homologies, and functional
lesion-stimulation studies to assess whether these poten-
tial brain homologies are functionally similar (Table 1; see
also Supplementary Excel file for individual studies).
Along these lines, another useful approach utilizes careful
comparisons of neuronal characteristics at the level of
well-defined cell types (Tessmar-Raible et al.,, 2007;
Tomer et al.,, 2010; Wang et al., 2010), although such
analyses are available for very few taxa and will not be
discussed here. Finally, any analysis of brain homologies
across vertebrate classes is dependent on decades of
research by many investigators and thus liable to biases
as a consequence of how results were reported and which
particular techniques were used. While the synthesis we
attempt here is thus bound to be incomplete, we strongly
believe that the time has come for an integrative and compar-
ative neural framework of social behavior and its evolution.

SOCIAL BEHAVIOR NETWORK

The neural substrates regulating social behavior in
mammals have been described as the “social behavior
network” (SBN), based on decades of work investigating
the role of sex steroid-sensitive regions of the brain (New-
man, 1999). By definition, the core nodes of the SBN are
involved in the regulation of multiple forms of social
behavior, are reciprocally connected, and contain sex
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Mammals
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Amphibians
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Figure 2. Putative homologies of the social decision-making circuit across vertebrates. Brain regions in the coronal plane within the social
behavior network are colored yellow, brain regions in the mesolimbic reward system are colored blue, and brain regions shared by both
networks are colored green. Left to right represents rostral to caudal sections. See list for abbreviations. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]
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Figure 3. Evidence for homologies by hodology. Sagittal view of the projection patterns of a social decision-making circuit are presented for
each major vertebrate lineage. Arrows imply directionality of the connection. Brain regions within the social behavior network are colored yellow,
brain regions in the mesolimbic reward system are colored blue, and brain regions shared by both networks are colored green. Mammals:
Siegel et al.,, 1971; Ungerstedt, 1971; Conrad and Pfaff, 1975; Saper et al., 1976; Meibach and Siegel, 1977; Krettek and Price, 1978; Phillip-
son, 1979; Swanson and Cowan, 1977, 1979; Berk and Finkelstein, 1981; Kelley et al., 1982; Eberhart et al., 1985; Haber et al., 1985;
Yang and Mogenson, 1985; Caffe et al., 1987; Domesick, 1988; Groenewegen et al., 1993; Canteras et al., 1994; Napier et al.,, 1995; Numan
and Numan, 1996; Pikkarainen et al., 1999; Carr and Sesack, 2000; Morgane et al., 2005. Birds: Berk and Butler, 1981; Cheng et al., 1987;
Wild, 1987; Berk, 1991; Balthazart and Absil, 1997; Medina and Reiner, 1997; Absil et al., 2002; Atoji et al., 2002, 2006; Atoji and Wild, 2004,
Montagnese et al,, 2008. Reptiles: Russchen and Jonker, 1988; Bruce and Neary, 1995a; Smeets and Medina, 1995; Font et al, 1997;
Lanuza et al.,, 1997; Lanuza and Halpern, 1997; Perez-Santana et al., 1997; Novejarque et al., 2004. Amphibians: Allison and Wilczynski, 1991;
Wilczynski and Northcutt 1983a,b; Marin et al., 1995, 1997a; Roth and Westoff, 1999; Sanchez-Camancho et al., 2003; Endepols et al., 2005;
Roden et al., 2005. Teleosts: Murakami et al., 1983; Shiga et al., 1985a,b; Wong, 1997; Goodson and Bass, 2002; Rink and Wullimann, 2002;
Folgueira et al., 2004a,b; Northcutt, 2006. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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steroid hormone receptors. The nodes that make up this
network are the lateral septum (LS), preoptic area (POA),
ventromedial hypothalamus (VMH), anterior hypothala-
mus (AH), the periaqueductal gray/central gray (PAG/
CG), the medial amygdala (meAMY), and bed nucleus of
the stria terminalis (BNST), as each of these brain regions
has been shown in mammals to be important in regulating
both reproductive and aggressive behavior.

Reproductive behaviors, such as male- and female-typi-
cal sexual behavior as well as parental care, are well
established within the SBN framework due to decades of
work investigating the contributions of sex steroids to
behavior. Male sexual behavior is well defined within this
network (Newman, 1999), with a more central role for the
POA (Heimer and Larsson, 1967; Hull and Dominguez,
2006). Similarly, thanks to the pioneering work by Pfaff
and Sakuma (1979) delineating the lordosis circuit, in
females this network also mediates sexual behavior, with

a central role for the VMH (Malsbury et al., 1977). In addi-
tion to sexual behavior, many of these regions also medi-
ate parental care, which in most mammalian species is
only exhibited by females (Miceli and Malsbury, 1982;
Lee and Brown, 2007), although a few studies have inves-
tigated the neural basis of paternal care in biparental spe-
cies (Parker et al., 2001; de Jong et al., 2009) within this
framework.

Several studies have established that the SBN func-
tions as an integrated circuit in regulating aggressive
behavior. For example, hypothalamic stimulation elicits a
stronger aggressive response when SBN nodes located in
the forebrain (e.g., the BNST, LS, and meAMY) are acti-
vated at the same time (Haldsz et al., 2002). Similarly,
the PAG is another node of the SBN that regulates
aggressive behavior (Bandler et al., 1986; Siegel and
Shaikh, 1997) in concert with the remainder of the circuit.
In general, regions of the SBN form an interactive
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TABLE 1.
Functional Roles of Brain Regions Regulating Behavior Across Vertebrates

Teleosts

Amphibians

Reptiles

Birds

Mammals

n.a.

n.a.

n.a. reproduction

aggression, reproduction, parental care

AH

emotional learning

emotional learning

social affiliation, stress response n.a.

aggression, emotional learning

n.a.

aggression, emotional learning, parental care

motivation, parental care, reproduction,

bIAMY
BNST

aggression, reproduction

reproduction

stress response
spatial learning

spatial learning
reproduction

learning

spatial learning

n.a.

spatial, learning

HIP

reproduction

aggression, reproduction

emotional learning, social affiliation/

LS

stress response

recognition, reproduction, parental care
aggression, reproduction, parental care, social recognition aggression, motivation, reproduction aggression, reproduction

emotional learning, impulsivity, motivation, parental care

reproduction, vocalization

aggression, reproduction
aggression, reproduction

vocalization

n.a.

meAMY
NAcc

n.a.

n.a.

impulsivity, motivation

vocalization

vocalization

n.a.

PAG/CG
POA

aggression, reproduction,

reproduction

aggression, reproduction

aggression, reproduction,

aggression, reproduction, parental care

parental care
reproduction

n.a.
n.a.

parental care
learning, motivation

reproduction

n.a.
n.a.

aggression

compulsive behavior

STR

reproduction

reproduction, parental care
n.a.

n.a.

aggression, reproduction, parental care
emotional learning, parental care

VMH

motivation?, reproduction n.a.

n.a.

motivation, reproduction

motivation, reproduction, parental care

VTA

Functional roles for each brain region are inferred from lesion and stimulation studies (see Supplementary Table for individual studies and supplementary references). See text for lineage-specific nomencla-

ture for putative homologies. n.a., data not available.

Neuroanatomy of social behavior

network, and a single node can be involved in mediating
many behaviors, such as various forms of aggression
(Hayden-Hixon and Ferris, 1991; Delville et al., 2000; Nel-
son and Trainor, 2007; Fuxjager et al., 2010). For
instance, the POA mediates male-male aggression
(Albert et al., 1986), male sexual behavior (Heimer and
Larsson, 1967; Hull and Dominguez, 2006), and maternal
care (Miceli and Malsbury, 1982; Lee and Brown, 2007).
As many of the hypothalamic and midbrain nodes of the
SBN are downstream of sensory processing areas, and
thus associative in nature, it should come as no surprise
that this circuit is also considered fundamental to more
complex tasks such as social cognition (Ferguson et al,,
2002).

Social behavior—especially aggression, sexual behav-
ior, and parental care—is a fundamental and evolutionarily
ancient property of most animals, and as such is a major
determinant of an individual’s fitness. Brain regions regu-
lating these behaviors are thus expected to be highly con-
served, at least across vertebrates. Over the past decade,
behavioral neuroendocrinologists have extended the SBN
framework from mammals to other vertebrate classes
including reptiles, birds, and teleosts (for an in-depth dis-
cussion, see Crews, 2003; Goodson, 2005). Behavior pat-
terns considered in this context have been reproduction
(Sakata et al., 2005; Balthazart and Ball, 2007), aggres-
sion (Nelson and Trainor, 2007), and parental care (Rus-
cio and Adkins-Regan, 2004), and—more generally—varia-
tion of sociality (e.g., gregarious vs. solitary) across
species (Goodson and Kabelik, 2009). The homologies of
hypothalamic regions across vertebrates are far less con-
tentious than regions of the telencephalon, and thus we
do not discuss developmental studies here in depth, with
the exception of evidence for homologies of the medial
amygdala. In the following we focus on neurochemistry,
especially the presence of steroid hormone receptors, as
a defining criterion of SBN (Newman, 1999), as well as
hodology (Fig. 3) to discuss homology relationships. We
also address the question as to whether these homolo-
gies are functionally similar (e.g., regulate similar behav-
iors across vertebrates).

Medial amygdala (meAMY)
Mammals.

Across vertebrates, the amygdalar complex is perhaps
the most challenging forebrain area to homologize. There
is a general consensus that the amygdalar complex is
derived from both pallial (roof) and subpallial regions dur-
ing development (Puelles et al., 2000), and that it is inti-
mately involved with sensory integration (LeDoux, 1995;
Moreno and Gonzalez, 2007a). Developmentally, the
meAMY is derived from the subpallium (specifically the
entopeduncular region), along with the BNST (Moreno
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TABLE 2.
Conserved Neurochemical Patterns in the Telencephalon Support Brain Region Homologies Across Vertebrates

TH SP NA/DBH ENK NADPHd ChAT SOM NPY GABA CR
bIAMY
Mammals A A A +/A +/A +/A +/A +/A + +/A
Birds A - A - +/A +/A +/A + + n.a.
Reptiles A - A +/A +/A +/A +/A +/A + +
Amphibians A A A - +/A A - A + -
Teleosts A - A A + - A A + A
BNST
Mammals A A A +/A +/A +/A +/A +/A + +/A
Birds A +/A A +/A +/A + +/A +/A + +/A
Reptiles A - A +/A +/A +/A +/A +/A + n.a.
Amphibians A A A A +/A +/A A A + -
Teleosts +/A A A A + - +/A A + +/A
LS
Mammals A +/A A +/A A +/A +/A +/A + +/A
Birds A +/A A +/A A +/A A A + +/A
Reptiles A A A +/A +/A +/A +/A A + +/A
Amphibians A A - A A A A A + -
Teleosts A +/A A A + + +/A +/A + +/A
meAMY
Mammals A A A +/A +/A - +/A +/A + +/A
Birds +/A - A +/A +/A A +/A +/A + n.a.
Reptiles A A A +/A +/A - +/A A + n.a
Amphibians A +/A - +/A +/A +/A +/A A + -
Teleosts +/A A A A + - +/A A + +/A
NAcc
Mammals A +/A A +/A +/A + +/A +/A + A
Birds A +/A A +/A +/A + +/A + + +
Reptiles A +/A A +/A +/A +/A +/A +/A + A
Amphibians A A A A + A A A - +
Teleosts +/A + A A + - A +/A + +
STR
Mammals A +/A A +/A +/A + +/A +/A + A
Birds A +/A A +/A +/A + +/A + + +
Reptiles A +/A A +/A +/A +/A +/A + + A
Amphibians A +/A A +/A +/A +/A +/A A - -
Teleosts A +/A A A + +/A +/A A + +
VP
Mammals A +/A A +/A +/A + +/A +/A + -
Birds A +/A A +/A +/A + A + - A
Reptiles A +/A A +/A +/A +/A A +/A + +/A
Amphibians A A A A A +/A A A - -
Teleosts Homology unknown

Cell bodies (+); Fibers (A); Absent (-); Data not available (n.a.).

bIAMY: basolateral amygdala; BNST: bed nucleus of the stria terminalis; ChAT: choline acetyltransferase; CR: calretinin; DBH: dopamine beta
hydroxylase; ENK: enkephalin; LS: lateral septum; meAMY: medial amygdala; NA: noradrenaline; NAcc: nucleus accumbens; NADPHd: nicotinamide
adenine dinucleotide phosphate diaphorase histochemistry; NPY: neuropeptide Y; SOM: somatostatin; SP: substance P; STR: striatum; TH: tyrosine
hydroxylase; VP: ventral pallidum.

