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Evidence that toxin resistance in poison birds and
frogs is not rooted in sodium channel mutations and
may rely on “toxin sponge” proteins
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Many poisonous organisms carry small-molecule toxins that alter voltage-gated sodium channel (Nay) function. Among these,
batrachotoxin (BTX) from Pitohui poison birds and Phyllobates poison frogs stands out because of its lethality and unusual
effects on Nay function. How these toxin-bearing organisms avoid autointoxication remains poorly understood. In poison
frogs, a Nay DIVS6 pore-forming helix N-to-T mutation has been proposed as the BTX resistance mechanism. Here, we show
that this variant is absent from Pitohui and poison frog Nays, incurs a strong cost compromising channel function, and fails to
produce BTX-resistant channels in poison frog Nays. We also show that captivity-raised poison frogs are resistant to two
Nay-directed toxins, BTX and saxitoxin (STX), even though they bear Nays sensitive to both. Moreover, we demonstrate that
the amphibian STX “toxin sponge” protein saxiphilin is able to protect and rescue Nays from block by STX. Taken together, our
data contradict the hypothesis that BTX autoresistance is rooted in the DIVS6 N-T mutation, challenge the idea that ion
channel mutations are a primary driver of toxin resistance, and suggest the possibility that toxin sequestration mechanisms

may be key for protecting poisonous species from the action of small-molecule toxins.

Introduction

Many organisms harbor various small-molecule toxins that
target ion channels as a means of defense from predation
(Savitzky et al., 2012). Among these, batrachotoxin (BTX), a diet-
acquired (Daly et al., 1994b; Daly et al., 1994a; Dumbacher et al.,
2004) steroidal amine found in distantly related vertebrate
lineages, including poisonous birds (Pitohui spp. and Ifrita ko-
waldi; Dumbacher et al., 1992; Dumbacher et al., 2000) and
neotropical poison frogs (Phyllobates; Santos et al., 2016), stands
out because of its lethality and its unusual ability to facilitate
opening and prevent inactivation of voltage-gated sodium
channels (Nays; Catterall, 1977; Khodorov, 1985; Logan et al.,
2016; Wang and Wang, 2003). This lipophilic, steroidal neuro-
toxin is thought to bind in the Nay inner pore (Wang and Wang,
2003). How vertebrates that bear BTX or other small-molecule
toxins avoid autointoxication remains unresolved (Arbuckle
et al., 2017; Almabruk et al., 2018; Hunter, 2018). Toxin-
resistant mutants of target ion channels in host organisms

(Tarvin et al., 2017; Bricelj et al., 2005; Hanifin and Gilly, 2015;
Jost et al, 2008) or their predators (Geffeney et al.,, 2002;
Geffeney et al., 2005; McGlothlin et al., 2016) have been sug-
gested as the primary drivers of toxin resistance (Santos et al.,
2016), an idea supported by examples of tetrodotoxin (TTX)-
resistant (Hanifin and Gilly, 2015; Jost et al., 2008; Geffeney
et al., 2002; Geffeney et al., 2005; McGlothlin et al., 2016) and
saxitoxin (STX)-resistant (Bricelj et al., 2005) Nays, as well as
epibatidine-resistant nicotinic acetylcholine receptors (Tarvin
et al., 2017) found in toxin-carrying metazoans. In poison
frogs, an Nay domain IV segment 6 (DIVS6) pore-forming helix
N->T mutation has been proposed as the BTX resistance mech-
anism (Tarvin et al., 2016; Wang and Wang, 2017). Although the
DIVS6 N—T change reduces BTX sensitivity when tested in rat
Nayl.4 (Wang and Wang, 2017), this variant occurs with very
low frequency among Phyllobates terribilis (Marquez et al., 2019),
and is absent from Phyllobates aurotaenia (Tarvin et al., 2016;
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Marquez et al., 2019), another poison frog having high BTX levels
(Albuquerque et al., 1973). Given these issues and the absence of
functional studies of poison frog Nays, whether BTX-bearing
animals rely on Nay mutations or other BTX autoresistance
mechanisms remains unclear.

Here, we clone and characterize Nays from the BTX-bearing
bird Pitohui uropygialis meridionalis (Pum) and two poison frog
species that carry alkaloid toxins in the wild (P. terribilis [BTX];
Dendrobates tinctorius histrionicotoxin [HTX] and pumiliotoxin
[PTX]). We found that the DIVS6 N—T variant is absent from
Pitohui and poison frog Nays, incurs a strong cost that com-
promises channel function, and fails to produce BTX-resistant
channels when tested in the context of poison frog Nays. Most
surprising, poison frogs proved resistant to BTX poisoning and
poisoning by another small-molecule toxin, STX, despite ex-
pressing Nays that are sensitive to both toxins. We further show
that saxiphilin (Sxph), a high-affinity STX-binding protein
found in frog plasma and organs (Yen et al., 2019; Mahar et al.,
1991; Doyle et al., 1982; Morabito and Moczydlowski, 1994), can
protect and rescue Nay-expressing cells from STX poisoning by
sequestering the toxin. Hence, our data challenge the hypothesis
that BTX autoresistance is rooted in Nay mutations, underscore
the trade-offs between toxin-resistant mutations and fitness cost
(Hague et al., 2018), and highlight the potential importance of
alternative mechanisms such as toxin sequestration as strategies
for protecting toxin-bearing species from autointoxication and
environmental small-molecule threats.

Materials and methods

Identification and cloning of Pitohui Nay1.4, Nay1.5, and Nayf2
Genomic DNA from Pum (family Oriolidae) blood and tissue was
extracted using DNeasy kits (Qiagen) to create whole-genome
sequence libraries for the poisonous Pitohui birds. Tissue sam-
ples were collected in 1989 near the village of Bonua, Central
Province, Papua New Guinea (10°08’S by 149°10'30"E), stored in
ethanol in the field, and frozen since being in the laboratory.
Two genome sequence libraries were created using Illumina
Nextera kits. One library had a target insert size of 500-640 bp
and occupied a full run on the MiSeq genetic analyzer using
300-bp paired-end reads. The second library had a target insert
size of 640-709 bp and occupied a full lane of a HiSeq 2500 in
rapid run mode using 150-bp paired-end reads.

The MiSeq run returned 16,279,946 paired-end reads. The
program BBmerge version 4.0 (US Department of Energy Joint
Genome Institute; https://jgi.doe.gov/data-and-tools/bbtools/
bb-tools-user-guide/bbmerge-guide/) was used to join the
forward and reverse reads into a single long read. 7,050,488 of
the read pairs (~43%) were joined, and the remaining reads were
retained as paired-end reads or single reads for later analyses.
The average size of merged reads was 542.6 bases. All reads were
then trimmed using Trimmomatic (Bolger et al., 2014) for min-
imum length, removing adapters, and performing basic quality
filtering. All unmerged and unpaired reads were combined into a
single FastQ file.

The HiSeq run returned 150,979,291 paired-end reads. We
removed adapters, trimmed for minimum length, and performed
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basic quality filtering using Trimmomatic (Bolger et al., 2014).
130,607,604 pairs of reads (86.51%) passed filtering, another
9,199,536 (6.09%) of forward-only reads passed filter, and 3,342,519
(2.21%) of reverse-only reads passed filter. These two read sets (the
MiSeq and HiSeq Illumina datasets) composed the data for gene
assembly.

Corvus brachyrhynchos and Corvus cornix crows (family Cor-
vidae; from Joel McGlothlin, Virginia Tech, Blacksburg, VA)
were the closest living relatives of Pitohuis that had a fully an-
notated genome in the sodium channel gene regions. Crow se-
quences were used as reference sequences for BLAST searches of
Pitohui sequences and for assisting with Pitohui Nay assembly.
These sequences included the complete nuclear DNA sequence
with all exons, introns, and upstream and downstream un-
translated regions.

To assemble the SCN4A gene from our Pitohui reads, we used
the following pipeline, written as a Bash shell script. First, we
used BLATq version 1.0.2 (https://github.com/calacademy-
research/BLATq), which uses BLAT (Kent, 2002; https://users.
soe.ucsc.edu/~kent), to search all Illumina data (those merged
and unmerged, as well as paired and unpaired reads) for any
sequences that aligned with the full genome sequences of one of
the Corvus Nayl.4 sodium channel genes. We then used the script
excerptByIDs version 1.0.2 (https://github.com/calacademy-
research/excerptByIDs) to create a new FastQ file consisting of
only the Illumina reads with strong BLATq scores. These files
were combined into a single set of all BLAT “hits” using the Unix
“cat” command. We then used the assembler SPAdes 3.9.0
(Bankevich et al., 2012) to perform an initial de novo assembly of
reads in the hit file. We improved upon this assembly by using the
genome assembly program PRICE version 1.2 (Ruby et al., 2013),
which iteratively extends the assembly beginning with the as-
sembled contigs from SPAdes, and extending using the paired-
end Illumina read data (the entire HiSeq paired-end data as well
as the unmerged MiSeq data). See Data S1 for the assembly Bash
shell script and options and parameters.

The assembled contigs from PRICE were loaded into Geneious
(versions 8.0 through 11.0.2). Within Geneious, we used BLAST
to identify which contigs contained the Pitohui sequences. We
created a BLAST database consisting of all of the assembled
PRICE contigs, and we used each of the Corvus Nayl.4 exons to
query the BLAST database of contigs using MegaBLAST. The top
hits for each exon suggested which assembled contigs contained
the Nayl.4 sequence, and typically several to all of the exons
were found on the same contig. Assuming that the exon splice
patterns were identical in crow and Pitohui, we aligned each of
the crow Nayl.4 exon sequences to the top-hit Pitohui contig,
and we annotated the matching exon regions as the Pitohui
SCN4A exons.

This assembly and annotation pipelines were repeated for
primary Nays Nayl.5 a-subunit (SCN5A) and the Nay B-subunit
(SCN2B).

Cloning of poison frog Nays

Skeletal muscle was harvested from captive P. terribilis and D.
tinctorius (Josh’s Frogs) after euthanasia in accordance with
University of California, San Francisco Institutional Animal Care

Journal of General Physiology
https://doi.org/10.1085/jgp.202112872

120z ¥snbny || uo 3senb Aq ypd-z2821 1202 dbl/89.0Z11/2282 1 120Z8/6/ES | #pd-8jonie/db(/bio ssaidny//:dpy woly pepeojumoq

20f 20


https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmerge-guide/
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmerge-guide/
https://github.com/calacademy-research/BLATq
https://github.com/calacademy-research/BLATq
https://users.soe.ucsc.edu/~kent
https://users.soe.ucsc.edu/~kent
https://github.com/calacademy-research/excerptByIDs
https://github.com/calacademy-research/excerptByIDs
https://doi.org/10.1085/jgp.202112872

and Use Committee (UCSF IACUC) protocol AN136799. Total
RNA and total DNA were extracted using TRIzol reagent
(Thermo Fisher Scientific). Total RNA was reverse transcribed
into cDNA using the SuperScript III First-Strand Synthesis
System (Thermo Fisher Scientific). 5’ and 3’ end sequences of
genes encoding for P. terribilis and D. tinctorius Nayl.4 were de-
termined by DNA gel extraction and sequencing after rapid
amplification of cDNA ends using the SMARTer RACE 5'/3’ Kit
(Takara Bio) and internal primers designed from P. terribilis and
D. tinctorius Nayl.4 S6 segment sequences (Tarvin et al., 2016).
From these 5 end and 3’ end sequences, new primers were
designed from both 5’ and 3’ untranslated regions of each gene
and were used to amplify full-length P. terribilis and D. tinctorius
Nayl.4 genes by PCR using Phusion HF (New England Biolabs).
PCR products were gel extracted and sequenced to determine the
full-length P. terribilis and D. tinctorius Nayl.4 gene sequences.
Direct cloning of the full-length PCR products of P. terribilis
and D. tinctorius Nayl.4 channel genes into pCDNA3.1 proved
problematic, resulting in unstable constructs prone to deletion.
The codon-optimized genes were synthesized for expression
in human embryonic kidney cells (HEK293; GenScript) but
were also found to be prone to recombination upon insertion
into pCDNAB3.1. Finally, the gene sequences were redesigned to
differ as much as possible from the original genes, synthesized
(GenScript), and cloned into pCDNA3.1. This strategy yielded
stable constructs.

Subcloning and site-directed mutagenesis

For electrophysiology experiments, Homo sapiens (Hs) Nayl.4
(GenBank accession no. NM_000334.4), human NayPl (Gen-
Bank accession no. NM_001037.5), Pum Nayl.4, Pum Nayf2,
Pum Nayl.5, P. terribilis (Pt) Nayl.4, and D. tinctorius (Dt) Nayl.4
were subcloned into pCDNA3.1 and Rattus norvegicus (Rn) Nayl.4
(GenBank accession no. Y17153.1) was subcloned into pZem228.
All mutants were made using the QuikChange Site-Directed
Mutagenesis Kit (Agilent) and validated by complete sequenc-
ing of the genes encoding for the proteins of interest.

Patch-clamp electrophysiology

HEK293 cells and Chinese hamster ovary (CHO) cells were
grown at 37°C and 5% CO, in culture medium (Dulbecco’s
modified Eagle’s medium for HEK293 cells or Kaighn's modified
Ham’s F-12 medium for CHO cells) supplemented with 10% FBS,
10% L-glutamine, and antibiotics (100 IU ml™! penicillin and
100 mg ml! streptomycin). HEK293 cells were transfected (in
35-mm-diameter wells) using Lipofectamine 2000 (Invitrogen)
and plated onto coverslips coated with Matrigel (BD Bio-
sciences). Human and Pitohui Nays were coexpressed with en-
hanced GFP (EGFP) and human Nayf1 or Pitohui Nayf2. Poison
frog Nays were coexpressed with EGFP. Transfected cells were
identified visually by EGFP expression. A total of 2 ug plasmid
DNA (20% Naya, 40% Nayp, 40% EGFP) was transfected, except
for the poison frog Nays, for which a total of 3 ug plasmid DNA
(70% Naya, 15% EGFP, 15% SV40 T antigen) was used to increase
current amplitude. For mock transfections, the Naya-encoding
plasmid was replaced by an empty pcDNA3.1+ plasmid. Ex-
periments designed for studying Rn Nayl.4 constructs were
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conducted using CHO cells cultured as described previously
(Andresen and Du Bois, 2009). Briefly, cells were grown in
Dulbecco’s modified Eagle’s medium (Gibco) supplemented with
10% cosmic calf serum (HyClone Laboratories) and 100 U/ml
penicillin-streptomycin (Gibco). Cells were kept in a 5% CO, and
96% relative humidity incubator. CHO cells were transfected in
a 10-cm plate using the calcium phosphate precipitation method
and EGFP expression as a marker of transfection.

Na* currents were recorded by whole-cell patch clamping
(Hamill et al., 1981) at room temperature (23 + 2°C) 48-72 h after
transfection. Data collection was performed using an Axopatch
200B amplifier (Molecular Devices) and pCLAMP 9 software
(Molecular Devices).

Pipettes were pulled from borosilicate glass capillaries
(TW150F-3; World Precision Instruments) and polished with a
microforge (MF-900; Narishige) to obtain 1.2-3.5-MQ re-
sistances. Whole-cell access resistance was 3-8 M), pipette ca-
pacitance was fully compensated, and 65-80% of the voltage
error due to the series resistance was compensated. For experi-
ments with HEK293 cells, pipette solution contained the fol-
lowing in mM: 120 Cs methane sulfonate, 8 NaCl, 10 EGTA,
2 Mg-ATP, and 20 HEPES (pH 7.4 with CsOH). Bath solution
contained the following in mM: 155 NaCl, 1 CaCl,, 1 MgCl,, 5 KCl,
10 HEPES, and 10 glucose (pH 7.4 with NaOH). For experiments
with CHO cells, pipette solution contained the following in mM:
125 CsCl, 40 NaF, 1 EDTA, and 20 HEPES (pH 7.4 with CsOH).
Bath solution contained the following in mM: 160 NacCl, 2 CaCl,,
and 20 HEPES (pH 7.4 with NaOH).

For experiments with human, bird, and frog channels,
voltage-dependent activation was assessed by stimulating the
cells with a multistep depolarization protocol from -90 to +50 mV
using 5-mV increments, a -100-mV holding potential, and a
sweep-to-sweep interval duration of 2 s. Voltage-dependent
steady-state inactivation was assessed by stimulating the cells
with a 500-ms prepulse depolarization from -110 to 0 mV in 5-
mV steps, followed by a 20-ms step to 0 mV, and repolarization to
the holding potential, -100 mV; sweep-to-sweep interval dura-
tion was 4 s. To examine BTX effects, cells were stimulated upon
BTX exposure by applying at least 120 step pulses from -120 to
0 mV at 2-Hz frequency in order to facilitate BTX access into the
channel pore because BTX is known to preferentially interact
with the open state of Nays (Tanguy and Yeh, 1991). For experi-
ments with rat Nayl.4, voltage-dependent activation was assessed
by stimulating the cells with a multistep depolarization protocol
from -120 to +50 mV using 5-mV increments and a -120-mV
holding potential. Voltage-dependent steady-state inactivation
was assessed by stimulating the cells with a 150-ms prepulse
depolarization from -140 to 0 mV in 5-mV steps, followed by a
50-ms step to 0 mV, and repolarization to the holding potential,
-120 mV. Equilibration of BTX was accomplished with persistent
activation of channels by applying a 24-ms step depolarization
from -120 to O mV at a frequency of 2 Hz over the course of
8 min. Leak currents were subtracted using a P/4 protocol during
data acquisition. Data analysis was performed using Clampfit 10.6
(Axon Instruments).

Activation curves were obtained by fitting the data with the
following single or double Boltzmann equations: I = I,,,,/{1 + exp
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[(VI/Z - Vm)/k]} orls= {Imaxl/[l+exp({V1/2,l - Vm}/kl)]} + {Imaxz/
[1 + exp({Vij2,5 - Vin}/ks)]}, where I, is the maximal current
after normalization to the driving force, Vy/, is the half-
activation potential, V., is the membrane potential, and k is
the slope factor. Inactivation curves were obtained by fitting the
data with the following single Boltzmann equation: I = I, /{1 +
exp[(Vin - Vi2)/k]}, where I, is the absolute value of the
maximal current at the test pulse, Vi, is the half-inactivation
potential, V., is the membrane potential, and k is the slope
factor. Current density was determined as the ratio between
current amplitude and the membrane capacitance. In cells
transfected with Nay constructs, green cells having no apparent
Nay currents were extremely rare and therefore were not in-
cluded in current density assessment. All cells with a whole-cell
access resistance >8 MQ or a leak current more negative than
-200 pA were excluded.

Two-electrode voltage-clamp electrophysiology

Two-electrode voltage-clamp recordings were performed on
defolliculated stages V-VI Xenopus laevis oocytes harvested
(under UCSF IACUC protocol AN178461) 1-2 d after microinjec-
tion with mRNA. Linearized Pitohui (Pum), Pt, or Dt Nayl.4 cDNA
was translated into capped mRNA using the mMESSAGE
mMACHINE T7 Transcription Kit (Invitrogen). Xenopus oocytes
were injected with 0.5-2 ng, 3-6 ng, or 10-30 ng of Pum Nayl.4,
Pt Nayl4, or Dt Nayl.4d mRNA, respectively. Two-electrode
voltage-clamp experiments were performed 1-2 d after injec-
tion. Data were acquired using a GeneClamp 500B amplifier
(MDS Analytical Technologies) controlled by pClamp software
(Molecular Devices) and digitized at 1 kHz using a Digidata 1332A
digitizer (MDS Analytical Technologies).