References: Mammals: Armstrong et al., 1983; Khachaturian et al., 1983; Hokfelt et al., 1984; Johansson et al., 1984; McDonald, 1984; Ottersen
and Storm-Mathisen, 1984; Shults et al., 1984; Wainer et al., 1984; Nakagawa et al., 1985; Onteniente et al., 1986; Resibois and Rogers, 1992;
Sun and Cassell, 1993; Gotti et al., 2005; Flames et al., 2007; Birds: Takatsuki et al., 1981; Domenici et al., 1988; Anderson and Reiner, 1990a;
Medina and Reiner, 1994; Veenman and Reiner, 1994; Moons et al., 1995; Atoji et al., 2001; den Boer-Visser and Dubbeldam, 2002; Roberts
et al., 2002; Goodson et al., 2004; Husband and Shimizu, 2011; Reptiles: Brauth, 1984; Weindl et al., 1984; Bennis et al., 1991a,b; Medina et al.,
1993; Smeets, 1994; Smeets et al., 1997; Bennis et al., 2001; O’Connell et al., 2011d; Amphibians: Franzoni and Morino, 1989; Gonzalez et al.,
1993; Gonzalez and Smeets, 1993; Marin et al., 1997b, 1998b; Teleosts: Roberts et al., 1989; Sas and Maler, 1991; Vecino et al., 1992; Weld and
Maler, 1992; Perez et al., 2000; Castro et al., 2003; Giraldez-Perez et al., 2008; O’Connell et al., 2011b.

et al.,, 2009), which together form the extended amyg- eno et al.,, 2009). Inputs from the vomeronasal system
dala. Developmental and transmitter gene markers for are processed by the mammalian medial and cortical
the subpallial medial ganglionic eminence, from which posteromedial amygdala via massive unidirectional pro-
the meAMY is derived, include DIx1/2, GAD67, Nkx2.1, jections (Scalia and Winans, 1975; Swanson and Petro-
Lhx6/7, whereas Shh is absent (Table 3; reviewed in Mor- vich, 1998) (Fig. 3). The meAMY also receives input from
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Figure 4. Developmental evidence for neural homologies across vertebrates. Homeobox genes specifying pallial and subpallial telencephalon
regions are shown in different colors on a schematic of transverse sections. The pallium is shaded in blue, the ventral pallium (intermediate
zone) is shaded in green, medial ganglion eminence (MGE) and peduncular region (AEP) is shaded in yellow, lateral ganglionic eminence (LGE) is
shaded in red, and the POA is shaded in orange. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

the main olfactory bulb (Kang et al., 2009). The meAMY,
in turn, projects mainly to the hypothalamus through the
stria terminalis to modulate reproductive, aggressive, and
parental behaviors (Canteras et al., 1994; Risold et al.,
1997; Swanson and Petrovich, 1998; Sheehan et al.,
2001; Choi et al., 2005). Specifically, the meAMY seems
to be crucial for social odor recognition in hamsters
(reviewed in Petrulis, 2009). In addition to many other
neurochemical markers (Table 2), the meAMY is rich with
steroid hormone receptors (Cooke et al., 2003), a defin-
ing characteristic of nodes in the social behavior network.

Birds

The homology of the meAMY in birds is complicated by
the lack of a vomeronasal organ, similar to the situation
in teleosts discussed below (Martinez-Garcia et al.,
2006). However, based on olfactory input and efferent
projections, the nucleus taeniae region has been pro-
posed to be the homolog of the mammalian meAMY
(Reiner and Karten, 1985; Yamamoto et al., 2005; Marti-
nez-Garcia et al., 2006). This region projects to the VMH
through the putative avian stria terminalis (Fig. 3) (Zeier
and Karten, 1971; Reiner and Karten, 1985; Cheng et al.,

1999; Reiner et al., 2004), and is subpallial in origin
(Fig. 4; see Table 3 for developmental markers), similar to
the situation in mammals (Yamamoto et al., 2005). The
putative avian meAMY contains sex steroid hormone
receptors (Gahr, 2001) and is neurochemically very simi-
lar to the mammalian meAMY except that the avian
meAMY contains choline acetyltransferase-positive fibers
and lacks substance P fibers (Table 3). This region in birds
is also functionally similar to the mammalian meAMY.
When the nucleus taeniae is electrically stimulated in
chicken, the animals become more aggressive (Putkonen,
1966). In a choice paradigm, female zebra finch (Taenio-
pygia guttata) never choose males with lesions to the nu-
cleus taeniae, as they display less sexually motivated
behavior (Ikebuchi et al., 2009).

Reptiles

A region similar to the mammalian meAMY has been
reported in reptiles based on hodological evidence (Table
2) (Lanuza and Halpern, 1998) in species that have a
vomeronasal system (as some reptiles do not, e.g., turtles
and crocodilians), as well as neurochemical and develop-
mental evidence. Reptilian vomeronasal information is
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TABLE 3.

Conserved Expression Patterns of Developmental or Transmitter Genes Support Brain Region Homologies in the
Telencephalon Across Vertebrates

Emx1/2 Pax6 Tbr1 DIx1/2 Nkx2.1/2.2 GAD67 Lhx6/7 Shh
Pallium (HIP)
Mammals + + + - - - - -
Birds + + + - — n.a. n.a. -
Reptiles + + + - - - n.a. n.a.
Amphibians + + + - - - — n.a.
Teleosts n.a. ? n.a. - - — - -
Ventral pallium or intermediate zone (bIAMY)
Mammals - + + - - - - -
Birds - + + - - n.a. n.a. —
Reptiles - + + - — - n.a. n.a.
Amphibians - + + - - - + n.a.
Teleosts n.a. ? n.a. — - — -
Lateral ganglionic eminence (STR)
Mammals - + - + - + - -
Birds - + - + — n.a. n.a. -
Reptiles - + - + — + n.a. n.a.
Amphibians - + - + - + — n.a.
Teleosts n.a. + n.a. + — (VI) 4+ (W) + + -
Medial ganglionic eminence (BNST/meAMY)
Mammals - - - + + + + -
Birds - - - + + n.a. + -
Reptiles - - - + + + n.a. n.a.
Amphibians - - + + + + n.a.
Teleosts n.a. - n.a + + + + -
POA
Mammals - - - + + + - +
Birds - - - + + n.a. + +
Reptiles n.a. - - n.a. + + n.a. n.a
Amphibians - - - + + + +
Teleosts n.a. - n.a. + + + +

Present: (+); Absent: (—); Data not available: (n.a.); Uncertain expression pattern: (?).
bIAMY: basolateral amygdala; BNST: bed nucleus of the stria terminalis; HIP: hippocampus; meAMY: medial amygdala; POA: preoptic area; STR:

striatum.

References: Mammals: Stoykova and Gruss, 1994; Gao and Moore, 1996; Fernandez et al., 1998; Eisenstat et al., 1999; Puelles et al., 2000; Tama-
maki et al., 2003; Flames et al., 2007; Garcia-Lopez et al., 2008; Bird: Fernandez et al., 1998; Puelles et al., 2000; Yamamoto et al., 2005; Bardet
et al., 2010; Reptile: Fernandez et al., 1998; Metin et al., 2007; Moreno et al., 2010; Amphibians: Brox et al., 2003, 2004; Moreno et al., 2004,
Moreno and Gonzalez, 2007¢, Moreno et al., 2008; Teleosts: Mueller et al., 2008; Alunni et al., 2004; Menuet et al., 2007; Mueller and Guo, 2009.

relayed to the pallial nucleus sphericus and subpallial
medial amygdala (Lanuza et al., 1998), and these regions
send projections through the stria terminalis to the hypo-
thalamus, as is characteristic of the mammalian meAMY
(Lanuza et al., 1997; Martinez-Marcos et al., 1999). This
reptilian homolog is neurochemically similar to the mam-
malian meAMY (Table 3) and contains sex steroid hor-
mone receptors (Young et al.,, 1994; O’Connell et al.,,
2011c). Additionally, neurochemical evidence supports
the subpallial origin of the reptilian meAMY (Table 3)
(Moreno et al., 2010). Several functional studies into the
role of the reptilian meAMY suggest that this region is
also functionally similar to the mammalian meAMY and
plays a conserved role in mediating aggression and court-
ship behavior. Lesions of the nucleus sphericus increase
courtship behavior in male red-sided garter snakes
(Thamnophis sirtalis parietalis; Krohmer and Crews, 1987)
and decrease aggression in some lizards (Tarr, 1977).

However, in anole lizards (Anolis carolinensis), lesions of
the medial amygdala decrease both aggressive and court-
ship displays (Greenberg, 1984).

Amphibians

Vomeronasal information in amphibians is processed
by a region in the subpallial telencephalon, the medial
amygdala, which has been proposed to be homologous to
the mammalian meAMY (Moreno and Gonzalez 2003,
2005; Moreno et al., 2005) based on hodological, devel-
opmental, and neurochemical evidence, although this
region is thought to be the cortical amygdala by Laberge
et al. (2006). The anuran meAMY also sends massive pro-
jections to the VMH (Moreno and Gonzélez, 2003) and is
developmentally derived from the subpallium, but also
contains some cells originating from the ventral telen-
cephalon (Moreno and Gonzalez, 2007b). To our knowl-
edge no lesion or stimulation studies have been done
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specifically in this nucleus. However, female salamanders
exposed to male pheromones show increased c-fos
expression in this region (Laberge et al., 2008), suggest-
ing a conserved role for this region in processing social ol-
factory information.

Teleosts

Describing homologies between the teleost telenceph-
alon and other vertebrates is especially difficult due to
the eversion, rather than invagination, of the neural tube
during development (Wullimann and Mueller, 2004,
Yamamoto et al., 2007; Braford, 2009; Nieuwenhuys,
2011). However, we are now gaining insight into potential
teleost homologies to tetrapod brains from recent neuro-
chemical, hodology, and developmental evidence instead
of relying on topography alone (Wullimann and Mueller,
2004).

Similar to the situation in birds (and some reptiles), tel-
eosts lack a vomeronasal organ, which has impeded pro-
gress on determining the homolog of the mammalian
meAMY. However, developmental studies have pointed to
the supracommissural part of the ventral pallium (Vs) as
the putative homolog of the extended amygdala (the
meAMY and BNST), as this region contains the gene
markers DIx2, Lhx7, Nkx2.1b (Table 3) (Alunni et al,
2004). Vs also projects to several hypothalamic regions
(Folgueira et al., 2004a), including the anterior tuberal nu-
cleus (putative homolog of the VMH, see subsection for
discussion). This region may also be functionally similar
to the mammalian meAMY, as stimulation of Vs increases
aggression in male bluegill fish (Lepomis macrochirus;
Demski and Knigge, 1971), and increases spawning in
both male and female sockeye salmon (Oncorhynchus
nerka; Satou et al., 1984).

Preoptic Area (POA)
Mammals

The POA is widely studied in the context of vertebrate
social behavior and is important for regulating many
social behaviors in males and females as well as other ba-
sic physiological functions such as energy homeostasis
(Saper et al., 2001) and thermoregulation (Romanovsky,
2007). It is located in the hypothalamus conspicuously
along the third ventricle and ventral to the anterior com-
missure. It mediates aggression, sexual behavior, and pa-
rental care (Table 1) (Heimer and Larsson, 1967; Mals-
bury, 1971; Hull and Dominguez, 2006; Lee and Brown,
2007), and contains tyrosine hydroxylase (TH)- and neu-
ropeptide-expressing cells as well as sex steroid recep-
tors (Wang et al., 1996; Rosen et al., 2007; Holmes et al.,
2008). It is reciprocally connected to many limbic brain
regions, especially those in the SBN (Conrad and Pfaff,
1975). The developmental profile of the POA is unique in
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the subpallium with expression of Shh, Nkx2.1/2.2 and
no Gsh2, Lhx7, Olig2 (Table 3) (Flames et al., 2007).

The POA mediates sexual behavior, aggression, and pa-
rental care in mammals. Stimulation of the POA in male
rats will increase sexual behavior (van Dis and Larsson,
1970; Malsbury, 1971) and lesions will impair ejaculation
in both male rodents and monkeys (Slimp et al., 1978;
Powers et al., 1987), although chemoinvestigative behav-
iors are still intact (Powers et al., 1987). Similarly, c-fos
immunoreactivity increases in the POA after a single mat-
ing trial in male hamsters (Kollack and Newman, 1992).
The POA also regulates female sexual behavior, as lesions
decrease vaginal marking in female hamsters (Malsbury
etal., 1977). Parental care is also mediated by the POA in
rodents, as lesions disrupt parental behavior in both
males and females (Jacobson et al., 1980; Miceli and
Malsbury, 1982; Rosenblatt et al., 1996; Lee and Brown,
2007), and c-fos induction increases with parental care in
males (Lee and Brown, 2007). Finally, the POA also medi-
ates aggression, as lesion of the POA in male rats
decreases male-male aggression (Albert et al., 1986).

Birds

The avian POA is similar to the mammalian POA in neu-
rochemistry, hodology, development, and topography.
The POA is positioned in the hypothalamus along the third
ventricle in the subpallium and contains dopamine- and
neuropeptide-producing cells (Viglietti-Panzica, 1986;
Bailhache and Balthazart, 1993) as well as sex steroid
receptors (Balthazart et al., 1998b; Gahr, 2001). The
avian POA is also sexually dimorphic in volume (Panzica
et al., 1987), and is highly interconnected with the amyg-
daloid complex and hypothalamus (Berk and Butler,
1981). The development of the POA in the subpallium of
birds is similar to mammals (Abellan and Medina, 2008).
Furthermore, this region is also functionally similar to the
mammalian POA, as the avian POA plays a conserved role
in aggression and parental care (Table 1). Electrical stim-
ulation of the POA increases aggression (Akerman et al.,
1960) in males and immediate early gene labeling in the
POA is decreased in nonmaternal female quail (Ruscio
and Adkins-Regan, 2004). Chemical lesions of the POA
also disrupt parental care in ring doves (Streptopelia riso-
ria; Slawski and Buntin, 1995).