Oocytes were impaled with borosilicate recording micro-
electrodes (0.3-3.0-MQ resistance) backfilled with 3 M KCL.
Sodium currents were recorded using a bath solution (RS)
containing the following in mM: 96 NaCl, 1 CaCl,, 1 MgCl,, 2 KCl,
and 5 HEPES (pH 7.5 with NaOH) supplemented with antibiotics
(50 ug ml™! gentamicin, 100 IU ml! penicillin, and 100 pg ml
streptomycin) and 2.5 mM sodium pyruvate.

For studying the competition between tricaine and BTX,
0.5 mM tricaine was applied by continuous perfusion in the bath
solution to assess channel block. BTX was applied from the in-
tracellular side of the membrane by injecting oocytes with 50 nl
of 2 mM BTX. After BTX injection, oocytes were stimulated by
applying 1,000 step pulses of 60 ms each, from -120 to 0 mV
at 2 Hz frequency, in order to facilitate BTX access into the
channel pore.

To determine STX and TTX dose-response curves, solutions
containing test concentrations of each toxin were applied in
series by perfusion to oocytes expressing Pum Nayl.4, Pt Nayl.4,
or Dt Nayl.4. IC; values were calculated from the ratio of peak
currents in the presence and absence of toxin, based on the
following equation: {= = (oxToin) where 1, is the current ampli-

(t+i5)
tude at the toxin concentration x, I, is the current amplitude in
absence of toxin, and I, and I;, are the maximum and min-
imum peak current amplitudes, respectively, and ICso is the

half-maximal inhibitory concentration.
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To determine the effects of Sxph on Pt Nay1.4 STX responses,
Rana catesbeiana Sxph was expressed from a pFastBacl vector
(Invitrogen) in Sf9 cells and purified as described previously
(Yen et al., 2019). Sxph concentration was determined by mea-
suring Assonm Using an extinction coefficient of 96,365 M~ cm™!
calculated using the ExPASY server (https://web.expasy.org/
protparam/). For experiments in which Sxph:STX were pre-
mixed before being applied to Xenopus oocytes expressing Pt
Nay, varied Sxph:STX ratios were made by adding purified Sxph
from a 100 uM Sxph stock solution (150 mM NaCl and 10 mM
HEPES, pH 7.4) to 100 nM STX in (RS) at least 10 min before
perfusion. In the order of addition experiments, following re-
cording channel behavior in the absence of the toxins, toxin
concentrations to achieve ~90% block, 100 nM STX or 300 nM
TTX, in RS was applied to the channels before Sxph to the de-
sired concentration was then added directly to a 1-ml recording
chamber containing the toxin. For all [Sxph]:[STX] ratios, the
concentration of the stock Sxph solution added to the chamber
was adjusted so that the volume of the added Sxph solution was
<1% of the total volume of the recording chamber.

All toxin effects were assessed with 60-ms depolarization
steps from -120 to 0 mV with a holding potential of -120 mV and
a sweep-to-sweep duration of 10 s.

Recordings were conducted at room temperature (23 + 2°C).
Leak currents were subtracted using a P/4 protocol during data
acquisition. Data analysis was performed using Clampfit 10.6
(Axon Instruments) and a custom software developed in the Igor
environment (Wavemetrics).

Toxin challenge experiments

Frogs for the toxin challenge experiments were obtained from
the following sources: Polypedates leucomystax, P. terribilis, and D.
tinctorius (Josh’s Frogs); Xenopus (Nasco); and Mantella aurantiaca
(Indoor Ecosystems). All experiments were performed in ac-
cordance with UCSF IACUC protocol AN136799.

Frogs were held at room temperature (23 + 2°C) and anes-
thetized with a 0.15% tricaine (MS-222) bath before toxin in-
jections. Once under anesthesia, as judged by immobility and
lack of response to foot pinching, frogs were weighed in order to
calculate the appropriate amount of toxin to be administered at
20 times the LDsy based on the values calculated for mice as
follows: BTX, 2 pg/kg (Albuquerque et al., 1971); STX, 10 pg/kg
(Wiberg and Stephenson, 1960); and TTX, 12.5 ug/kg (Lago et al.,
2015). BTX, STX, and TTX were delivered using 40 ng, 200 ng,
and 250 ng of toxin, respectively, per gram of animal weight.
The upper right hind leg was injected with either control, PBS,
or toxin-containing solution under an SMZ645 binocular mi-
croscope (Nikon) using a 30-gauge PrecisionGlide needle (BD
Biosciences). BTX, STX, or TTX dissolved in PBS was injected at
the appropriate concentration to deliver 20 times the LDs,. The
total volume of injection was 100 pl in Xenopus and 10 pl in other
frogs due to their smaller size. The choice of intramuscular in-
jection was to avoid internal organ damage. Frogs were allowed
to recover in a separate container and monitored constantly for
signs of recovery, paralysis, or other adverse symptoms. For
Xenopus, the recovery container was filled with deionized water
and inclined in a way that the frogs could recover on the dry
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surface of the container base. Postrecovery activity was then
assessed by the ability of the frogs to move from the dry to the
water-containing surface because Xenopus are primarily aquatic
animals. For all other frogs, postrecovery activity was assessed
by monitoring the ability of the animals to put themselves right
side up from a supine position in their recovery containers. The
monitoring period was up to 24 h after injection; and three an-
imals were tested for each condition.

Online supplemental material

Fig. S1 shows Pitohui and poison frog Nayl.4 sequences. Fig. S2
shows the Pitohui Nayl.5 sequence. Fig. S3 shows that Pitohui
Nayl.5 and Nayl.4:NayP2 complexes are BTX sensitive. Fig. S4
shows that poison frog Nayl.4s expressed in CHO cells and
Xenopus oocytes are BTX sensitive. Fig. S5 shows the functional
costs of DIV-S6 Asn mutation in Rn Nayl.4. Fig. S6 shows the
functional cost of DIV-S6 Asn mutation in Pum Nayl.4 and Hs
Nayl.4. Fig. S7 shows the functional cost of DIV-S6 N—T mu-
tation in poison frog Nayl.4s. Fig. S8 shows functional studies
of S6 Asn mutants that support asymmetric properties of the
channel pore. Table S1 lists Nay inactivation parameters. Table
S2 lists human — poison frog Nayl.4 amino acid variants. Table
S3 shows the recovery time from anesthesia. Data S1 provides
gene assembly scripts.

Results
Pitohui poison birds and poison frogs have BTX-sensitive Nays
Pitohui is one of only a few bird genera known to carry BTX
(Dumbacher et al., 1992; Dumbacher et al., 2000; Menon and
Dumbacher, 2014) and has BTX levels in its skeletal and cardi-
ac muscles that should alter Nay function (~5 and ~20 uM,
respectively; Dumbacher et al.,, 2009; MacKenzie et al., 2021
Preprint). To investigate possible mechanisms of BTX resis-
tance, we used a Pitohui genomic DNA library to identify and
assemble genes for Pum skeletal muscle Nayl.4 (Fig. S1) and
cardiac Pum Nayl.5 (Fig. S2). Primary sequence alignment
showed extensive similarities between Pum Nayl.4, Pum Nayl.5,
and other vertebrate homologues (~73% amino acid identity;
Figs. S1 and S2), including hallmark Nay features such as a se-
lectivity filter aspartate-glutamate-lysine-alanine (DEKA) motif,
canonical RXXR repeats in S4 in all four voltage sensor domains,
and the isoleucine-phenylalanine-methionine (IFM) motif re-
sponsible for fast inactivation (Catterall et al., 2020).
Whole-cell patch-clamp electrophysiology of Pum Nayl.4 and
Pum Nayl.5 transfected into HEK293 cells demonstrated that
both have fast voltage-dependent activation followed by a fast
and complete voltage-dependent inactivation typical of Nays
(Fig. 1, a and b; Fig. S3, a and b; Table 1; and Table S1), similar to
Hs Nayl.4 recorded under identical conditions (Fig. 1, ¢ and d;
Table 1; and Table S1). Because Nays can harbor resistance
mutations to other small-molecule toxins (Arbuckle et al., 2017;
Almabruk et al., 2018; Geffeney et al., 2002; Bricelj et al., 2005),
we anticipated that the Pitohui Nays might be BTX resistant.
Surprisingly, application of 10 uM BTX, a concentration com-
parable to that found in Pitohui muscle (Dumbacher et al., 2009),
drastically altered the function of both Pum Nays, yielding
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typical BTX-induced functional consequences: a hyperpolarized
shift in the voltage dependency of activation (AVy/, prx = -33.6 +
12 and -37.4 + 1.8 mV for Pum Nayl.4 and Pum Nayl.5, respec-
tively), reduced inactivation, and enhanced tail currents
(Khodorov, 1985; Logan et al., 2016; Fig. 1, a and b; Fig. S3, a and b;
and Table 1). The BTX-induced activation curve follows a double
Boltzmann function in which the first and second components
arise from BTX-bound and unmodified channels, respectively (Du
et al., 2011). Notably, the BTX-induced changes were equivalent to
those elicited by BTX application to Hs Nayl.4 (AVy/; prx = -35.9 +
1.8 mV; Fig. 1 d and Table 1). Nays are often coexpressed with
auxiliary B-subunits that can alter their biophysical (Calhoun and
Isom, 2014) and pharmacological (Gilchrist et al., 2014; Zhang
et al., 2013) properties. To test whether this subunit could affect
BTX resistance, we identified the Pum gene encoding for a
transmembrane protein bearing the key features of NayB2 (Das
et al., 2016; Fig. S3 c). Cotransfection of Pum NayB2 with Pum
Nayl.4 had no impact on channel biophysical properties or on BTX
responses (Fig. S3, d and e; Table 1; and Table S1). Thus, Pum
Nayl.4 alone and Pum Nayl.4 in combination with Pum Nay2
failed to show evidence of BTX-resistant channels. Together, these
data demonstrate that even though Pitohui carry BTX in their
skeletal muscles and heart (Dumbacher et al., 2009), their skeletal
and cardiac Nays are BTX sensitive. Thus, autoresistance cannot
originate from altered BTX sensitivity in the two most likely tar-
gets exposed to lethal BTX levels.

Poison frogs in the genus Phyllobates (family Dendrobatidae)
are the most well-known BTX carriers (Albuquerque et al., 1971;
Santos et al., 2016; Albuquerque et al., 1973). A number of studies
have identified amino acid substitutions hypothesized to con-
tribute to poison frog Nay BTX resistance (Tarvin et al., 2016;
Marquez et al., 2019; Wang and Wang, 2017). We cloned poison
frog Nayl4 from the skeletal muscle from captivity-raised
members of two representative poison frog species, one that
carries high BTX levels in the wild, Phyllobates terribilis (Pt
Nayl.4) (Tarvin et al., 2016; Daly et al., 1980; Myers et al., 1978),
and one not known to carry BTX, Dendrobates tinctorius (Dt
Nayl.4) (Daly et al., 1987). Consistent with evolutionary rela-
tionships between the two species (Tarvin et al., 2016; Marquez
etal,, 2019), Pt Nayl.4 and Dt Nayl.4 were highly similar to each
other (~95% amino acid identity) and other vertebrate Nays
(~73% amino acid identity), and bore all Nay hallmark features
(Fig. S1). Importantly, their DIS6 and DIVS6 sequences were
identical to those reported previously (Tarvin et al., 2016) with
the remarkable absence in Pt Nayl.4 of the proposed BTX re-
sistance mutation DIVS6 N—T (Pt Nayl.4 Asnl600, Pt Nayl.4
N1584T [rat numbering]; Wang and Wang, 2017; Fig. S1; Table
S2). Genomic DNA sequencing covering the Pt Nayl.4 DIVS6
yielded nucleotide sequences identical to those obtained from
cDNA and cross-validated the absence of the DIVS6 N-T sub-
stitution. These findings are consistent with the observation that
the DIVS6 N1600T substitution has a very low frequency among
P. terribilis (Marquez et al., 2019). Besides the prior reported
amino acid variants (Tarvin et al., 2016), Pt Nay1.4 and Dt Nayl.4
differed from bird, human, and rat Nayl.4 at an additional 93
positions distributed throughout the channel (Fig. 2 and Table
S2). Although we could readily sequence the Pt Nayl.4 and Dt
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Figure 1. Pitohuiand poison frog Nay1.4 channels are BTX sensitive. (3, c, e, and g) Exemplar current recordings for Pum Nay1.4 (a), Hs Nay1.4 (c), Pt Nay1.4
(e), and Dt Nay1.4 (g) expressed in HEK293 cells in the absence (left) or presence (right) of 10 uM BTX. Trace at 0 mV is highlighted in each panel. Currents were
evoked with the shown multistep depolarization protocol (inset in a). (b, d, f, and h) G-V relationships in the presence or absence of 10 uM BTX for Pum Nay1.4
(black diamonds), +BTX (orange diamonds; b), Hs Nay1.4 (black circles), +BTX (purple circles; d), Pt Nay1.4 (white circles), +BTX (dark orange circles; f), and Dt
Nay1.4 (white squares), +BTX (blue squares; h). (i) Exemplar current recordings from mock-transfected HEK293 cells using the protocol from a.

Nay1.4 genes, both proved prone to recombination upon passage
through Escherichia coli, rendering the native DNA sequences
impossible to handle. To solve this problem, we redesigned the
codon usage to preserve the amino acid sequence of both. These
redesigned genes were well behaved and allowed us to conduct
electrophysiological characterization of Pt Nayl.4 and Dt Nayl.4
in mammalian and amphibian expression systems.
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Whole-cell patch-clamp electrophysiology of HEK293 cells
transfected with Pt Nayl.4 and Dt Nayl.4 yielded voltage-
dependent channels that matched the properties of Pum and
Hs Nayl.4s (Fig. 1, e-h; Table 1; and Table S1). Strikingly, both
poison frog Nays had the same response to 10 uM BTX as Pum
and Hs Nayl.4 (Fig. 1, e-h; AV}, grx = -30.0 + 2.1 and -37.9 =
2.0 mV for Pt Nayl.4 and Dt Nayl.4, respectively). Even though
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Table 1. Activation parameters

JGP

Channel Current density (pA/pF)? (pA/pg)® Vi/-1 (V) AV, grx (MV) k-l (MV) Vip-ll (V) kooo-ll (mV) n
Bird Pum Nayl.4 119.5 + 11.8 -23.4+10 59+ 03 20
+BTX -57.0+ 0.7 -336+12 38206 -260+17 59:08 9
Pum Nayl.4 + Pum Nayf2 86.5 + 12.8 -249 + 13 6.2 +05 15
+BTX -59.9£19 -35.0+23 35:05 -280:14 57x06 7
Pum Nay1.5 171+ 35 =224+ 16 8.6 + 0.3 9
+BTX -59.8+08 -37.4+18 55+19 -250%23 113:07 8
Pum Nayl.4 N432T (DI) 1075+ 26.9 -202+19 6.7+0.5 7
+BTX -51.0: 09 -30.8+21 44+04 -99:61 74:14 10
Pum Nay1.4 N830T (DIl) 81=15 -224+10 9205 16
+BTX -54.0+17 -316+2.0 76+10 -229+18 52+09 9
Pum Nay1.4 N1306T (DIll) 103.7 + 29.4 -26.7+1.0 6.4+03 10
+BTX -63.6+1.0 -369+14 37+06 -248+12 85+13 5
Pum Nay1.4 N1609T (DIV) 24.6 + 10.8 -29+11 9.6+ 10 9
+BTX -143:3.0 -11.4£32 97+21 N/A N/A 5
Pum Nay1.4 N1609A (DIV) 289 + 4.6 -3.8+13 10.7 £ 0.4 21
+BTX -451+22 -413:26 91+08 -96+20 86x11 14
Human Hs Nayl.4 70.9 + 13.8 -133+16 61+04 13
+BTX -492+09 -359:18 50£04 -190+19 52%05 9
Hs Nay1.4 N1591T (DIV) 317 + 13.4 3.6+22 109 + 1.1 4
+BTX -10.6 +5.0 -142+55 97+0.6 N/A N/A 6
Rat Rn Na,1.4 4450 + 1251 -231+03 73+03 4
+BTX -687+02 -456+0.4 40+01 4
Rn Nay1.4 N1584T (DiV)  43.2 + 40.1 5105 86+03 6
+BTX -454 +27 -403£28 96+11 -170:12 13.0:09 6
Poison frog Pt Nayl.4 26.2+£59 -243 + 14 76 + 0.3 6
Oocytes 669.7 + 120.4 -16.2+2.0 43+06 1
+BTX -543+16 -30.0+21 63+08 -20.0+22 9115 9
+BTX oocytes -493+25 -331+32 48+ 07 8
Pt Nay1.4 (N1600T) (DIV) 24.1:39 -238+12 9.0+03 10
+BTX -54.6+22 -30.8%25 56+08 -190:67 11720 6
Dt Nay1.4 11.1+18 -171+ 16 77+04 13
CHO cells 187 + 4.4 -9.7+15 8.0+ 04 1
oocytes 108.1 + 24.3 -19.6 + 2.5 51+06 10
+BTX -55.0+12 -37.9£20 58+14 -174x27 82:08 6
+BTX CHO cells -393+19 -296+24 67+05 -02+21 85:09 7
+BTX oocytes -574+56 -378+6.1 52+07 5
Dt Nay1.4 (N1600T) (DIV) 10.0 + 2.0 -17.2+12 10.7 £ 0.9 4
CHO cells 134+ 14 -55+1.2 80+04 12
+BTX -551+14 -37.8:18 60+05 -18.0+31 98=x13 4
+BTX CHO cells -401£24 -3464+27 59+08 14:31 70£10 7

Current densities for mock-transfected HEK293 and CHO cells were 1.3 + 0.2 and 1.3 + 0.3 pA/pF, n = 10 and 14, respectively. Vy-1 and Vy,-Il are the half-

activation potential. katl an kall are the slope factors. Values having
indicate in cases where the data are fit by a double Boltzmann equation.

aValues for mammalian cells.
bValues for oocytes.
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Figure 2. Structural context for poison frog Nay amino acid changes. (a and b) Locations of poison frog Nay amino acid variants reported here (cyan) and
shared with Tarvin et al. (2016) (magenta). Variants are denoted human residue:residue number:frog variant using Pt Nay1.4 numbering from Fig. S1. Residues
are mapped on human Nay1.4 (Protein Data Bank accession no. 6ADF; Pan et al, 2018). Nay1.4 (white).

the expression levels of both frog channels were lower than those
for the Pitohui or human channels, rendering their biophysical
characterization less accurate, we found no evidence for Nays in
mock-transfected cells (Fig. 1i and Table 1). We further examined
the response of Dt Nayl.4 in a second system, CHO cells, and found
similarly low, BTX-responsive Nay currents that were absent from
mock-transfected cells (Fig. S4, a, b, e, and f; and Table 1), giving
confidence that the measured activity indeed arises from the frog
Nays. Hence, these results demonstrate that these poison frog
channels are not resistant to BTX and rule out the possibility that
the >90 amino acid differences between poison frog and human
channels, including the previously proposed changes in DIS6 and
DIVS6 (Tarvin et al., 2016), could confer BTX resistance. Notably,
the response of the Pt Nayl.4 to BTX reveals a BTX sensitivity
evoked by a BTX concentration (10 uM) that is well below that
found in wild P. terribilis (~170 uM; Myers et al., 1978).