The POA also regulates copulatory behavior in male
birds (Balthazart and Surlemont, 1990), similar to mam-
mals. Implants of testosterone directly into the POA of
castrated male Japanese quail (Coturnix japonica) will
fully reinstate male sexual behavior (Riters et al., 1998),
although aromatization of testosterone into estrogens is
also necessary for the full behavioral rescue (Watson and
Adkins-Regan, 1989). However, different subregions of
the avian POA seem to differentially regulate appetitive
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and consummatory behavior in male quail as shown by
lesion and immediate early gene studies (Balthazart et al.,
1998a; Taziaux et al., 2006). Interestingly, c-fos immuno-
reactivity is markedly decreased in the region when olfac-
tory cues are blocked (Taziaux et al., 2008), suggesting
not only that sensory integration is important for neuronal
activation in the POA, but also that olfactory information
plays an important role in avian behavior. In male zebra
finch, the dopaminergic cells within the POA exhibit
increased c-fos induction after sexual encounters, but not
after agonistic encounters (Bharati and Goodson, 2006),
suggesting that dopamine plays an important role in regu-
lating male sexual behavior, similar to mammals (Hull and
Dominguez, 2006).

Reptiles

The reptilian POA is also conspicuously located in the
hypothalamus along the rostral part of the third ventricle
and is similar to the mammalian POA in neurochemistry
and hodology. The POA contains sex steroid hormone
receptors (Young et al., 1994; O’Connell et al., 2011c)
and is a central integration point for telencephalic regions
and the hypothalamus (Russchen and Jonker, 1988;
Smeets et al., 1995). This region is also functionally simi-
lar to the mammalian POA, as implants into the POA of ei-
ther testosterone or DHT in castrated male lizards
increase sexual behavior (Morgantaler and Crews, 1978;
Rozendaal and Crews, 1989), while lesions of the POA
decrease courtship behavior (Kingston and Crews, 1994).
In addition to its conserved role in regulating male sexual
behavior, the POA in reptiles also plays a role in aggres-
sion, as electrical stimulation will increase aggression in
both male and female iguanas (lguana iguana; Distel,
1978).

Amphibians

The amphibian POA is similar to the mammalian POA in
neurochemistry, hodology, and topography, as this hypo-
thalamic region lies along the third ventricle and contains
sex steroid hormone receptors (Kelley et al., 1975; Roy
et al., 1986; di Meglio et al., 1987; Chakraborty and Bur-
meister, 2010; O’Connell et al., 2011a). The amphibian
POA has several subregions based on cell size (Northcutt
and Kicliter, 1980), although the homology of these sub-
populations to the mammalian POA is uncertain. Func-
tionally, the POA plays a conserved role in the regulation
of sexual behavior in both male and female amphibians.
Lesions of the POA in male frogs (Rana pipiens) decrease
calling behavior, while testosterone implants into the POA
of castrated males increase calling behavior (Wada and
Gorbman, 1977a,b). In female toads, POA lesions
decrease phonotactic responses, whereas implantation
of prostaglandin into the POA increases phonotaxis

(Schmidt, 1985, 1989). In female salamanders (Plethodon
shermani), which rely on pheromone information from the
male for mate choice (Houck et al., 1998), c-fos expres-
sion is induced in the POA when exposed to male phero-
mones (Laberge et al., 2008).

Teleosts

The teleost POA also lies in the hypothalamus along
the third ventricle, dorsal to the optic tract, and is similar
to the mammalian POA in neurochemistry and hodology.
This conserved region contains sex steroid hormone
receptors (Forlano et al., 2005, 2010; Munchrath and
Hofmann, 2010), and receives fibers from and projects to
the telencephalon and hypothalamus (Folgueira et al.,
2004b). There are three subdivisions of the teleost POA
based on cell size: parvocellular, magnocellular, and
gigantocellular (Braford and Northcutt, 1983). The gigan-
tocellular and magnocellular cell groups are considered
homologous to the supraoptic nucleus of the mammalian
POA, while the parvocellular cell group is the putative
homolog of the paraventricular nucleus of the mammalian
POA (Moore and Lowry, 1998). This region is also func-
tionally similar to the mammalian POA (Table 1), as the
teleost POA also plays an important role in the regulation
of sexual behavior, aggression, and parental care, provid-
ing strong evidence that its role in mediating social
behavior is highly conserved throughout vertebrate evolu-
tion. Electrical stimulation of the POA in males increases
courtship and aggression (Demski and Knigge, 1971;
Satou et al., 1984), while lesions decrease spawning
behavior (Macey et al., 1974). Interestingly, stimulation of
the POA in electric fish (Eigenmannia virescens) evokes
(electrical) courtship signals (Wong, 2000), presumably
through a connection between the POA and the prepace-
maker nucleus that regulates electric organ discharge. In
females, stimulation of the POA also increases spawning
behavior (Satou et al., 1984). Similar to mammals, the tel-
eost POA also regulates parental care as stimulation of
the POA also increases nesting in male bluegill sunfish
(Demski and Knigge, 1971).

Anterior hypothalamus (AH)
Mammals

The AH is perhaps one of the least understood regions
of the SBN. The mammalian AH lies caudal to the POA
along the third ventricle and is sensitive to sex steroids
(Hayden-Hixon and Ferris, 1991). It appears to play an im-
portant role in aggression, especially in the context of
neuropeptide modulation, as injections of the AVP V1a
receptor antagonist into the AH of hamsters will inhibit
aggression (Ferris and Potegal, 1988). In addition to mod-
ulating aggression in males, lesions of the AH in female
rats facilitates maternal behavior (Bridges et al., 1999),
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suggesting a role in regulating parental care as well. Sex-
ual behavior in both males and females seems to also
impinge on the AH, as lesions of the AH in female cats in-
hibit receptivity and prevents pregnant cats from pro-
gressing to parturition (Fisher and Ingram, 1936).

Birds

In birds the AH is located ventral to the POA and is sim-
ilar to the mammalian AH in neurochemistry, as this
region is positive for sex steroid hormone receptors
(Balthazart et al., 1998b; Gahr, 2001). Functionally, there
is evidence that the AH plays a role in both aggression
and sexual behavior, similar to the mammalian AH. In
male song sparrows (Melospiza melodia), c-fos immunore-
activity increases in the AH in response to territorial intru-
sion (Goodson et al., 2005), similar to the role of AH in
resident intruder paradigms in hamsters. c-fos induction
also increases in the AH of male European starlings (Stur-
nus vulgaris) when singing courtship songs compared to
noncourtship songs (Heimovics and Riters, 2006).

Reptiles and amphibians

The AH is rarely discussed in reptiles and amphibians.
In both lineages it is located caudal to the POA along the
third ventricle, but rostral to the VMH, and contains sex
steroid hormone receptors (Young et al., 1994; Beck and
Wade, 2009). There have been many lesion studies that
have included the AH that support its role in sexual
behavior and aggression (Morgantaler and Crews, 1978);
however, these are usually combined lesions of both POA
and AH, making it difficult to dissect the functional mech-
anisms of the AH alone.

Teleosts

Due to its topographical location as the transition zone
between the POA and ventral hypothalamic region, the
ventral tuberal region is thought to be homologous to the
mammalian AH (Goodson and Bass, 2000; Goodson,
2005). This region contains sex steroid hormone recep-
tors (Forlano et al., 2005, 2010; Munchrath and Hof-
mann, 2010) and is connected to many other hypothala-
mic nuclei as well as the proposed meAMY homolog
(Folguiera et al., 2004a,b). Unfortunately, no functional
(lesion or stimulation) studies have exclusively manipu-
lated this region, although POA-AH neuropeptide manipu-
lations have suggested a role for modulating reproductive
vocalizations in the plainfin midshipman (Porichthys nota-
tus; Goodson and Bass, 2000).

Ventromedial hypothalamus (VMH)
Mammals

The VMH is topographically located in the caudal hypo-
thalamus along the third ventricle, is rich with sex steroid
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receptors (Zhang et al.,, 2002; Lonstein and Blaustein,
2004; Holmes et al., 2008), and is highly interconnected
with the amygdala and other regions of the hypothalamus
(Saper et al., 1976). The best understood function of the
VMH in social behavior is its central role in regulating
female receptivity. Lesions will decrease receptivity in
females (Malbury et al., 1977; Mathews and Edwards,
1977; Pfaff and Sukuma, 1979; Leedy and Hart, 1985;
Robarts and Baum, 2007), while stimulation will facilitate
lordosis (Pfaff and Sakuma, 1979). The VMH also regu-
lates nonsexual behavior, as lesions will increase aggres-
sive behavior and feeding (Panksepp et al., 1970; Mals-
bury et al.,, 1977). Lesions of the VMH also facilitate
maternal behavior (Bridges et al., 1999; Sheehan et al.,
2001), suggesting that under normal conditions this
region inhibits parental care. The VMH also contributes to
male-typical behavior, as c-fos induction increases in
male hamsters after both sexual and aggressive encoun-
ters (Kollack-Walker and Newman, 1995).

Birds

The avian VMH is located in the ventrocaudal hypothal-
amus, contains sex steroid receptors (Balthazart et al.,
1998b; Gahr, 2001), and is highly interconnected with
other regions of the hypothalamus and lateral septum
(Balthazart and Absil, 1997; Atoji and Wild, 2004). Lesion
and stimulation studies, as well as immediate early gene
activation, suggest that this region is also functionally
similar to the mammalian VMH. In females, induction of
c-fos increases in the avian VMH with sexual behavior in
Japanese quail (Meddle et al., 1999), and lesions prevent
egg incubation behavior (Youngren et al., 1989). Further-
more, the VMH seems to play a role in male sexual behav-
ior, as neural activity in the VMH increases when male Eu-
ropean starlings sing courtship songs compared to
noncourtship songs (Heimovics and Riters, 2006). Finally,
the avian VMH plays a role in feeding behavior (Kuenzel,
1974), similar to mammals.

Reptiles

The reptilian VMH homolog is topographically located
along the third ventricle in the ventrocaudal hypothala-
mus and contains sex steroid hormone receptors (Young
et al.,, 1994; O’Connell et al., 2011c). This region is also
highly interconnected with the hypothalamus and amyg-
daloid nuclei (Bruce and Neary, 1995a,b), and appears to
also be functionally similar to the mammalian VMH, as
lesions decrease receptivity in female dessert grassland
lizards (Cnemidophorus uniparens; Kendrick et al., 1995).

Amphibians
The VMH in amphibians is located in the ventrocaudal
hypothalamus along the third ventricle and ventral to
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the putative ventral tegmental area (VTA) homolog. It
contains sex steroid hormone receptors (Davis and
Moore, 1996; Chakraborty and Burmeister, 2010;
O’Connell et al., 2011a) and has a hodological profile
similar to the mammalian VMH (Allison and Wilczynski,
1991). Given how much research has focused on the
neural basis of female mate choice in anurans, it is sur-
prising that no functional studies have been done to
describe its role in female receptivity. However, female
salamanders exposed to male pheromones have
increased c-fos induction in the VMH (Laberge et al,,
2008), suggesting that, at least in non-anuran amphib-
ians, this region plays a role in female receptivity as
well.

Teleosts

The anterior tuberal nucleus is the putative teleostean
homolog of the mammalian VMH (Forlano et al., 2005;
Goodson, 2005; Forlano and Bass, 2011). It is located in
the ventrocaudal part of the hypothalamus, contains sex
steroid hormone receptors, and has a similar hodological
profile (Folgueira et al., 2004a,b) in that it connects to
the POA as well as several regions of the telencephalon.
However, this region is regarded by some as more of an
octavolateral structure (Yamamoto and Ito, 2005; Giassi
et al., 2007). When stimulated, this region induces vocal-
izations in male midshipman fish (Goodson and Bass,
2000); however, more lesion/stimulation studies in
female teleosts need to be conducted within this brain
region to further establish its functional similarity to the
mammalian VMH.

Periaqueductal gray/central gray (PAG/CG)
Mammals

The PAG plays an important role in social behavior in
both males and females, including reproduction, aggres-
sion, and especially in the context of vocal communica-
tion (see below). It is highly interconnected with the
hypothalamus and telencephalon (Eberhart et al.,,
1985), and contains sex steroid receptors (Murphy
et al., 1999). The PAG is activated after sexual experi-
ence, but not by aggressive encounters, in male ham-
sters (Kollack-Walker and Newman, 1995). In lactating
female rats the PAG appears to modulate nursing as
well as aggression (Lonstein and Stern, 1997). Similarly,
PAG stimulation elicits aggressive behavior in rats and
cats (Mos et al., 1982; Bandler and Carrive, 1988). The
PAG also plays a role in receptivity, as lesions lead to
deficits in lordosis (Floody and O’Donohue, 1980).
Finally, the PAG has a distinctive role in vocalizations,
specifically call initiation (Jirgens, 2002). The PAG is
active during speech in humans (Schulz et al., 2005),

and lesions of the PAG can lead to mutism (Esposito
etal., 1999).

Birds

The putative avian homolog of the mammalian PAG is
the dorsomedial intercollicular nucleus and central gray,
based on neurochemistry and connectivity (Dubbeldam
and den Boer-Visser, 2002; Kingsbury et al., 2011).
Androgen (Balthazart et al., 1998a) and estrogen (Gahr,
2001) receptors are present in this region, further sup-
porting this node as part of the SBN, although the proges-
terone receptor has not been reported here. This region
is also functionally similar to the mammalian PAG. In quail
and zebra finch, males displaying courtship or sexual
behavior exhibit activation of dopaminergic neurons in
the PAG compared with noncopulating males (Charlier
et al.,, 2005; Bharati and Goodson, 2006), suggesting a
conserved role in mediating sexual behavior. The PAG
appears to play an important role in birdsong, as singing
male zebra finches show greater activation of dopaminer-
gic PAG neurons than silent individuals (Lynch et al.,
2008; Goodson et al., 2009). Further, this region is also
required for female courtship vocalizations in ring doves
(Cohen and Cheng, 1981).

Reptiles

The identification of the PAG homolog in the reptilian
midbrain is based on the presence of sex steroid hor-
mone receptors, hodology, and topography (ten Donke-
laar, 1976a,b; Morrell et al., 1979). However, to our
knowledge no functional studies have investigated the
role of this region in regulating reptilian social behavior.

Amphibians

The PAG in amphibians also resides in the midbrain
and contains sex steroid hormone receptors (O’Connell
et al.,, 2011a). Furthermore, this region has a connectivity
profile similar to the mammalian PAG/CG (Sénchez-
Camacho et al.,, 2001). In anurans, stimulation of this
region elicits vocalizations (Schmidt, 1966), whereas
lesioned animals cease calling (Schmidt, 1971), suggest-
ing this region is also functionally similar to the mamma-
lian PAG.

Teleosts

Much of the work on the role of the PAG in regulating
behavior in teleosts comes from the midshipman fish,
which relies on sound production for social communica-
tion (reviewed in Bass, 2008). The PAG is topographically
located near the torus semicircularis (inferior colliculus
homolog; Bass et al., 2005), displays a connectivity pro-
file very similar to the mammalian PAG (Goodson and
Bass, 2002; Kittelberger et al., 2006), and contains sex
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steroid hormone receptors (Forlano et al., 2005, 2010;
Munchrath and Hofmann, 2010). It also is functionally
similar to the mammalian PAG with a role in call initiation
and duration (Kittelberger et al., 2006).

INTERSECTION OF THE SBN AND REWARD
SYSTEMS

It has become clear that the SBN and reward system
are functionally linked, as both circuits play fundamental
roles in the regulation of behavior (see discussion above).
Additionally, these networks are widely interconnected in
each vertebrate class (Fig. 3), suggesting that information
can be readily transferred between these two systems.
Since we propose here that both circuits should be con-
sidered together as the SDM network, it is important to
discuss to what extent they are also structurally inte-
grated. Notably, the SBN and mesolimbic reward system
share two nodes: the LS and BNST. Both regions play a
role in social behavior as well as reward processing, and
they are thus well positioned to serve as relay stations
that mediate information about the salience of a social
stimulus into an adaptive behavioral output, such as
showing aggression toward an intruder or sexual behavior
to a potential mate. These regions appear to be involved
in the regulation of many social and, more generally,
reward-related behaviors (see below for discussion).
However, it is important to note that just because they
are commonly considered to be part of either circuit there
is no reason to believe that the LS and BNST are the only
nodes engaged in information exchange between the two
systems, as both the SBN and reward system are highly
interconnected (Fig. 3) and may mediate related aspects
of many of the same social actions. A more careful disso-
ciation of appetitive and consummatory aspects of social
behavior especially in studies of nonmammalian verte-
brates will greatly improve our understanding of the inter-
relationships between the various SBN and reward sys-
tem nodes.

Lateral septum (LS)
Mammals

The mammalian LS is located medial to the lateral ven-
tricles and its connectivity is characterized by a massive
unidirectional input from the hippocampus (HIP) (Swan-
son and Cowan, 1977) and projections to the hypothala-
mus (Meibach and Siegel, 1977; Swanson and Cowan,
1979) and midbrain (Risold and Swanson, 1997). The LS
also receives many projections from the hypothalamus,
including the AH, POA, and VMH (Staiger and Nirnberger,
1989). There are also dopaminergic projections from the
VTA to the LS (Swanson, 1982) and stimulation of LS
leads to increased firing of dopaminergic neurons in the
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VTA, potentially modulating goal-directed behaviors
(Maeda and Mogenson, 1981).

There is behavioral evidence that the LS mediates social
behavior as well as the evaluation of stimulus novelty. In
male rats, lesions of the LS facilitate male sexual behavior
while inhibiting female sexual behavior (Kondo et al,
1990). LS lesions also lead to a deficit in resident aggres-
sion in territorial intruder tests (Blanchard et al., 1977).
Finally, the role of LS in social recognition comes from
work with neuropeptides. In monogamous male voles, sep-
tal AVP is necessary and sufficient for pair-bond behavior
and also increases paternal behavior (Wang et al., 1994,
Liu et al.,, 2001). Infusions of an AVP antagonist or anti-
sense oligonucleotides to the AVP V1a receptor decrease
exploration of a novel environment and impair social recog-
nition (Landgraf et al., 1995; Liebsch et al., 1996), whereas
infusions of AVP into the LS facilitates social memory
(Dantzer et al., 1988). Furthermore, expression of the V1a
receptor solely in the LS rescues social recognition in V1a
receptor knockout mice (Bielsky et al., 2005).

Birds

The avian LS is also located medial to the lateral ven-
tricles and shares the connectivity profile of the mamma-
lian LS in unidirectional input from the HIP and projec-
tions to the hypothalamus and midbrain (Krayniak and
Siegel, 1978a,b; Atoji and Wild, 2004). There are dense
dopaminergic fibers in this region (Bailhache and Baltha-
zart, 1993), similar to mammals. This region is neuro-
chemically very similar to the mammalian LS (Caffe et al.,
1987; Montagnese et al.,, 2004; discussed in detail in
Goodson et al., 2004).

The avian LS homolog is also functionally similar to the
LS in mammals, as bilateral lesions of the LS in pigeons
(Columba livia) decrease resident aggression toward an
intruder (Ramirez et al., 1988). The avian LS also plays a
conserved role in reproduction, as both appetitive and
consummatory sexual behavior in male quail increase c-
fos induction in this region (Taziaux et al., 2006). The role
of the LS in avian social behavior also seems to vary with
social organization. Lesions of the septal region in field
sparrows (Spizella pusilla; a territorial species) increase
aggression, while both courtship and aggression are
reduced by septal lesions in gregarious male zebra
finches (Goodson and Adkins-Regan, 1999). The modula-
tion of aggression in the LS may impinge on neuropeptide
receptors as infusion of AVT into the septum of male ze-
bra finches increases aggression, but has no effect on
courtship displays; and infusions of an AVT antagonist
decreases aggression (Goodson and Adkins-Regan,
1999). Similarly, territorial intrusions elicit immediate
early gene activity in the LS in male song sparrows (Melo-
spiza melodia; Goodson et al., 2005).
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Reptiles

The reptilian LS shares the mammalian LS trait of uni-
directional input from the HIP (Font et al., 1997), contains
sex steroid hormone receptors (Young et al., 1994; Beck
and Wade, 2009; O’Connell et al., 2011c), and is located
medial to the lateral ventricles. Importantly, in reptiles
the LS also receives input from the nucleus accumbens
(NAcc) and dopaminergic projections from the VTA (Font
et al., 1997) and sends massive projections to the hypo-
thalamus, providing a functional link between the reward
system and the hypothalamic SBN. The LS in reptiles also
seems to be functionally similar to the mammalian LS
(Font et al., 1998), as it plays a role in mediating both
courtship and aggressive behavior. Lesions of the septal
region in the male red-sided garter snake increases court-
ship behavior (Krohmer and Crews, 1987). In male anoles,
observing aggressive encounters is associated with
higher activity in the LS, indicating that social experience
can modulate the activity of the LS of this region (Yang
and Wilczynski, 2007).

Amphibians

The amphibian LS is located medial to the lateral ven-
tricles and has been identified by neurochemical means
where cholinergic neurons are abundant in this region
and sparse in other regions of the telencephalon (Marin
et al., 1997b; Sanchez-Camacho et al., 2003). Further-
more, there are TH-immunoreactive fiber nests in this
region (Gonzalez et al., 1993; Gonzdlez and Smeets,
1994), a feature that is conserved across vertebrates.
This region also receives projections from the HIP and
projects widely to the hypothalamus (Endepols et al.,
2005), indicative of the mammalian LS. Unfortunately,
there is little functional evidence for the role of the lateral
septum, in particular in regulating social behavior in
amphibians. Lesions of the entire septal region in female
gray tree frogs lead to a deficit in phonotaxis response
(Walkowiak et al.,, 1999). However, steroid hormone
receptors have been indentified in this region in frogs and
newts (Davis and Moore, 1998; Chakraborty and Burmeis-
ter, 2010; O’Connell et al., 2011a), suggesting that sex
steroid hormones could potentially modulate behavior
through action in this nucleus.

Teleosts

The ventral (Vv) and lateral (VI) parts of the ventral tele-
ost telencephalon are putatively homologous to the sep-
tal formation in mammals based on neurochemical and
hodological evidence (Wullimann and Mueller, 2004). Tel-
encephalic cholinergic neurons have only been detected
in Vv and VI (Ekstrom, 1987; Brantley and Bass, 1988;
Pérez et al., 2000), and these regions also contain andro-
gen-, estrogen-, and progestin-receptors (Munchrath and

Hofmann, 2010), similar to other vertebrates. Hodological
evidence that supports this homology includes the pro-
jections of VI to the pallial telencephalon (Murakami
et al.,, 1983) and efferent projections of Vv to the hypo-
thalamus (Rink and Wullimann, 2002). Importantly, DI
(the putative HIP homolog) projects to both VI and Vv
(Northcutt, 2006). Finally, Vv has strong bidirectional con-
nections to the hypothalamus and POA (Wong, 1997).
This region may also be functionally similar to the mam-
malian LS, as lesions of Vv decrease spawning in males
while stimulation increases courtship behavior (Kyle and
Peter, 1982), although part of the supracommissural
region (Vs, putative extended amygdala homolog) was
included in these lesions. Furthermore, Vv/VI stimulation
in females increases proceptive (digging) and spawning
behavior (Satou et al., 1984). This suggests not only a
conserved role for the LS in reproduction in both teleosts
and tetrapods, but also that it plays an important role in
both males and females.

Bed nucleus of the stria terminalis (BNST)
Mammals

The BNST is topographically located dorsolateral to the
POA along the anterior commissure, and is developmen-
tally derived from the subpallial medial ganglionic emi-
nence (reviewed in Moreno et al., 2009). The BNST shows
sexual dimorphism in volume (Allen and Gorski, 1990;
Hines et al., 1992) and the number of neuropeptide-pro-
ducing cells (De Vries and al-Shamma, 1990). This region
also shares many connections with the amygdala and
hypothalamus (Alheid and Heimer, 1988; Dong et al.,
2001). It is well established that the BNST plays a role in
aggression and reproductive behavior (Valcourt and
Sachs, 1979; Shaikh et al., 1986; Powers et al., 1987).
Male hamsters with lesions of the BNST will still mount a
female, but will fail to display chemoinvestigatory behav-
ior (Powers et al., 1987), although c-fos induction
increases within the BNST after one mating trial (Kollack
and Newman, 1992). Lesions of the BNST in rats increase
the number of intromissions and thus ejaculation latency
in both experienced and inexperienced males (Claro
et al., 1995). Agonistic encounters also increase c-fos
induction in the BNST of male hamsters (Kollack-Walker
and Newman, 1995). Finally, the BNST also plays an im-
portant role in maternal retrieval behavior in rats (Numan
and Numan, 1996).

While the basal ganglia and midbrain dopaminergic
regions have long been implicated in mediating motiva-
tional behavior, much recent attention has been directed
toward the BNST, as this region plays a role in the motiva-
tional aspects of drug abuse (Delfs et al., 2000) and can
generate long-lasting excitatory effects on dopaminergic
neurons in the VTA (Georges and Aston-Jones, 2001). A
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functional lesion study of the BNST in rats induces
depression in forced-swim tests suggesting that motiva-
tion or goal-directed behavior is impaired (Schulz and
Canbeyli, 2000; Pezik et al., 2006, 2008). During pair-
bond formation in monogamous female voles (Microtus
ochrogaster), a process involving the mesolimbic reward
system (Young and Wang, 2004), neuronal activity as
measured by c-fos induction increases in the BNST (Cur-
tis and Wang, 2003).

Birds

The avian BNST lies medial to the NAcc, positioned
between the LS and ventral pallidum (VP), and its neuro-
chemical, developmental, and hodological profile are very
similar to the mammalian BNST (Fig. 3, Table 2). This
region was first identified by Aste et al. (1998) as sexually
dimorphic in aromatase- and AVT-positive neurons (Aste
et al., 1998; Jurkevich et al., 1999), similar to mammals.
Developmentally, the BNST of birds and mammals seems
to have a similar subpallial origin, as indicated by expres-
sion of subpallial markers Lhxé and Lhx7 /8 (Abellan and
Medina, 2008).