Because expression of amphibian channels in an amphibian
cell could provide a more native-like context, we also expressed
Pt Nayl.4 and Dt Nayl.4 in Xenopus oocytes and examined their
function by two-electrode voltage clamping. Both channels had
biophysical parameters that matched those measured in mam-
malian cells (Fig. S4, g-j; and Table 1). Furthermore, BTX ap-
plication caused the strong hallmark functional modification
observed for all of the other channels we studied (Fig. 1; Fig. S3,
a, b, d, and e; and Fig. S4, a-d), including voltage-dependent
activation shifts comparable to those measured in mammalian
cells (AVy/; grx = -33.1 + 3.2 and -30.0 # 2.1 and -37.8 6.1 and
-37.9 + 2.0 mV for Pt Nayl.4 and Dt Nayl.4 expressed in Xenopus
oocytes and HEK293 cells, respectively). The shift was more
complete in oocytes (cf. Fig. 1, f and h; and Fig. S4, h and j). This
result likely originates from the fact that, for technical reasons,
due to the large extracellular solution volumes used in the oo-
cyte experiments that would require prohibitively large quan-
tities of BTX, this toxin was injected into the oocytes rather than
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applied by bath application as it was for mammalian cells. Our
observation that Nays from two classes of BTX-carrying animals,
Pitohui and P. terribilis, are not BTX resistant challenges the idea
that Nay mutation is the BTX autoresistance strategy as sug-
gested for poison frogs such as P. terribilis (Tarvin et al., 2016;
Wang and Wang, 2017).

DIVS6 N-T mutation fails to confer BTX resistance to poison
frog Nays

Because the DIVS6 N-T mutation was absent from Nays of BTX-
bearing species, we wondered whether the observation that
DIVS6 N-T could confer BTX resistance to rat Nayl.4 (Wang
and Wang, 2017) was impacted by the >90 amino acid differ-
ences between poison frog and mammalian Nays (Fig. 2 and
Table S2). Therefore, we placed the DIVS6 N->T mutation in
poison bird, human, and poison frog Nayl.4s (Pum Nayl.4
N1609T, Hs Nayl.4 N1591T, Pt Nayl.4 N1600T, and Dt Nayl.4
N6100T) and measured its effects on channel function and BTX
sensitivity. Consistent with studies of rat Nayl.4 DIVS6 N-T
(Wang and Wang, 2017), DIVS6 N->T eliminated the ability of
BTX to block inactivation and induce large tail currents in Pum
Nayl.4 and Hs Nayl.4 (Fig. 3, a-d). Nevertheless, the bird and
human Nayl.4s were not rendered completely BTX resistant.
Application of 10 uM BTX shifted the voltage-dependent acti-
vation of both channels, making them more easily opened by
voltage (AVy/; prx = -11.4 + 3.2 and -14.2 + 5.5 mV for Pum Nayl.4
N1609T and Hs Nayl.4 N1591T, respectively; Fig. 3, b and d; and
Table 1). Furthermore, the BTX-induced double Boltzmann was
lost (Fig. 3, b and d), suggesting an enhanced BTX affinity. Due to
its limited effectiveness in blocking the effects of BTX in the bird
and human channels, we revisited the consequences of the
DIVS6 N-T mutation in Rn Nayl.4. Similar to the bird and hu-
man channel results, DIVS6 N—T reduced but did not eliminate
Rn Nayl.4 BTX sensitivity (Fig. S5, a-d). Application of 10 uM
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Figure 3. DIVS6 N->T mutation reduces BTX sensitivity of Pitohui and human but not poison frog Nay1.4s. (a, , e, and g) Exemplar current recordings
for Pum Nay1.4 N1609T (a), Hs Nayl.4 N1591T (c), Pt Nay1.4 N1600T (e), and Dt Nayl.4 N1600T (g) expressed in HEK293 cells in the absence (left) or presence
(right) of 10 WM BTX. Trace at 0 mV is highlighted in each panel. Currents were evoked with the shown multistep depolarization protocol (inset in a). Cartoon
shows a diagram of the identities of the S6 Asn for each construct. (b, d, f, and h) G-V relationships for Pum Nay1.4 N1609T (dark blue triangles), +BTX (orange
triangles; b), Hs Nay1.4 N1591T (black triangles), +BTX (magenta triangles; d), Pt Nay1.4 N1600T (teal triangles), +BTX (dark orange triangles; f), and Dt Na,1.4
N1600T (magenta downward triangles), +BTX (cyan downward triangles; h) in the presence or absence of 10 uM BTX.

BTX shifted the voltage-dependent activation of both Rn Nayl.4 In all three contexts, DIVS6 N—T also affected channel bio-
and Rn Nayl.4 N1584T, making them more easily opened by physical properties (Fig. S5, e-g; Fig. S6, a-h; Tables 1 and 2; and
voltage (AVy/; prx = -45.6 + 0.4 and -40.3 + 2.8 mV for Rn Nayl.4  Table S1). DIVS6 N—T rendered Pum Nayl.4, Hs Nayl.4, and Rn
and Rn Nayl.4 N1584T, respectively; Fig. S5, band d; and Table1). Nayl.4 more difficult to open, shifting the activation voltage
Thus, DIVS6 N—T was unable to mitigate the effects of BTX dependence to depolarizing potentials (AV/, = +20.5 + 1.5, +16.9
completely in any Nay orthologue. + 2.7, and +18.0 + 0.6 mV for Pum Nayl.4 N1609T, Hs Nayl.4
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Table 2. Comparison of the functional effects of S6 mutations

JGP

Channel BTX Activation shift? AV,,; .« Inactivation shift? AV;/; inact Decrease in current density?
resistant? (mv) (mv) (fold change)

Pum Nay1.4 N432T (DI) No No No No

Pum Nay1.4 N830T (DIl) No No Yes; -10.8 + 1.6 Yes; 14.8

Pum Nay1.4 N1306T (DIIl) No No No No

Pum Nay1.4 N1609T (DIV) Yes Yes; +20.5 + 1.5 Yes; -10.3 + 2.1 Yes; 4.9

Pum Nay1.4 N1609A (DIV) No Yes; +19.6 + 1.6 Yes; -13.4 + 1.6 Yes; 4.1

Hs Nay1.4 N1591T (DIV) Yes Yes; +16.9 + 2.7 Yes; -9.8 + 1.2 Yes; 2.2

Rn Nayl.4 N1584T (DIV) Yes Yes; +18.0 + 0.6 Yes; -27.0 + 0.4 Yes; 10.3

Pt Nay1.4 (N1600T) (DIV) No No Yes; -7.7 + 0.9 No*

Dt Nay1.4 (N1600T) (DIV) No No Yes; -9.8 + 1.9 No*

Data represent measurements in transfected HEK293 cells. *, substantial current density loss in Xenopus oocytes. AV1/3 act = Va/2, act mutant -V1/2, act WT-

A\/1/2 inact = V1/2, inact mutant 'V1/2, inact WT.

N1591T, and Rn Nayl.4 N1584T, respectively; Fig. S5 e; Fig. S6, b
and f; and Tables 1 and 2), and made the channels easier to in-
activate, shifting the voltage dependence of steady-state inacti-
vation toward hyperpolarizing potentials (AVy5 inace = -10.3 =
2.1, -9.8 + 1.2, and -27.0 + 0.4 mV for Pum Nayl.4 N1609T, Hs
Nay1.4 N1591T, and Rn Nay1.4 N1584T, respectively; Fig. S5 f; Fig.
S6, c and g; Table 2; and Table S1). Furthermore, DIVS6 N—T
diminished Pum Nayl.4 N1609T, Hs Nayl.4 N1591T, and Rn
Nayl.4 N1584T current densities by 79%, 55%, and 90%, re-
spectively (Fig. S5, a, c, and g; Fig. S6, a, d, e, and h; and Tables
1 and 2). Thus, the DIVS6 N—T change incurs a substantial
functional cost.

To probe the DIVS6 Asn site further, we examined the con-
sequences of mutation to alanine in Pum Nayl.4. Pum Nayl.4
N1609A phenocopied the biophysical changes measured for
N1609T, producing channels that were more difficult to open
(AVy, = +19.6 + 1.6 mV) and easier to inactivate (AVy/y inact =
-13.4 + 1.6 mV) and that had current density reduced by 76%
(Fig. S6, a-d; Tables 1 and 2; and Table S1), in agreement with the
reduced channel activity reported for the corresponding Rn
Nayl.4 mutant (Wang et al., 1997; Sheets et al., 2015). These
biophysical changes match those of the BTX-resistant Pum
Nayl.4 N1609T; however, Pum Nayl.4 N1609A retained all of the
classical BTX responses such as reduction of inactivation, en-
hanced tail current, and a leftward shift of the activation voltage
dependence (Fig. S6, i and j; and Tables 1 and 2). The failure of
the N1609A to diminish BTX sensitivity shows that the reduc-
tion of BTX sensitivity in Pum Nayl.4 N1609T, Hs Nayl.4 N1591T,
and Rn Nayl.4 N1584T is a specific effect of the threonine mu-
tation and not a consequence of the changes in channel bio-
physical properties or current density reduction (Table 2).

To our surprise, placing DIVS6 N-T in both poison frog
Nayl.4s failed to blunt the effects of BTX on channel activation
and inactivation (Fig. 3, e-h; AV, prx = -30.0 + 2.1 and -30.8 *
2.5 mV for Pt Nayl.4 and Pt Nayl.4 N1600T, respectively, and
-37.9 + 2.0 and -37.8 + 1.8 for Dt Nayl.4 and Dt Nayl.4 N1600T,
respectively). Similar results were obtained for Dt Nayl.4
N1600T measured in a second expression system, CHO cells (Fig.
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S4, ¢, d, and f). Hence, even though the DIVS6 N—T change re-
duces Pum Nayl.4, Hs Nayl.4, and Rn Nayl.4 BTX responses
(Fig. 3, a-d; and Fig. S5, a-d), this same change fails to affect the
BTX sensitivity of poison frog Nays. Unlike its effects in Pum, Hs,
and Rn Nays, DIVS6 N-T did not cause major changes in poison
frog Nay biophysical properties, shifting only the inactivation
voltage dependence by -10 mV while leaving the activation
voltage dependence and current density unchanged (Fig. S7, a—c;
Tables 1 and 2; and Table S1). Additionally, expression of Pt
Nayl.4 N1600T and Dt Nayl.4 N1600T in Xenopus oocytes re-
vealed dramatic reductions in channel activity (Fig. S7, d-h).
This ~10-fold reduction in current amplitude prevented mea-
surement of channel biophysical properties and BTX responses,
especially because in the case of the latter, the intracellular in-
jection of BTX necessary for the oocyte experiments induces a
leak current that is similar to the amplitude of the N1600T
mutants. Nevertheless, these results reveal that DIVS6 N-T is
detrimental to function and may interfere with channel folding
and maturation in a manner that is accentuated at lower tem-
peratures, such as those used to store the oocytes. This context-
dependent loss of function indicates that the DIVS6 N—T variant
exacts a functional cost that, together with its ineffectiveness in
endowing poison frog Nays with BTX resistance, challenges the
idea that DIVS6 N—T could serve as an effective BTX autore-
sistance mechanism.

Cost of the conserved N-T mutation is context dependent

The varied outcomes of DIVS6 N—T on BTX sensitivity among the
poison bird, human, rat, and poison frog Nays highlight the im-
portance of context in determining the functional consequences of
mutations. Because the equivalent residue is conserved in all four
S6 helices (Figs. S1 and S2), we systematically introduced S6 N—T
into each of the Pum Nayl.4 S6 segments and measured channel
properties and BTX responses to investigate the question of
context-dependent effects further (Fig. 4). Whole-cell patch-clamp
recordings from HEK293 cells transfected with these mutant
channels revealed clear, domain-specific differences. Contrasting
the effect of DIVS6 N-T (Fig. S6 b), voltage-dependent activation
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of channels having the N—T mutation in DI, DII, or DIII (Pum
Nayl.4 N432T [DI], Pum Nayl.4 N830T [DII], and Pum Nayl.4
N1306T [DIII]) was unchanged relative to WT (V;;, = -20.2 + L9,
-22.4 1.0, -26.7 £ 1.0, and -23.4 + 1.0 mV for Pum Nayl1.4 N432T
[DI1], Pum Nayl.4 N830T [DII], Pum Nayl.4 N1306T [DIII], and Pum
Nay1.4, respectively; Fig. 4, a-j; Fig. S8, a and b; and Tables 1 and
2). By contrast, we found varied effects on steady-state inactiva-
tion. DI and DIII changes showed WT-like behavior, whereas the
DII mutant had an ~10-mV hyperpolarizing shift (Vi3 inact = ~61.2
+ 1.6, -75.0 £ 0.9, -65.3 + 1.0, and -64.2 + 1.3 mV for Pum Nayl.4
N432T [DI], Pum Nayl.4 N830T [DII], Pum Nayl.4 N1306T [DIII],
and Pum Nayl.4, respectively; Fig. S8 c, Table 2, and Table S1). All
three had strong BTX responses similar to WT (AV, prx = -30.8 =
2.1, -31.6 + 2.0, -36.9 + 1.4, and -33.6 + 1.2 mV for Pum Nayl.4
N432T [DI], Pum Nayl.4 N830T [DII], Pum Nayl.4 N1306T [DIII],
and Pum Nayl.4, respectively; Fig. 4 and Tables 1 and 2). Thus, the
only site where the conserved S6 N—T change affects BTX re-
sponses is in DIVS6, in line with its proposed contribution to the
BTX binding site (Wang and Wang, 2017).

As with the biophysical changes, the effects on current
density from placing the N—T change in different channel do-
mains were not uniform. The DIS6 and DIIIS6 N-T mutants had
current densities matching WT (Fig. 4, a, c, and g; Fig. S8, a and
d; and Tables 1 and 2), whereas, DIIS6 N—T lowered the current
density and was more detrimental to channel activity than
DIVS6 N1609T or N1609A (Fig. 4, a and e; Fig. S8, a and d; and
Tables 1 and 2). Together, these data show that there is no cor-
relation between changes in channel biophysical properties and
the acquisition of BTX resistance and are in line with the results
from DIVS6 N->T and N->A mutants (Figs. 3, S6, and S7, and
Table 2).

Consideration of the conserved Sé asparagine structural lo-
cale provides insight into the context-dependent effects. The
two S6 sites where N-T has no impact on channel biophysics,
BTX responses, or current density, DIS6 and DIIIS6, occupy
positions that are partially exposed to the channel inner pore
(Fig. S8, e and f). By contrast, the two positions that affect
channel biophysics and current density, DIIS6 and DIVS6, in-
teract with the S4-S5 linkers (Pan et al., 2018; Fig. S8, e and f),
and altering these buried sites comes with substantial functional
costs. Hence, DIVS6 N—T carries major disadvantages for pro-
tecting animals such as Pitohui and poison frogs against BTX
autointoxication.

Toxin-free poison frogs have BTX- and STX-sensitive Nays but
are resistant to both toxins

The surprising observation that Nays from BTX-carrying birds
and frogs remain BTX sensitive raised the question whether the
species from which we cloned the channels were actually BTX
resistant. Because of difficulties in obtaining live animals, we
were unable to investigate Pitohui BTX resistance. Captivity-
raised poison frogs lack BTX because this toxin is acquired in
the wild from their diet (Daly et al., 1994b; Daly et al., 1994a).
Thus, it was possible that the toxin-free poison frogs used to
clone Nays were not BTX resistant due to the absence of selective
pressure from the toxin, a possibility underscored by the high
functional cost of DIVS6 N—T (Fig. 3, e-h; Fig. S7; Tables 1 and 2;
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and Table S1). To test whether captivity-raised poison frogs were
BTX resistant, we conducted a series of toxin challenge experi-
ments using five different frog species: two nonpoisonous frogs
(Xenopus and Polypedates leucomystax), two captivity-raised
dendrobatid poison frogs that carry alkaloid toxins in the
wild (P. terribilis, BTX; and D. tinctorius, HTX and PTX), and an
unrelated captivity-raised Malagasy poison frog that carries
PTX rather than BTX in the wild (M. aurantiaca) and that
represents an independent evolutionary origin of chemical
defenses (Daly et al., 2005; Daly et al., 2008; Garraffo et al.,
1993). We challenged these animals with three different toxins
that target Nays: BTX and two guanidinium toxins that act by
a pore-blocking mechanism, STX (Thottumkara et al., 2014;
Duran-Riveroll and Cembella, 2017) and TTX (Durdn-Riveroll
and Cembella, 2017).

We assessed the duration of recovery from anesthesia-
induced paralysis after intramuscular injection of each toxin at
20 times the lethal dose based on values for mice (LDso) by
monitoring how long it took the frog to show clear motor ac-
tivity relative to injection of a PBS control. After BTX injection,
Xenopus and P. leucomystax displayed an accelerated recovery
from anesthesia that was at least two times faster than that with
PBS injections (PBS and BTX recovery times: 29 + 1 min and 15 *
5 min and 169 + 12 min and 70 + 20 min for Xenopus and Phyl-
lobates leucomystax, respectively; Fig. 5, a, b, and f; and Table S3).
After the initial recovery, BTX was ultimately lethal to Xenopus
(Fig. 5, a and f). By contrast, BTX injection did not change the
anesthesia recovery time or kill any of the poison frogs, re-
gardless of whether they carry BTX in the wild (P. terribilis) or
are naturally BTX free but harbor other alkaloid toxins (D.
tinctorius, M. aurantiaca; Fig. 5, c-f; and Table S3). Reponses to
STX also revealed differences between nonpoisonous and poi-
sonous frogs. STX injection was lethal to Xenopus and P. leuco-
mystax (Fig. 5, a, b, and f), whereas all three poison frogs fully
recovered from anesthesia after STX injections (Fig. 5, c-f). TTX
was lethal to Xenopus (Fig. 5, a and f). Although TTX caused
extended paralysis in all other tested frogs, it was not lethal
(Fig. 5, a-f; and Table S3). Thus, all tested poisonous frogs
showed resistance to all three toxins, whereas nonpoisonous
frogs were vulnerable to either BTX and STX (P. leucomystax) or
all three toxins (Xenopus; Fig. 5 ).

The striking differences in BTX-induced accelerated recovery
from anesthesia between the nonpoisonous and poisonous spe-
cies was unexpected. Studies of eukaryotic and prokaryotic Nays
suggest that BTX and local anesthetics, such as the tricaine used
for frog anesthesia, have overlapping binding sites within the
channel pore (Finol-Urdaneta et al., 2019; Wang and Wang, 1992;
Wang et al., 1994; Wang and Wang, 1994). We considered that
the differences in BTX-dependent accelerated recovery from
anesthesia were a physiological manifestation of this molecular
competition and indicated that BTX was engaging the target
channels in nonpoisonous frogs but not in poisonous frogs.
Hence, we tested whether tricaine and BTX produced competing
effects on Pt Nayl.4 and Dt Nayl. 4. Consistent with its anesthetic
effects on the frogs, 0.5 mM tricaine inhibited both poison frog
Nays and had similar effects on the Pum Nayl.4 control (Fig. 6,
a-c and g). Subsequent BTX injection into the same tricaine-
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Figure 4. Sodium channel modulation by BTX is associated with an asymmetry in the inner pore. (3, c, e, g, and i) Exemplar current recordings for Pum
Nay1.4 (a), Pum Nay1.4 N432T (c), Pum Nay1.4 N830T (e), Pum Nay1.4 N1306T (g), and Pum Nay1.4 N1609T (i) expressed in HEK293 cells in the absence (left) or
presence (right) of 10 pM BTX. Trace at 0 mV is highlighted in each panel. Currents were evoked with the shown multistep depolarization protocol (inset in a).
Cartoon shows a diagram of the identities of the S6 Asn for each construct. (b, d, f, h, and j) G-V relationships in the presence or absence of 10 uM BTX for Pum
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Nay1.4 (black diamonds), +BTX (orange diamonds; b), Pum Nay1.4 N432T (dark blue squares), +BTX (orange squares; d), Pum Nay1.4 N830T (dark blue stars),
+BTX (orange stars; f), Pum Nayl.4 N1306T (dark blue hexagons), +BTX (orange hexagons; h), and Pum Na,1.4 N1609T (dark blue triangles), +BTX (orange

triangles; j). Data in a and b are from Fig. 1, a and b.

treated oocytes caused complete relief of the tricaine block
(Fig. 6, a-c and g), in line with a direct competition between
tricaine and BTX. By contrast, in the absence of tricaine, this
dramatic BTX-induced increase in peak current was absent
(Fig. 6, d-f and h). These data demonstrate that the poison frog
Nays are competent for BTX-tricaine competition. Hence, the
differences in BTX-induced accelerated recovery from anesthe-
sia reflect the direct competition of the two compounds on the
channel in the nonpoisonous frogs and suggest that the poi-
sonous frogs have a means to prevent BTX from engaging
their Nays.