The avian BNST is also functionally similar to the mam-
malian BNST. In male Japanese quail the BNST is impor-
tant for consummatory—but not appetitive—aspects of
sexual behavior (Balthazart et al., 1998a). Neuronal activ-
ity, as measured by c-fos induction, is increased in the
BNST after copulation, but not with appetitive behavior
toward a female in male quail (Taziaux et al., 2006). How-
ever, this increase was not seen when the cloacal gland
was anesthetized (Taziaux et al., 2008), suggesting that
somatosensory information is important for this neuronal
response to copulation. Further, the BNST also plays a
role in reproduction in songbirds, as c-fos induction
increases during courtship songs compared to noncourt-
ship songs in male European starlings (Heimovics and
Riters, 2006). Finally, the avian BNST may play a role in
parental care, as immediate early gene labeling in the
BNST is increased in brooding female quail (Ruscio and
Adkins-Regan, 2004).

Reptiles

Neurochemical, developmental, and hodological evi-
dence points to a region dorsolateral to the POA as the
reptilian BNST homolog, consistent with its topographical
location. Neurochemically, this region is similar to the
mammalian BNST with the exception that no substance P
fibers have been observed there (Table 2). The reptilian
BNST also contains neuropeptide-producing cells
(Smeets et al., 1990), similar to mammals and birds. This
region also has a similar developmental origin to the
mammalian BNST, marked by Tbr-1, DIx, Nkx2.1, and
GAD67 expression (Table 3; Moreno et al.,, 2010). The
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BNST shares connections with the amygdala and hypo-
thalamus, as well as many regions of the reward system
(Lanuza et al., 1997). Unfortunately, there are no
reported functional studies regarding the role of the rep-
tilian BNST on motivation or reproductive behavior to
determine if these regions are functionally similar.

Amphibians

The BNST is situated dorsolateral to the POA, similar to
other tetrapods, and homology is supported by develop-
mental, neurochemical, and hodological evidence. This
region is marked by Lhx1/5, Lhx 2/9, Lhx5, and Lhx7
expression during development (Moreno et al., 2004).
This region also contains substance P and enkephalin
fibers (Table 2) (Marin et al., 1998b) as well as a group of
sexually dimorphic AVT neurons (Gonzalez and Smeets,
1992; Moore et al., 2000), but only sparse neuropeptide
Y immunoreactivity (Marin et al., 1998b). The amphibian
BNST shares many similar hodological characteristics
with the mammalian BNST, including reciprocal connec-
tions to the hypothalamus and HIP (Neary and Wilczynski,
1977; Allison and Wilczynski, 199 1; Northcutt and Ronan,
1992; Neary, 1995).

Teleosts

Developmental, neurochemical, and hodological evi-
dence point to the supracommissural part of the ventral
pallium (Vs) as the putative partial homolog of the mam-
malian extended amygdala (BNST and meAMY). Vs con-
tains the gene markers DIx2, Lhx7, Nkx2.1b (Alunni et al.,
2004), which mark the medial ganglionic eminence in
mammals that gives rise to the meAMY and BNST
(reviewed in Moreno et al., 2009). The neurochemical pro-
file is similar to that of mammals except for the apparent
absence of choline acetyltransferase-positive or AVT-pos-
itive cells (Table 2). Also in support of this homology, this
region shares connections with the putative basolateral
amygdala (bIAMY) homolog as well as many projections
to the hypothalamus (Folgueira et al., 2004a).

MESOLIMBIC REWARD SYSTEM

Animals must evaluate the relative importance and
implications of an environmental stimulus in order to gen-
erate the appropriate behavioral response. Many studies
indicate that the mesolimbic reward system (including
but not limited to the midbrain dopaminergic system) is
the neural network where the salience of such stimuli is
evaluated (Deco and Rolls, 2005; Wickens et al., 2007).
Central to this network is the dopaminergic innervation of
the NAcc that originates from the VTA. The conventional
reward system also includes the bIAMY, LS, VP, striatum
(STR), HIP, and the BNST. Although most treatments of
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the reward system in mammals also include the prefron-
tal cortex (Zilles and Wree, 1995; Cardinal et al., 2002),
we do not consider this structure here, as its evolutionary
antecedents in other vertebrates are unclear (Reiner,
1986). Note, however, that the avian neostriatum caudo-
laterale has been proposed as a functionally similar
region (Hartmann and Gintirkin, 1998).

The mesolimbic dopamine system is best studied in
mammals in the context of addiction, depression, and
schizophrenia (Groenewegen and Uylings, 2000; Joseph
et al., 2003; Koob and Volkow, 2010). However, these
mental disorders can be considered deviations of a
potentially ancient network that encodes the salience
and positive reinforcement effects of behavior (Northcutt,
1981; Everitt and Robbins, 2000; Schultz, 2000; Jackson
and Moghaddam, 2001). Seeking physiological rewards
or sensory stimulation is not limited to mammals, but
pleasure-seeking is also seen in reptiles and fish (Camp-
bell, 1972) as well as birds (Delius and Pellander, 1982),
and may potentially be modulated by similar neural cir-
cuits. As the functional contexts in which animals behave
(i.e., mate choice, male-male aggression, foraging, etc.)
are ancient, it is reasonable to hypothesize that, in verte-
brates, the mesolimbic dopamine system plays a con-
served role in reinforcing them.

Describing vertebrate homologies of the mesolimbic
reward system is more difficult than the SBN, as most
regions of this circuit are located in the telencephalon,
which shows much more divergence in topography across
vertebrates than the midbrain and spinal cord (Northcutt
and Kaas, 1995). The most contentious region is the pal-
lium, which includes the basolateral amygdala, where de-
velopmental studies have been especially useful in shed-
ding light on these homologies. The basal ganglia
constitute another area of contention, at least as far as
anamniotes are concerned. These structures appear to
be conserved at least across tetrapods (for review, see
Smeets et al., 2000) and consist of a ventral and dorsal
striatopallidal system (Heimer et al., 1995). The dorsal
portion consists of the STR (caudate putamen in most
mammals) and the dorsal pallidum, while the ventral por-
tion consists of the NAcc and VP. It was previously
thought that the basal ganglia were only present in
amniotes (MaclLean, 1990), but many studies in the past
decade have shown that amphibians clearly possess the
basal ganglia regions (Smeets et al., 2000) and teleosts
likely do so as well (Wullimann and Mueller, 2004). In the
following, we focus mainly on neurochemical, develop-
mental, and hodological studies to support homologies
across vertebrates, although we discuss lesion or stimula-
tion studies where available in order to comment on
whether these homologous structures are functionally
similar.

Ventral tegmental area (VTA)
Mammals

The connection between the VTA and forebrain regions
is widely considered the core of the dopaminergic reward
system (Phillipson, 1979; Domesick, 1988; Spanagel and
Weiss, 1999). Dopaminergic neurons in the VTA (A10
group) play an important role in evaluating the salience of
environmental stimuli and signaling motivating events
(Schultz, 1998). The VTA is located in the midbrain and
sends dopaminergic projections to the NAcc and releases
dopamine in response to certain stimuli such as sex,
food, or drugs of abuse (Fallon and Moore, 1978; Le Moal
and Simon, 1991). Functional studies have also shown
that the VTA is important for regulating reproductive
behavior, pain sensitivity, and parental behavior (Table 1)
(Brackett and Edwards, 1984; Sirinathsinghji et al., 1986;
Hansen et al.,, 1991; Hasegawa, 1991; Sotres-Bayon,
2001). Specification and maintenance of the midbrain do-
paminergic neurons have received much attention due to
the involvement of the substantia nigra (A9 group) in the
development of Parkinson’s disease (reviewed in Smidt
and Burbach, 2007), and the genes underlying the specifi-
cation of the substantia nigra and the VTA are remarkably
similar. Developmentally, many transcription factors
mediate the specification and maintenance of midbrain
VTA and substantia nigra dopamine neurons including
Nurr1 and Lmx1b, and their electrophysiological proper-
ties are also similar (Grenhoff et al., 1998). However, the
hodological profiles are quite different; for example, the
VTA, but not the SN, projects to the NAcc, although both
project to the striatum.

Birds

The avian mesolimbic reward system has received
much less attention than the SBN (Goodson, 2005) or the
well-known song circuitry (Nottebohm et al., 1976),
although investigations into the role of dopamine in song
production and evaluation have recently become a popu-
lar area of research (Jarvis et al., 1998; Hessler and
Doupe, 1999; Heimovics and Riters, 2008). The avian
VTA is similar to the mammalian VTA in topography and
neurochemical profiles, as it is located in the ventral mid-
brain and contains a dense cluster of dopamine neurons
(Lewis et al., 1981; Kitt and Brauth, 1986; Reiner et al.,
1994), and also has comparable electrophysiological
properties (Gale and Perkel, 2006). The avian VTA proj-
ects not only to the basal ganglia as in mammals (Kitt and
Brauth, 1986; Parent, 1986; Mezey and Csillag, 2002),
but also to the song nuclei (Lewis et al., 1981), providing
evidence that song production may be facilitated by the
reward system in certain contexts. Exposure to a social
opportunity, such as a reproductive female, increases
both immediate early gene expression and neuronal
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activity in the VTA of male songbirds (Heimovics and
Riters, 2005; Yanagihara and Hessler, 2006; Huang and
Hessler, 2008). Lesions of midbrain dopaminergic neu-
rons (both VTA and substantia nigra) decrease courtship
songs directed at a female, but do not alter song struc-
ture or nonfemale-directed singing in male zebra finch
(Hara et al., 2007).

Investigations into the role of dopamine in regulating
behavior patterns other than singing have also been car-
ried out in Japanese quail and estrillid finches, mainly in
the context of sexual behavior and sociality, respectively.
Dopaminergic neurons in the VTA of Japanese quail are
activated, as measured by immediate early gene induc-
tion, during sexual behavior (Charlier et al., 2005). In
estrillid finches, the activation of the VTA reflects not only
social motivation to court a female with song, but also dif-
ferent sociality phenotypes, as highly social species have
more dopaminergic cells in the VTA than solitary territo-
rial species (Goodson et al., 2009). Furthermore, Bharati
and Goodson (2006) showed in male zebra finches that
the number of VTA neurons that coexpress c-fos and TH
increases during both sexual and agonistic encounters,
suggesting a general response to interactions with any
conspecific individual in this gregarious species. These
neurochemical and hodological studies indicate that the
avian and mammalian VTA are indeed homologous and
the behavioral studies indicate they are also functionally
similar.

Reptiles

Although reptiles do have an ascending dopaminergic
system, its role in behavior is poorly understood. The rep-
tilian VTA is topographically and neurochemically similar
to the mammalian VTA, given its dense cluster of dopami-
nergic neurons in the midbrain (Parent and Poirier, 1971;
Smeets et al., 1986, 1987; Smeets, 1994). The reptilian
VTA sends massive projections to the telencephalon,
including the NAcc and LS (Gonzélez et al., 1990; Perez-
Santana et al., 1997), and thus has hodological character-
istics similar to the mammalian VTA. Regrettably, there
have been no studies on the role of the VTA in modulating
reptilian responses to social stimuli, even though this is a
promising area of research that will provide an important
link in understanding the evolution of dopamine’s role in
modulating social decision-making.

Amphibians and teleosts

Given its important role in regulating behavior, much
attention has been directed toward finding the anamniote
homolog to the mammalian VTA (Rink and Wullimann,
2001; Luo et al., 2008). Although both amphibians and
teleosts lack a midbrain dopaminergic cell group (Smeets
et al., 2000), multiple lines of evidence point to the poste-
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rior tuberculum, located in the ventral diencephalon, as
the putative anamniote VTA homolog. Rink and Wullimann
(2001, 2002) found that the posterior tuberculum is the
teleost dopaminergic system ascending to the striatum,
similar to mammals (Fallon and Moore, 1978), and sug-
gested that this region in teleosts might be functionally
similar and possibly homologous to the mammalian VTA/
substantia nigra pars compacta. In amphibians, the pos-
terior tuberculum also sends dopaminergic projections to
the putative NAcc, characteristic of the mammalian VTA
(Marin et al., 1995). More recently, neurochemical evi-
dence from developing zebrafish (Danio rerio) in conjunc-
tion with morpholino knockout studies have provided sup-
port for the notion that the posterior tuberculum is in fact
homologous to the VTA/substantia nigra. Morpholino
knockouts targeting the transcription factor Nr4a2, which
is essential for both development and terminal differen-
tiation of ventral mesencephalic DA neurons in mammals
(Zetterstrom et al., 1997; Saucedo-Cardenas et al., 1998;
Le et al.,, 1999), results in the absence of the posterior
tuberculum dopaminergic group (Luo et al., 2008).