The poison frog STX resistance we observed could be ex-
plained by a lack of Nay sensitivity to this toxin. To test this
possibility, we compared the responses of Pt Nayl.4, Dt Nayl.4,
and Pum Nayl.4 as a control to STX and TTX because the former
had minimal effect on the poison frogs, whereas the latter
caused potent paralysis (Fig. 5 and Table S3). Extracellular ap-
plication of increasing STX concentrations inhibited all three
Nays with a nanomolar response that matched that of other Nays
(Thomas-Tran and Du Bois, 2016; Thottumkara et al., 2014;
Andresen and Du Bois, 2009; IC5o = 12.6 + 1.4 nM, 14.6 + 0.6 nM,

and 7.3 + 0.5 nM for Pt Nayl.4, Dt Nayl.4, and Pum Nayl.4, re-
spectively; Fig. 7, a-d). Pt Nayl.4 and Dt Nayl.4 and the control
Pum Nayl.4 also had nanomolar TTX responses, similar to Hs
Nayl.4 (Chahine et al., 1994; ICgo = 21.3 + 1.0 nM, 40.8 + 1.8 nM,
and 6.2 + 0.4 nM for Pt Nayl.4, Dt Nayl.4, and Pum Nayl.4, re-
spectively; Fig. 7, e-h). Thus, the ability of the poison frogs to
resist STX does not arise from their Nays having some unusual
resistance to the toxin (Figs. 5 and 7 d and Table S3). The re-
sistance of poison frogs to the effects of BTX and STX contrasts
with the effects of TTX and is not consistent with the high
sensitivity of their Nayl.4s to all three toxins. These findings
suggest that mechanisms such as toxin sequestration may pre-
vent BTX and STX from reaching their target Nays.

An amphibian “toxin sponge” protein protects Nays from

toxin action

The toxin challenge experiments indicated that BTX and STX
were unable to affect poison frog Nays, even though the chan-
nels are perfectly sensitive to both toxins (Figs. 5 and 7 d, and
Table S3). Although there is yet no known BTX binding protein,
a high-affinity soluble 91 kD STX-binding protein from frog
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Figure 5. Captivity-raised poison frogs are resistant to BTX and STX. (a-e) Challenge experiments for Xenopus (a), P. leucomystax (b), P. terribilis (c), D.
tinctorius (d), and M. aurantiaca (e) with PBS (black circles), BTX (magenta circles), STX (orange triangles), or TTX (cyan diamond) injection. Gray area shows the
period of anesthesia application. Active and paralyzed states of the frogs are indicated. (f) Summary of the sensitivity of the indicated species to BTX, STX, and
TTX. Acc. Rec., accelerated recovery from anesthesia; Resistant, no toxin-induced death.
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Figure 6. BTX competes with anesthetic agent tricaine in Nays from poisonous species. (a-c) Exemplar two electrode voltage clamp (TEVC) recordings
at 0 mV in control (black), after 0.5 mM tricaine application (orange), and after BTX injection (dark green) into the same Xenopus oocytes expressing Pt Nay1.4
(a), Dt Nayl.4 (b), and Pum Nay1.4 (c). BTX injection was performed after tricaine block of sodium current, and the recordings of the BTX effect were made
while the oocyte was still exposed to tricaine. (d-f) Exemplar TEVC recordings at 0 mV before (black) or after BTX injection (light blue) into the same Xenopus
oocytes expressing Nayl.4 from the indicated poisonous species. (g and h) Average peak current amplitudes normalized to the corresponding control peak

current amplitude for tricaine and BTX (g) and BTX alone (h).

plasma, Sxph, has been well characterized and shown to bind
STX but not TTX (Mahar et al., 1991; Yen et al., 2019; Llewellyn
and Moczydlowski, 1994; Morabito and Moczydlowski, 1994).
Hence, we asked whether Sxph, which has a K for STX that is
comparable to that of the channel (Mahar et al., 1991; Doyle et al.,
1982; Llewellyn and Moczydlowski, 1994), would be capable of
protecting Nays from the action of STX. Application of solutions
preequilibrated with different Sxph:STX molar ratios showed
that Sxph was able to protect completely Pt Nay expressed in
Xenopus oocytes from STX inhibition once the ratio reached 2:
1 Sxph:STX (Fig. 8, a and b). Furthermore, application of Sxph to
cells expressing Pt Nays that had been preblocked with STX
yielded the same result and demonstrated that Sxph is able to
compete effectively with the channel for the toxin (Fig. 8, c-e;
and Fig. S9, a-f). Importantly, Sxph had no effect against the
related guanidinium toxin TTX (Fig. 8, e and f; and Fig. S9, g and
h), a toxin that does not bind Sxph (Mahar et al., 1991). Hence,
these experiments demonstrate that high-affinity toxin sponge
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proteins are able to prevent the actions of small-molecule toxins
that target Nays and lend further support to the idea that toxin
sequestration mechanisms may act to protect poisonous animals
from autointoxication.

Discussion

Poisonous organisms that use toxins as defensive molecules
must avoid autointoxication. Such resistance has been proposed
to arise from three strategies: (1) acquisition of target protein
toxin resistance mutations, (2) toxin sequestration, and (3) en-
hanced detoxification or elimination capacity (Almabruk et al.,
2018; Arbuckle et al., 2017). Support for the first mechanism
includes prominent examples of TTX-resistant Nays in toxin-
bearing species and their predators (Hanifin and Gilly, 2015;
Jost et al., 2008; Geffeney et al., 2002; Geffeney et al., 2005;
McGlothlin et al., 2016), STX-resistant Nays in mollusks (Bricelj
et al., 2005), and epibatidine-resistant nicotinic acetylcholine
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Figure 7. Nayld4s from poisonous animals
are STX and TTX sensitive. (a-c) Exemplar
two-electrode voltage-clamp (TEVC) recordings
at 0 mV before (black) and after 10 nM STX
application to Xenopus oocytes expressing Pt
Nayl.4 (purple; a), Dt Nayl.4 (red; b), or Pum
Nayl.4 (orange; c). (d) STX dose-response
curves for Pt Nayl.4 (purple circles), Dt Nay1.4
(red squares), and Pum Nayl4 (orange dia-
monds). Curves show fits to the Hill equation.
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receptors in poison frogs (Tarvin et al., 2017). Because of these
examples and the suggestion that the Nay DIVS6 N—T mutation
might confer BTX resistance to poison frogs (Wang and Wang,
2017), we expected to find toxin-resistant mutants in poison bird
and frog Nays. Instead, we found multiple lines of evidence
demonstrating that Nays from both poison birds and frogs are
highly sensitive to BTX and lack the DIVS6 N—T change. Fur-
thermore, even though the DIVS6 N-T mutation alters the BTX
responses of bird, human, and rat Nayl.4s (Fig. 3, a-d; and Fig.
S5, a-d), it failed to have any effect on the BTX sensitivity of
poison frog Nays (Fig. 3, e-h), a result that highlights the im-
portance of vetting putative toxin resistance mutations in the
context of the native channel (Tarvin et al., 2017).

How amino acid changes compensate for mutations that alter
function is complex and can arise from effects at positions that
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are far apart in the protein structure (Thomas et al., 2010; Wang
et al,, 2002; Bigman and Levy, 2020; Tokuriki et al., 2008). There
are >90 amino acid differences between the poison frog and hu-
man Nayld4s (Fig. 2 and Table S2), and it is not obvious which
variants in the frog Nays suppress the ability of DIVS6 N—-T to
affect BTX responses. The importance of context is further evident
from the fact that even though the Asn position is conserved in all
four Nay pore domain subunits, the functional consequences of
the N—T change are domain dependent (Fig. 4 and Table 2). These
factors, together with the absence of DIVS6 N—T in BTX-bearing
birds and frogs (Figs. Sl and S2; Marquez et al., 2019; Tarvin et al.,
2016) and its ineffectiveness in poison frog Nays, rule out the
target alteration hypothesis for BTX resistance.

Endowing a protein with a new function through mutation
often incurs a cost, particularly with respect to protein stability
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Figure 8. Sxph rescues Pt Nay1.4 from STX block. (a) Exemplar two-electrode voltage-clamp (TEVC) recordings of Pt Nay1.4 expressed in Xenopus oocytes
in the presence of 100 nM STX and [Sxph]:[STX] in the indicated molar ratios. Ctrl (black) shows response in the absence of STX. Inset shows the stimulation
protocol. (b) [Sxph]:[STX] dose response from a. (c) Exemplar TEVC recordings of Pt Nay1.4 before (black) and after (red) application of 100 nM STX and then
after application of Sxph at the indicated [Sxph]:[STX] molar ratio (blue-green). Inset shows the protocol. (d) Exemplar TEVC time course showing Pt Nay1.4
peak currents from c after application of 100 nM STX (red bar) and 200 nM Sxph (blue-green bar). (e) [Sxph]:[toxin] dose response for 100 nM STX (blue-green
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molar ratio (orange). Inset shows the protocol. For all experiments, n = 5, and error bars indicate SEM.