It is unclear at this point whether the posterior tuber-
culum represents the mammalian substantia nigra, VTA,
or both, as it is possible that the separation of midbrain
dopaminergic cell populations into the distinct substan-
tia nigra and VTA happened after the anamniote-
amniote transition (Yamamoto and Vernier, 2011). Inter-
esting in this context is the finding that a Pitx3 morpho-
lino knockdown in zebrafish results in a partial ablation
of the posterior tuberculum (Filippi et al., 2007). This
result corresponds with the observation by Smidt et al.
(2004), who showed that in Pitx3 knockout mice only
the substantia nigra fails to develop, but not the VTA,
which suggests that there may be subregions of the pos-
terior tuberculum that are homologous to either the VTA
or substantia nigra, although it is unclear which dopami-
nergic neurons in the adult brain arise from these surviv-
ing cells. Clearly, more experimentation is needed to
resolve the putative homology relationship between the
anamniote posterior tuberculum and the VTA/substan-
tia nigra. In frogs, neurotoxic lesions of dopaminergic
neurons in the posterior tuberculum disrupt female pho-
notaxis behavior such that its expression is correlated
with the number of TH neurons remaining in this region
(Endepols et al., 2004). However, this result is difficult
to interpret, since either the motor patterns underlying
phonotaxis may be disrupted by loss of substantia nigra-
like neurons or the motivation to respond to a previously
rewarding stimulus has decreased due to loss of dopa-
minergic VTA-like neurons, or both. Once neurochemical
markers become available that differentiate the sub-
stantia nigra from the VTA, many of these questions can
be answered.
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Nucleus accumbens (NAcc)
Mammals

Decades of research have established the NAcc as a
central integrator of sensorimotor information that facili-
tates a favorable behavioral output of either approach or
avoidance of a stimulus (lkemoto and Panksepp, 1999).
The NAcc is the recipient of massive dopaminergic input
from the VTA (Fallon and Moore, 1978; Beckstead et al.,
1979), which releases dopamine in response to many
social stimuli as well as motivated behaviors (Morgane
et al., 2005). Additionally, the NAcc receives input from
the bIAMY and HIP and projects to the VP (Heimer et al.,
1997), a defining characteristic. Based on neurochemical
and developmental evidence, the NAcc is considered part
of the ventral striatopallidal system (Heimer et al., 1995)
along with the VP. In addition to its unique hodological
characteristics, the NAcc can be readily identified in the
ventral telencephalon by the massive fibers that show im-
munoreactivity to TH and dopamine (Fallen and Moore,
1978) as well as substance P and enkephalin (Table 2), as
these fibers are very dense compared to neighboring
regions. The mammalian NAcc has two subregions (the
core and shell) that are distinguishable by hodology (Mer-
edith et al., 1992) and neurochemical profiles (Zaborszky
et al., 1985; Zahm and Brog, 1992; Jongen-Rélo et al.,
1994; Heimer et al,, 1997; Riedel et al., 2002), as the
core contains higher calbindin-, TH-, and neuropeptide Y-
immunoreactivity than the shell. Furthermore, it seems
that the shell portion contributes more to the effects of
dopamine and behavioral reinforcement than the core
(reviewed in Zahm et al., 1999). When the NAcc is
depleted of dopamine, reinforcement behaviors decrease
while appetitive behaviors remain intact, suggesting that
the NAcc modulates the “wanting” (i.e., the appetitive
effort of seeking a reinforcer) as opposed to the “liking”
(act of consuming a reinforcer) of relevant stimuli
(reviewed in Salamone and Correa, 2002). Lesions to the
NAcc result in impulsive choice in mammals (Cardinal
etal,, 2001).

Birds

The avian NAcc shares similar neurochemical and
hodological characteristics of the mammalian NAcc
(Reiner et al., 1983, 1994; Berk, 1991; Medina and
Reiner, 1997; Husband and Shimizu, 2011). The avian
NAcc receives input from the VP, HIP, and LS (Székely
and Krebs, 1996) and projects to the VP (Medina and
Reiner, 1997). Several studies have suggested the avian
NAcc can also be divided into core and shell subregions
similar to mammals based on hodology and neurochemis-
try (see Husband and Shimizu, 2011, for detailed discus-
sion). TH- and neuropeptide Y-immunohistochemistry is
higher in the putative shell (Roberts et al., 2002; Balint

and Csillag, 2007), similar to mammals. However, calreti-
nin immunoreactivity is higher in the putative shell region
(Balint and Csillag, 2007), opposite of the mammalian
NAcc. Most of our understanding of the avian NAcc func-
tion comes from studies on feeding behavior in chicken
(Gallus domesticus) and pigeon. This body of literature
supports the functional analogy of the avian and mamma-
lian NAcc, as lesions of the NAcc result in impulsive
choices (Izawa et al., 2003), similar to mammals (Cardinal
et al., 2001). Further, food-deprived pigeons will self-stim-
ulate the NAcc (Delius and Pellander, 1982), suggesting
that its role in motivation is conserved.

Reptiles

The reptilian NAcc is very similar to the mammalian
NAcc based on location, neurochemistry, connectivity,
and development (Smeets et al., 1986, 1987; Russchen
et al., 1987; Russchen and Jonker, 1988; Gonzalez et al.,
1990; Smeets and Medina, 1995; Guirado et al., 1999).
Similar to the situation in mammals, the reptilian NAcc
receives input from the VTA, VP, amygdala, thalamic
nuclei, and hypothalamus (Gonzélez et al., 1990; Perez-
Santana et al., 1997), and sends projections to the sep-
tum, VP, BNST, POA, thalamic regions, VTA, and some
hypothalamic regions (Smeets and Medina, 1995). Simi-
lar to mammals and birds, the reptilian NAcc can also be
divided into two subregions, putatively representing the
shell and core, based on neurochemistry and connectivity
(Guirado et al., 1999).

Functionally, the reptilian NAcc also modulates behav-
ior patterns in a way similar to the mammalian homolog,
as variation in dopamine levels in the NAcc influences the
approach behavior to a potentially rewarding stimulus.
Leopard geckos (Eublepharis macularius) have different
behavioral phenotypes based on the temperature of the
embryonic environment and individual differences in sex-
ual behavior of male adults of different embryonic envi-
ronments has been partially attributed to differences in
dopamine in the NAcc (Dias et al., 2007), although this
study did not distinguish between the core and shell sub-
regions. More studies on the integration of sensorimotor
information in the reptilian NAcc would yield insightful
information on the role of the NAcc in reptiles.

Amphibians

The amphibian NAcc shares many characteristics of
the mammalian NAcc in neurochemistry and hodology.
Similar to mammals, the amphibian NAcc homolog
receives massive inputs of TH- and dopamine-immunore-
active fibers (Gonzalez and Smeets, 1991; Gonzilez
et al.,, 1994). This region also contains many cells immu-
noreactive for DARPP-32, a marker for dopaminorecep-
tive cells (Lépez et al., 2010; O’Connell et al., 2010). The
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NAcc lies on the rostral telencephalic wall and can be dis-
tinguished from the striatum by differences in neuro-
chemistry (Marin et al., 1998b), as the NAcc has more
dense TH-, SP-, and ENK-positive fibers and lacks
NADPH-positive cells compared to the STR. Similar to the
situation in mammals, the anuran NAcc also receives
inputs from the VP, HIP, STR, and VTA-like homologs
(Marin et al., 1997a, 1998a).

Unfortunately, functional studies of the NAcc in
amphibians are largely lacking. However, studies in
female tlingara frogs (Physalaemus pustulosus) utilizing
immediate early gene expression have demonstrated that
the NAcc activation is correlated with both phonotaxis
behavior and the type of mating call that is used as a
stimulus (Hoke et al., 2007). This work suggests that the
NAcc may play an important role in the decision to
approach a potentially rewarding stimulus, such as the
attractive call of a conspecific.

Teleosts

The dorsal (Vd) and central (Vc) parts of the ventral tel-
encephalon is thought to be homologous to the striatal
formation in mammals based on the presence of sub-
stance P-immunoreactive cells (Sharma et al., 1989; Bat-
ten et al., 1990; Weld and Maler, 1992). Other neuro-
chemical and hodology evidence points to Vd as the
partial putative homolog to the mammalian NAcc. Vd is
rich in GABA immunoreactivity (Medina et al., 1994) and
dopamine receptors (Kapsimali et al., 2000; Vacher et al.,
2003; O’Connell et al., 2011b). Vd also receives ascend-
ing dopaminergic input from the putative VTA-like homo-
log (Rink and Wullimann, 200 1a), although more research
is needed to confirm the identity of a VTA homolog in tele-
osts, which will then facilitate a more confident identifica-
tion of the NAcc as well. The ventral part of the ventral
telencephalon (Vv) also receives projections from the
VTA-like nucleus in zebrafish (Rink and Wullimann, 2001);
however, this region is not considered a potential homo-
log due to its septal-like cholinergic immunoreactivity
(Brantley and Bass, 1988).

Basolateral amygdala (bIAMY)
Mammals

The pallial bIAMY in particular integrates inputs from
many sensory modalities and is sometimes referred to as
the “multimodal amygdala” involved in emotional behav-
ior (LeDoux, 2000; Moreno and Gonzdlez, 2007a). The
bIAMY as a whole generally refers to three subregions:
the basolateral, lateral, and basomedial amygdala (Swan-
son and Petrovich, 1998). The mammalian bIAMY proj-
ects to the hypothalamus through the stria terminalis
(LeDoux et al., 1987; Turner and Herkenham, 1991;
Risold et al., 1997), a connection that appears to be con-

Neuroanatomy of social behavior

served across tetrapods (Bruce and Neary, 1995c), and
also projects to the striatum and NAcc (Russchen and
Price, 1984; Petrovich et al., 1996, Wright et al., 1996).
Further, neuronal activity in the bIAMY can modulate the
firing rate of dopaminergic VTA neurons (Maeda and
Mogenson, 1981), providing a mechanistic basis for the
role of the bIAMY in modulating goal-directed behaviors.
Lesions of the bIAMY result in a loss of emotional learn-
ing, including fear conditioning (LeDoux, 2000; Cardinal
etal., 2002).

Developmentally, the bIAMY is derived from the lateral
and ventral pallium (Table 3). In particular, the basolateral
subregion is derived from the lateral pallium and can be
identified in development by Emx-1 and Tbr-1 (Medina
et al., 2004; Remedios et al., 2004; Garcia-L6pez et al.,
2008). However, gene markers for the ventral pallium can
identify the lateral and basomedial subregions of the
bIAMY: Tbr-1 Dbx-1, Lhx2/9, and Lmo3 (Remedios et al.,
2004), although some cells express the lateral pallial
marker emx1 (Gorski et al., 2002), which may represent
migrated cells. These regional differences in developmen-
tal origin add to the complexity of establishing bIAMY
homology in other vertebrates (see reviews, Martinez-
Garcia et al., 2002; Moreno and Gonzalez, 2007a; Bruce
and Braford, 2009). We therefore discuss the lateral and
ventral pallial amygdala in reptiles and birds, but there
are not enough data at present to determine the corre-
sponding developmental subregions in amphibians and
teleosts.

Birds

The identification of the avian bIAMY is difficult due to
a poorly developed olfactory system and the presence of
a large dorsal ventricular ridge, which is also present in
reptiles but absent in mammals. However, developmen-
tal, neurochemical, and hodological studies, as well as
comparative studies in reptiles, have illuminated the
potential avian bIAMY as the caudal (dorsocaudal and
caudomedial) nidopallium and the ventral part of the in-
termediate arcopallium (including the posterior pallial
amygdala) as the ventral pallial homolog (discussed in
detail in Martinez-Garcia et al., 2002). Whereas the dorsal
and posterior arcopallium and tempero-parieto-occipital
area (TPO) represents the lateral pallial homolog (dis-
cussed in detail in Puelles et al., 2000; Martinez-Garcia
et al., 2002) based on Tbr-1 and Emx-1 expression
(Puelles et al., 2000). Interestingly, Wang et al. (2010)
recently suggested that the nidopallium shares similar-
ities with the mammalian neocortex based on cell mor-
phology in addition to its multimodal connectivity. How-
ever, pallial markers Lmo3 and Lhx2/9 are expressed in
the caudal nidopallium during development (Abellan and
Medina, 2009; Abellan et al., 2009), which provides
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additional support for the ventral pallial homology. The
TPO and dorsal arcopallium receives dopaminergic and
cholinergic innervation similar to the mammalian bIAMY
(Waldmann and Giintlrkin, 1993; Medina and Reiner,
1994; Balthazart and Absil, 1997). Importantly, the dorso-
caudal and caudomedial nidopallium receives auditory,
visual, and somatosensory information from the thalamus
(Wild, 1987; Martinez-Garcia et al., 2002), supporting the
homology of these structures with the lateral nucleus of
the mammalian bIAMY. Furthermore, this region projects
to the ventral hypothalamus via the stria terminalis (Zeier
and Karten, 1997; Davies et al., 1997; Dubbeldam et al.,
1997), a characteristic hodological signature of the
bIAMY.

Reptiles

A multimodal information processing area equivalent
to the bIAMY has also been identified in the reptilian pal-
lium (Martinez-Garcia et al., 1991, 2002; Lanuza et al.,
1998; Lanuza and Halpern, 1998) that includes the pos-
terodorsal ventricular ridge and lateral amygdaloid nu-
cleus as well as the dorsolateral amygdala (discussed in
detail in Martinez-Garcia et al., 2002). The dorsal ventric-
ular ridge (DVR) represents one of the most striking
changes in the transition between amphibians and
amniotes (ten Donkelaar, 1999), although mammals do
not have this region (Northcutt and Kaas, 1995). Bruce
and Neary (1995¢) first proposed that the reptilian pos-
terodorsal dorsal ventricular ridge/dorsolateral amygdala
is comparable to the mammalian bIAMY based on hodo-
logical evidence, as this region receives massive projec-
tions from the main olfactory bulb as well as other non-
chemosensory regions like the thalamus (Lanuza et al.,
1998). This region also projects to the striatum and VMH
through the stria terminalis (Hoogland and Vermeulen-
Vanderzee, 1995; Lanuza et al., 1997, 1998; Lanuza and
Halpern, 1997; Martinez-Marcos et al., 1999), similar to
the mammalian bIAMY. Although some have proposed
that the reptilian DVR is similar to the mammalian isocor-
tex (Aboitiz, 1999), developmental studies have shown
that the posterior DVR may be ventral pallial in origin (Fer-
nandez et al., 1998; Puelles et al., 2000), whereas the
mammalian isocortex is dorsal pallial in origin (Aboitiz
et al., 2002). The posterodorsal DVR is positive for pallial
markers Tbr-1 and Lhx9, while the dorsolateral amygdala
is positive for the pallial markers Emx-1 and Tbr-1 (Fer-
nandez et al., 1998; Moreno et al., 2010), further support-
ing the homology of these two reptilian regions to the
mammalian bIAMY. Finally, the dorsolateral amygdala has
both dopaminergic and cholinergic innervation (Medina
et al., 1993; Smeets, 1994), similar to the lateral pallial
part of the mammalian bIAMY (Loughlin and Fallon, 1984;
Carlsen et al., 1985).

Functional studies in male Western fence lizards (Sce-
loporus occidentalis) have shown that the bIAMY homolog
facilitates responsiveness to social stimuli, as lesions to
this region reduce aggressive displays to conspecific
males (Tarr, 1982). Similarly, lesions of the bIAMY in cai-
man disrupt the appropriate behavioral output to relevant
social stimuli such that the animals no longer attacked or
retreated from a specific stimulus (Keating et al., 1970).
Complementary stimulation studies of the reptilian bIAMY
increased agonistic escape responses (Distel, 1978;
Sugar and Demski, 1978), suggesting that this region
plays an important role in integrating social stimuli into
an adaptive behavioral response.

Amphibians

Due to neurochemical, developmental, and hodological
characteristics, the brain region corresponding to the
multimodal mammalian bIAMY is the lateral amygdala
(discussed in detail in Moreno et al., 2004; Moreno and
Gonzélez, 2004), which receives both olfactory and
nonchemosensory information (Moreno and Gonzalez,
2007c), although the homology status of this region is
still under debate (Laberge et al., 2006). The integration
of chemical (olfactory, including pheromonal) cues with
nonchemical stimuli from the thalamus, such as species-
specific calls, may aid in labeling particular stimuli as
attractive or noxious (Moreno and Gonzélez, 2007a). The
amphibian lateral amygdala is ventropallial in origin,
marked by Lhx-2/9 and tbr1 expression (Bachy et al.,
2001; Brox et al., 2004; Moreno et al., 2004), similar to
lateral and basomedial portions of the mammalian bIAMY.
However, Lhx-2/9 is also expressed in the adult subpal-
lium (Bachy et al., 2001; Brox et al., 2004; Moreno et al.,
2004), although Moreno et al. (2004) suggested that
these Lhx-2/9 cells originate in the ventral pallium and
then migrate to the subpallium, as is sometimes seen in
mice. Much more work on the developmental origins and
connectivity of this region is needed to firmly establish
homology. From a function viewpoint, this region is simi-
lar to the mammalian bIAMY, as lesions disrupt emotional
learning in the newt Triturus alpestris (Wenz and Him-
stedt, 1990).

Teleosts

Given that the mammalian amygdala is derived from
both pallial and subpallial regions, finding the homolo-
gous region in teleosts is complicated by the eversion of
the teleost forebrain during development. Even though
the pallial and subpallial regions are topographically in
close proximity in tetrapods, the teleost homologs are sit-
uated in completely different regions of the telencepha-
lon. The medial part of the dorsal telencephalon (Dm) is
currently thought to be the putative bIAMY homolog. This
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region receives olfactory input (Folgueira et al., 2004a) as
well as other nonchemosensory inputs (Folgueira et al.,
2004b), similar to the mammalian bIAMY. However, it
should be noted that there are subregions of Dm about
which little is known in terms of their function. For exam-
ple, lateral line and auditory information are integrated in
different subregions of Dm (Yamamoto and Ito, 2005,
2008). There is also developmental evidence available for
this putative homology from both Medaka (Oryzias lat-
ipes) and cavefish (Astyanax mexicanus), where the pallial
marker Lhx-9 is expressed in Dm (Alunni et al., 2004;
Menuet et al., 2007), similar to the mammalian blIAMY.
Dm is also functionally similar to the mammalian blIAMY,
as lesions impair emotional learning similar to mammals
(Portavella et al., 2002), consistent with the Dm being ho-
mologous to the lateral pallium (Nieuwenhuys, 2009).

Striatum (STR)
Mammals

The STR is thought to play an important role in rein-
forcement learning and selecting previously reinforced
actions (Wickens et al., 2007). Based on developmental,
hodology, and neurochemical evidence, the mammalian
STRis located in the dorsal striatopallidal system (Heimer
et al., 1995) and receives massive inputs of TH- and dopa-
mine-immunoreactive fibers (Fallen and Moore, 1978)
from the midbrain (Shults et al., 1984). It also contains
neurons that express substance P, nitric oxide synthase,
somatostatin, and neuropeptide Y (Tepper and Bolam,
2004), and both D; and D, dopamine receptor families
are expressed in this region (Matamales et al., 2009). The
STR develops as part of the subpallium (the lateral gangli-
onic eminence) and is characterized by several gene
markers (reviewed in Moreno et al., 2009), including
GAD67, DIx, and Isl1 (Table 3). Functional studies indi-
cate that the STR mediates learning and expression of
goal-directed actions (reviewed in Wickens et al., 2007).

Birds

Based on neurochemical profile and hodological data,
the dorsolateral part of the avian medial striatum (previ-
ously the lobus parolfactorius) is comparable to the mam-
malian STR (Karten and Dubbeldam, 1973; Reiner et al.,
1983; Medina and Reiner 1995, 1997). Based on strong
enkephalin staining (Galatioto et al., 1998), Reiner et al.
(1998) first suggested a homology between the lobus
parolfactorius and the mammalian STR. The avian STR
developmentally arises from the molecularly inferred
homolog of the lateral ganglionic eminence, marked by
expression of DIx2 and lack of Nkx2.1 (Puelles et al.,
1999). Furthermore, the electrophysiological properties
of the neurons in this region are very similar to those of
cells in the mammalian STR (Farries and Perkel, 2000).
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Consistent with functional studies in mammals, the avian
STR seems to play a role in learning goal-directed behav-
iors, as pigeons with STR lesions were unable to change
goals in a discrimination task (Watanabe, 2001).

Reptiles

The reptilian STR is similar to the mammalian and avian
STR in hodology, neurochemistry, and developmental
gene markers (Smeets et al., 1986, 1987; Russchen et al.,
1987; Russchen and Jonker, 1988; Gonzélez et al., 1990;
Smeets, 1994; Moreno et al., 2010). A feature unique to
the reptilian STR is dopaminergic input subfunctionaliza-
tion (Marin et al., 1998c), as the ventral STR receives
dopaminergic input exclusively from the VTA, while the
dorsal striatum receives dopaminergic input from the sub-
stantia nigra (Gonzélez and Russchen, 1988; Gonzalez
et al., 1990; Perez-Santana et al., 1997). In mammals and
birds, the dopaminergic innervation is more overlapping
(Fallon and Moore, 1978; Nauta et al., 1978). Develop-
mental gene markers (presence of Paxé6 and absence
Nkx2.1 and others) are similar between the reptilian STR
and the mammalian STR (Table 3) (Moreno et al., 2010).
An STR lesion in male anole lizards leads to deficits in a
male-typical assertion display (Greenberg, 1977) while
stimulation promotes this behavior (Tarr, 1982).

Amphibians

The STR is situated along the ventrolateral wall of the
telencephalon and homology is supported by neurochem-
ical and developmental studies. This region contains
many TH- and dopamine-immunoreactive fibers as well as
many cells immunoreactive for GABA, substance P, en-
kephalin, and DARPP-32 (Table 2) (Inagaki et al., 1981;
Gonzélez and Smeets, 1991, 1994; O’Connell et al.,
2010). Developmentally, the anuran STR also has similar
gene markers including GAD67, DIx, and Isl1 (Table 3)
(Bachy et al., 2002; Moreno et al., 2008). In anurans, the
STR is sensitive to auditory cues (Mudry and Capranica
et al., 1980). Functionally, lesions of the striatum in
female gray tree frogs (Hyla versicolor) abolish phonotac-
tic responses to mating calls (Walkowiak et al., 1999),
suggesting that expression of goal-directed behaviors
(i.e., finding the source of the attractive call) is disrupted.

Teleosts

It is generally accepted that the dorsal (Vd) and central
(Vc) part of the ventral telencephalon are striatal-like
(Wullimann and Mueller, 2004) based on neurochemical
evidence. This homolog was suggested based on the
presence of substance P-immunoreactive cells (Sharma
et al., 1989; Batten et al., 1990; Weld and Maler, 1992),
as well as GABA-immunoreactive fibers in the Vd (Marti-
noli et al., 1990; Medina et al., 1994). Further, there is
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selective enkephalin staining within Vd (Vecino et al,,
1992) that is also indicative of the striatal-like regions of
the mammalian basal ganglia. It is, however, important to
mention here that neurochemically Vd shows both stria-
tal-like and NAcc-like (see above) properties, suggesting
that homology relationships can be nested within each
other. It is thus possible that Vd functions in ways similar
to both the STR and the NAcc, although further functional
and developmental studies are needed to fully dissect
any subfunctionalization of this region.

Ventral pallidum (VP)
Mammals

The VP mediates the motor output of motivated or
goal-directed behaviors (Mogenson et al.,, 1980). The
mammalian VP is part of the ventral striatopallidal system
(Heimer et al., 1995), along with the NAcc, and largely
receives input from the STR and NAcc and projects to
regions outside the basal ganglia circuit, including limbic
areas in the hypothalamus and the VTA (Haber et al.,
1985; Groenewegen et al., 1993; Ikemoto, 2007). Neuro-
chemically, it is characterized by high levels of substance
P and enkephalin (Zahm and Heimer, 1990; Napier et al.,
1995), and most of the catecholaminergic innervation
here is noradrenergic (Reiner et al., 1994). Developmen-
tally, the VP arises from the medial ganglionic eminence,
marked by expression of DIx1/2/5, Nkx2.1, and Lhxé
(reviewed in Moreno et al., 2009). The VP not only regu-
lates the motor output of behaviors, but also plays an im-
portant role in reward processing. Functional studies
have shown that the VP is necessary and sufficient for
reward and mediates both the “liking” and “wanting”
components of reward (reviewed in Smith et al., 2009).

Birds

The avian VP is similar to the mammalian homolog in
topography, hodology, and neurochemistry (Medina and
Reiner, 1997). As in mammals, the avian VP also projects
to limbic areas, the hypothalamus, and the VTA (Medina
and Reiner, 1997), and receives catecholaminergic inner-
vation that is primarily noradrenergic (Balthazart and
Absil, 1997). Neurochemically, the VP can be distin-
guished by a strong staining for substance P and enkeph-
alin (Reiner et al., 1983; Anderson and Reiner, 1990b;
den Boer-Visser and Dubbeldam, 2002). During develop-
ment, the avian VP also expresses DIx2, Nkx2.1, yet no
Pax6, similar to the situation in the mammalian VP
(Puelles et al., 2000). Functionally, the VP constitutes an
integral link between the dopaminergic reward system
and song nuclei (Gale et al., 2008). The dopaminergic
reinforcement of a bird’s own song involves the disinhibi-
tion of the dopaminergic neurons by inhibition of VP, sug-
gesting that the reward system and song nuclei compose

a functional pathway for vocal learning and reinforcement
of song production (Gale and Perkel, 2010).

Reptiles

The reptilian VP is very similar to both the mammalian
and avian VP in neurochemistry, hodology, and topogra-
phy (Russchen and Jonker, 1988; Smeets and Medina,
1995). It has a bidirectional connection with the NAcc
that seems to be conserved across tetrapods (Russchen
and Jonker, 1988; Gonzalez et al., 1990), and projects to
the hypothalamus and VTA (Russchen and Jonker, 1988).
Developmentally, the reptilian VP also arises from the
medial ganglionic eminence, as marked by Nkx2.1
expression (Moreno et al., 2010). Unfortunately, func-
tional studies that test the reptilian VP’s role in the regu-
lation of reward have yet to be conducted.

Amphibians

The VP has been identified based mostly on neuro-
chemical studies utilizing antibodies specific to the basal
ganglia. It can be recognized by strong immunoreactivity
to substance P and moderate enkephalin presence as
well noradrenergic innervation (Merchenthaler et al.,
1989; Gonzalez and Smeets, 1993; Marin et al., 1998b).
It also shares a bidirectional connection with the NAcc
(Marin et al., 1997a, 1998a) and projects to the hypothal-
amus and the SN/VTA-like region (Marin et al., 19973,
1998a). Developmentally, the amphibian VP also is
marked by Nkx2.1 expression (van den Akker et al.,
2008). Although there are no functional studies targeting
specifically the VP in amphibians, this would be an inter-
esting avenue of research due to its role in regulating
motor output of goal-directed behavior and the rich litera-
ture on female phonotaxis and mate choice in anurans.

Teleosts

To our knowledge, a teleost homolog of the mammalian
VP has not yet been identified. There is a region in the
developing teleost brain that is neurochemically similar to
the mammalian medial ganglionic eminence (Rohr et al.,
2001), although where this region is topographically
located in the adult brain is not entirely clear, in part due
to the eversion of the developing telencephalon. Further-
more, only one of the paralogs of the developmental gene
marker Nkx2.1 is expressed in the telencephalon of devel-
oping zebrafish (Rohr et al., 2001), thus making it difficult
to interpret if this is an ancestral vertebrate trait or if this
paralog has been recruited for a new function after the tel-
eost genome duplication. |dentification of this brain region
would provide an excellent foundation for deepening our
understanding of the evolution of the teleost basal ganglia
and their contributions to behavioral regulation. A recent
study by Ganz et al. (2011) provides evidence that the
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caudal portion of Vv is homologous with the pallidum/pal-
lidal septum of mammals.

Hippocampus (HIP)
Mammals

The HIP in mammals plays an important role in the for-
mation of episodic memories and is thus crucial for rela-
tional memory representations of the environment and/
or experiences (O’Keefe and Nadel, 1978; Anderson
et al., 2007; Humphries and Prescott, 2010). The HIP’s
role in mediating reward stems from its ability to encode
environmental information into navigational maps that
the animal can recall. For example, if an animal were to
find a mate or a particularly enriched food source while
foraging, remembering the location of this rewarding
stimulus in space and time is clearly adaptive. In develop-
ment, the HIP is derived from the medial pallium and is
thus relatively easy to identify across vertebrates (Sherry
and Duff, 1996; Eichenbaum et al., 1999; Rodriguez
et al.,, 2002a). Functional studies in mammals suggest
that the HIP is not only involved in spatial memory, but
more generally in the storage of repeated experiences
(Eichenbaum et al., 1999). HIP lesions produce a selec-
tive deficit in spatial learning based on multiple environ-
mental features, but not cue learning, which relies on a
single cue or nonspatial discrimination (Morris et al.,
1982). Additionally, natural space use can predict HIP vol-
ume in small rodents, including species variation in terri-
tory size food-caching (reviewed in Sherry et al., 1992).

Birds

The HIP avian homology is supported by developmental
and hodological (Fig. 3) studies. The avian HIP is of medial
pallial origin with characteristic Lhx2 expression, just as in
mammals (Moreno et al., 2004), and exhibits a similar
hodological profile (Krayniak and Siegel, 1978b; Atoji
et al., 2002; Atoji and Wild, 2004). This region is also func-
tionally similar to the mammalian HIP, with the strongest
evidence coming from studies investigating spatial learning
in birds, which has been especially well examined in the
context of homing behavior in pigeons (Bingman, 1993)
and food caching (Sherry and Duff, 1996). Lesion of the
HIP in pigeons impairs place learning but not cue learning
(Fremouw et al., 1997), similar to HIP lesions in mammals.
Importantly, the avian HIP plays a critical role in landmark
navigational learning in a natural setting (Gagliardo et al.,
1999), and is important in processing spatial rather than
visual information (Colombo et al., 1997). HIP lesions in
Eurasian nutcrackers (Nucifraga caryocatactes), a food
caching species, render them unable to find their food
stores (Krushinskaya, 1966). Interestingly, bilateral HIP
lesions disrupt the memory of the food cache location
without disrupting food cache searching in chickadees
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(Sherry et al., 1989), suggesting that the HIP plays an im-
portant role in spatial memory but not motivation. Compar-
ative studies have also shown that food-storing birds have
larger HIP volumes than nonfood-storing birds within the
same taxonomic group (Krebs et al., 1989; Sherry et al,,
1989; Hampton et al., 1995).

Reptiles

Developmental evidence in reptiles points to the
medial cortex as the reptilian homolog of the mammalian
HIP (Fernandez et al., 1998), as it is derived from the
medial pallium (Moreno et al., 2010). There is also much
evidence suggesting this region is functionally similar to
the mammalian HIP, as a behavioral dimorphism in the
size of the HIP is found in lizards: those species that for-
age for food have a larger medial cortex than other spe-
cies that have adopted a sit-and-wait strategy (Day et al.,
1999). Additionally, lesions of the medial cortex in both
lizards and turtles also lead to deficits in spatial learning
but not in cue learning (Day et al., 2001; Rodriguez et al.,
2002b; Lépez et al., 2003).

Amphibians

The medial pallium in amphibians is generally accepted
as the HIP homolog, due to its developmental origin (Brox
et al.,, 2003, 2004) and connectivity (Westhoff and Roth,
2002). The HIP is also sensitive to auditory cues (Mudry
and Capranica, 1980), which may be important in encod-
ing the acoustic information into spatial maps that anurans
utilize during phonotaxis. Toads (Bufo arenarum) with
lesions in the medial pallium show deficits in response in-
hibition to a nonrewarding stimulus (Muzio et al., 1994),
similar to HIP lesions in rats (Jarrard and Isaacson, 1965).

Teleosts

The lateral part of the dorsal telencephalon (DI) is cur-
rently thought to be the homolog of the mammalian HIP
based on connectivity to the POA and hypothalamus (Fol-
gueira et al., 2004b), and cell mass criteria (Nieuwen-
huys, 2009). There is also support for this region being
functionally similar to the mammalian HIP, as lesions lead
to deficits in spatial learning, but not emotional or cue
learning (Portavella et al., 2002; Rodriguez et al., 2002b).

INTEGRATION OF SOCIAL BRAIN CIRCUITS

Although the SBN and mesolimbic reward system have
traditionally been studied as separate circuits, they are
anatomically linked by bidirectional connections between
several brain regions as well as the two shared nodes, LS
and BNST. These two circuits complement each other by
regulating both the evaluation of stimulus salience and
the behavioral output. By integrating them into the SDM
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network, we can build a strong foundation for studying
the neural basis and evolution of social behavior. Numer-
ous studies have greatly increased our understanding of
complex social behaviors within this framework. For
example, work in monogamous voles has integrated the
rewarding basis of being with a mate in the mesolimbic
reward system with reproductive behaviors of the SBN
(Young and Wang, 2004). Additionally, work in tingara
frogs has lead to important insights into the neural
response to conspecific calls in females, where both
hypothalamic and dopaminergic regions, such as the
putative VTA homolog, respond to an attractive call as
measured by immediate early genes (Hoke et al., 2007).
Another brain node that participates in both the meso-
limbic reward system and SBN is the amygdala, where
the meAMY is considered part of the SBN, whereas the
bIAMY is generally associated with reward processing.
These two regions of the amygdala are highly intercon-
nected and play an important role in regulating adaptive
behavior. Lanuza et al. (2008) proposed that the meAMY
detects pheromonal cues in the environment and this
information is sent to the bIAMY where information is
tagged with a negative or positive emotional value. Fur-
ther, in mammals the central amygdala is the main inte-
gration point for amygdalar information, as it processes
information from the bIAMY and meAMY and relays this
information to the thalamus and brainstem (Moreno and
Gonzalez, 2007a). Although the central amygdala is not
classically considered part of the mesolimbic reward sys-
tem and SBN, it plays an important role in implementing
motor responses to stimuli resulting in approach or avoid-
ance (Gonzales and Chesselet, 1990; Saha et al., 2000;
Finn et al., 2003). Thus, the central amygdala can also be
considered a structural link between these two circuits.
Studies in mammals, snakes, and amphibians show that
emotional learning can occur with both a negative-associ-
ated pheromonal cue (i.e., a predator pheromone) or a
positive-associated pheromone, like potential mate (Diel-
enberg and McGregor, 2001; Lanuza et al., 2008). Associ-
ating sensory information with emotional memory allows
an animal to produce a behaviorally appropriate response
to a social stimulus, such as withdrawing from a noxious
stimulus or approaching a potentially rewarding stimulus.

EVOLUTION OF THE SOCIAL
DECISION-MAKING NETWORK

Our analysis of homologies based on topography, neuro-
chemistry, hodology, and developmental gene markers
suggest that many of the nodes of the mesolimbic reward
system and SBN were already present in early vertebrates.
This is in a way expected, as brain regions that regulate
adaptive behaviors should be highly conserved. Across ver-

tebrate classes, the developmental gene profiles that mark
the progenitor domains of the pallium and subpallium are
highly conserved (Table 3), further supporting the conser-
vation of these developmental brain modules (Redies and
Puelles, 2001), although many more genes and species
need to be added to this analysis. Given the available data
across vertebrates on neurochemical markers (Table 2) as
well as developmental markers for progenitor domains (Ta-
ble 3), there appears to be more variation between verte-
brate lineages in neurochemical profiles (in terms of the
presence or absence of cell bodies or fibers immunoreac-
tive for particular neurochemicals), although the overall
pattern is still highly conserved.

We have discussed all nodes of the SDM network across
vertebrates for which the available data suggest putative
homologies, although much more work is clearly needed to
firmly establish these homologies in nonmammalian verte-
brates. The brain regions that currently do not have any pu-
tative homologies with their mammalian counterparts is
the VP and the extended amygdala (the mammalian
meAMY and BNST) in teleosts, and the hypothesized VTA/
substantia nigra-like subdivisions of the posterior tubercu-
lum in anamniotes. The homology of the extended amyg-
dala (meAMY and BNST) in teleosts is mostly based on de-
velopmental evidence for gene markers of the mammalian
medial ganglionic eminence, whereas the homology of the
posterior tuberculum as the homolog to the VTA/substan-
tia nigra in anamniotes is mostly based on neurochemistry
and hodology. There are two alternative explanations for
the dual homology of these regions. First, it is possible that
the meAMY and BNST differentiated into distinct brain
regions after tetrapods diverged from fish, although testing
this hypothesis would require investigating developmental
marker profiles of a non-teleost fish, such as lungfish (a
sarcopterygian, like all tetrapods) or cartilaginous fish in
order to determine when this trait diverged. Similarly, the
VTA and substantia nigra possibly diverged into anatomi-
cally and functionally distinct regions in amniotes. The
other possibility is that subregions of these nuclei may cor-
respond to the meAMY or BNST in the case of the teleost
Vs and the VTA and substantia nigra in the case of the
anamniote posterior tuberculum. However, not enough is
known about these nuclei to distinguish subpopulations. In
teleosts, the neurochemical profiles of the putative
extended amygdala (meAMY and BNST) are nearly identi-
cal, with the exception of choline acetyltransferase immu-
noreactivity, and from this one protein it could be proposed
that the teleost Vs is more like the meAMY than the BNST,
which is also supported by lack of AVT-producing cells in
this region. Similarly, the neurochemical profiles of the
VTA and substantia nigra are remarkably similar and more
studies need to be done in frogs and fish to better eluci-
date whether functionally distinct subpopulations within
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the posterior tuberculum exist. However, developmental
studies have indicated that the diencephalic posterior
tuberculum is the likely ancestor of the midbrain dopami-
nergic cells due to longitudinal expression of Imx1b during
zebrafish development (Filippi et al., 2007), although why
these cells began to migrate in amniotes is a mystery.

By studying behavior within a network framework
rather than specific brain regions, we will be able to bet-
ter understand how the brain integrates external and in-
ternal information into a behavioral response (Newman,
1999; Crews 2003; Goodson and Kabelik, 2009). More
work in nonmammalian systems in this context will help
us better understand brain homologies as well as how
information is processed into a meaningful output.
Specifically, neuroanatomical and functional studies are
severely lacking in reptiles, although they represent an
important group for understanding the evolution of birds
and mammals. The need for more information of patterns
of homeobox genes during brain development, regional
connections, chemoarchitecture, and more functional
lesion/stimulation studies in behaving animals would
greatly improve our understanding of not only the evolu-
tion of these neural networks that regulate behavior, but
also improve our capacity to better understand mental
disorders that arise from deviations in these circuits.

The neuroanatomical framework we have proposed here
provides an important foundation for future experiments
and analyses that will greatly increase our understanding
of the neural evolution of adaptive decision-making. With
putative homologies established across vertebrates, neu-
rochemical or gene expression analyses will shed light on
how evolutionary changes on the molecular level within
these brain regions might be associated with variation in
ecology or life-history strategies of animals. Furthermore, a
network view of decision-making, such as proposed here,
provides the theoretical framework in which to ask how
neural nodes within a network act in concert to produce
context-appropriate behavior patterns or how changes in
sensory cues (e.g., as a consequence of specialization on
certain sensory modalities) might shift neural network ac-
tivity. Finally, the comparative analysis of the SDM network
allows us to identify homologous brain regions and thus
provides the basis necessary for testing the hypothesis
that brain region-specific neural or molecular responses to
environmental stimuli in challenge or opportunity contexts
are conserved across animals (Robinson et al.,, 2008;
O’Connell and Hofmann, 201 1a).

CONCLUSIONS

Here we have synthesized topographical, neurochemi-
cal, developmental, and hodological evidence in support
of putative homologies of the mesolimbic reward system
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and SBN, two circuits important in behavioral regulation
that together constitute the social decision-making net-
work. We have also discussed whether these regions are
functionally similar, given the data available. These com-
plementary lines of evidence all converge on the basic
insight that the brain regions in question are indeed con-
served across vertebrates, can—for the most part—be reli-
ably identified, and play similar roles in the regulation of
adaptive social behavior. Thus, our analysis suggests that
these neural circuits regulating behavior are evolutionary
ancient and were already present in early vertebrates.
Our synthesis provides a comprehensive framework for
comparative studies that will increase our understanding
of the evolution of the neural and molecular mechanisms
that govern social behavior across vertebrates.
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