(Wang et al., 2002; Bigman and Levy, 2020; Tokuriki et al,
2008). Our data show that the DIVS6 N—T change in bird, hu-
man, rat, and frog Nays carries substantial functional costs that
affect every aspect of channel function by inducing changes that
render the channels more difficult to open and more readily
inactivated and that reduce current density (Table 2), an effect
that likely reflects stability penalties that impact channel bio-
genesis (Baroudi et al., 2002; Solé and Tamkun, 2020; Mercier
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et al., 2017). These severe pleiotropic functional consequences are
in line with the role of this conserved Asn site in coupling the pore
to the voltage sensor domain in Nays (Sheets et al., 2015). Similar
perturbations of Nay inactivation and reduction of current levels
have profound physiological consequences (Chen et al., 2002) and
are linked to a variety of channelopathies (Loussouarn et al., 2016),
underscoring the organism-level fitness problems incurred by
changes in Nay biophysical properties. These substantial fitness
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costs, as well as the inability of the DIVS6 N-T mutation to affect
the BTX responses of poison frog Nays, are consistent with the low
frequency of this variant in P. terribilis (Marquez et al., 2019) and
its absence from the BTX-bearing P. aurotaenia poison frog (Tarvin
et al,, 2016). Other studies of ion channel toxin resistance mutants
have uncovered various degrees of functional costs that may be
compensated by amino acid changes at additional sites in the
channel (Lee et al., 2011; Tarvin et al., 2017). Hence, the effec-
tiveness of developing a toxin-resistant channel via mutation is
highly dependent on the cost for evolving this new function and
the extent to which functional costs can be mitigated by additional
changes.

Poison frogs lacking the Nayl.4 DIVS6 N—T change with-
stand BTX levels that affect nonpoisonous frogs (Fig. 5 and Table
S3), in line with previous studies (Daly et al., 1980). In nonpoi-
sonous frogs, we find clear in vivo physiological antagonism
between the channel blocker, tricaine, and the channel opener,
BTX. This result indicates that both compounds access their
target Nays. By contrast, this antagonism is absent in poison
frogs (Fig. 5 and Table S3), even though it can occur at the
molecular level of the channel (Fig. 6). Furthermore, the resis-
tance of poison frogs to BTX and STX contrasts with the effects
of TTX and is not consistent with the high sensitivity of their
Nay1.4s to all three toxins (Fig. 1, e-h; Fig. 5; and Fig. 7). Together
these observations suggest that poison frogs have a means to
prevent BTX and STX engaging the target Nays. It is notable that
other frogs resist STX poisoning (Prinzmetal et al., 1932; Kao and
Fuhrman, 1967; Mahar et al., 1991), and it is thought that the
soluble STX-binding protein Sxph (Mahar et al., 1991; Arbuckle
et al,, 2017; Yen et al., 2019) acts as a toxin sponge to sequester
and neutralize the lethal effects of this and possibly other neu-
rotoxins (Mahar et al., 1991; Llewellyn et al., 1997; Arbuckle et al.,
2017; Almabruk et al., 2018; Caty et al., 2019; O’Connell et al.,
2021).

If BTX-bearing animals do not use BTX-resistant Nays to
avoid autointoxication, how do they survive? Apart from the
absence of BTX-resistant Nays, the diversity among >800 poison
frog alkaloid toxins (Daly et al., 2005), the seasonal and geo-
graphical variation of these toxins, and their ability to affect
multiple ion channels (Santos et al., 2016) pose major challenges
for evolving toxin-resistant channels. Enhanced detoxification
via metabolic toxin destruction would not be useful, because
these poisonous organisms need to handle and store the toxins
to deploy them against predators. By contrast, sequestration
strategies not only offer a general means of toxin protection but
also could act in pathways involved in safely transporting and
concentrating toxins in key defensive organs such as the skin
(Menon and Dumbacher, 2014). The fact that toxin-based
chemical defense systems have evolved independently four
times in neotropical poison frogs (Dendrobatids; Santos et al.,
2016), in Malagasy poison frogs (Garraffo et al., 1993), and in
multiple lineages of poisonous birds (including Pitohui and Ifrita;
Dumbacher et al., 1992; Dumbacher et al., 2000) supports the
idea that such general sequestration mechanisms may underlie
toxin autoresistance. Furthermore, there are a number of ex-
amples of poison frogs (Tarvin et al., 2016; Marquez et al., 2019)
and predators of toxic animals (Feldman et al., 2016) that lack
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toxin-resistant mutations, raising questions about the generality
of the target-based mechanism. Although no BTX-binding pro-
teins have yet been identified, high-affinity toxin-binding pro-
teins for STX in frogs, Sxph (Llewellyn et al., 1997; Mahar et al.,
1991; Yen et al,, 2019), and STX and TTX in pufferfish, pufferfish
STX- and TTX-binding protein, PSTBP (Yotsu-Yamashita et al.,
2001; Yotsu-Yamashita et al., 2010), are known and have been
proposed to prevent autointoxication through sequestration
(Arbuckle et al., 2017). We show that one of these proteins, Sxph,
is able not only to protect Nays from toxin poisoning but also to
reverse the action of a high-affinity toxin, STX, on frog Nays
(Fig. 8), a result that underscores the potential for such toxin
sponge proteins to act as agents of toxin resistance. Character-
izing how such toxin-binding proteins protect hosts from auto-
intoxication, alone or together with specialized toxin transport
pathways, should provide new insights into the fundamental
mechanisms of toxin autoresistance and expand understanding
of how organisms handle a range of chemical insults and may
lead to the discovery of antidotes against various toxic agents.

Data availability

Sequences of Pum Nayl.4 (GenBank accession no. MZ545383),
Pum Nayl.5 (GenBank accession no. MZ545384), Pum Nayf2
(GenBank accession no. MZ545385), Pt Nayl.4 (GenBank acces-
sion no. MZ545381), and Dt Nayl.4 (GenBank accession no.
MZ545382) are available from the National Center for Biotech-
nology Information. Requests for material should be sent to D.L.
Minor.
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Figure S1. Pitohui and poison frog Nayl.4 sequences. Sequence alignment of Pum Nayl.4, Pt Nayl4, Dt Nayl4, Hs Nayl4 (RefSeq accession no.
NP_000325.4), and Rn Nayl.4 (RefSeq accession no. NP_037310.1). Key Nay features are highlighted as follows: selectivity filter DEKA (red), IFM peptide
(green), conserved S6 Asn (yellow), S4 voltage sensor arginines (orange), poison frog variants (cyan), and sites highlighted by Tarvin et al. (2016; magenta) are
indicated. Conserved residues are highlighted in dark blue. Secondary structure elements were labeled using boundaries from Yan et al. (2017).
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Figure S2. Pitohui Nayl.5 sequence. Sequence alignment of Pum Nay1.5, Hs Nayl5 (RefSeq accession no. NP_932173.1), Rn Nay1.5 (RefSeq accession no.
NP_037257.1), and Pum Nay1.4. Key Nay features are highlighted as follows: selectivity filter DEKA (red), IFM peptide (green), conserved S6 Asn (yellow), and
S4 voltage sensor arginines (orange). Conserved residues are highlighted in dark blue. Secondary structure elements were labeled using boundaries from Yan
et al. (2017).
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Figure S3. Pitohui Nay1.5 and Nay1.4:Na,B2 complexes are BTX sensitive. (a) Exemplar current recordings for Pum Nay1.5 expressed in HEK293 cells in the
absence (left) or presence (right) of 10 uM BTX. Trace at O mV is highlighted in each panel. Currents were evoked with the shown multistep depolarization
protocol (inset). (b) G-V relationships in the absence (black squares) or presence (green squares) of 10 uM BTX. (c) Sequence alignment of NayB2 from Pum, Hs
(RefSeq accession no. NP_004579.1), and Rn (RefSeq accession no. NP_037009.1). Signal peptide (SP), secondary structural elements from Das et al. (2016),
conserved disulfide bond (ss), and transmembrane domain (TM) are indicated. (d) Exemplar current recordings for Pum Nay1.4:Na,B2 expressed in HEK293
cells in the absence (left) or presence (right) of 10 uM BTX. Trace at 0 mV is highlighted in each panel. Currents were evoked with the shown multistep
depolarization protocol (inset in a). (e) G-V relationships in the absence (black hexagons) or presence (red hexagons) of 10 uM BTX.
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Figure S4. Poison frog Nayl.4s expressed in CHO cells and Xenopus oocytes are BTX sensitive. (a, ¢, and g) Exemplar current recordings for Dt Nay1.4 (a)
and Dt Nay1.4 N1600T (c) expressed in CHO cells in the absence (left) or presence (right) of 10 uM BTX. Currents were evoked with the shown multistep
depolarization protocol (inset in a). () Currents from mock-transfected cells using the same protocol as for a and c. Trace at 0 mV is highlighted in each panel.
(b, and d) G-V relationships in the presence or absence of 10 uM BTX; Dt Nay1.4 (open squares), +BTX (light blue squares; b); and Dt Nay1.4 N1600T (purple
inverted triangles; d), +BTX (light blue inverted triangles; j). (f) Current densities for mock-transfected cells (blue), Dt Nay1.4 (white), and Dt Nay1.4 N1600T
(purple). (g and i) Exemplar two-electrode voltage clamp (TEVC) current recordings for Pt Nay1.4 (g) and Dt Nay1.4 (i) expressed in Xenopus oocytes in the
absence (left) or presence (right) of 10 uM BTX. Trace at O mV is highlighted in each panel. Currents were evoked with the shown multistep depolarization
protocol (inset in g). (h and j) G-V relationships in the presence or absence of 10 uM BTX, Pt Nay1.4 (black circles), +BTX (orange circles; for h); and Dt Nay1.4
(light blue squares), +BTX (green squares; j).
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Figure S5. Functional costs of DIV-56 Asn mutation in Rn NayL4. (a and c) Exemplar current recordings for Rn Nay1.4 (a) and Rn Nay1.4 N1584T (c)
expressed in CHO cells in the absence (left) or presence (right) of 10 uM BTX. Trace at 0 mV is highlighted in each panel. Currents were evoked with the shown
multistep depolarization protocol (inset in a). (b and d) G-V relationships in the presence or absence of 10 pM BTX, Rn Nay1.4 (open circles), +BTX (black
circles; b); and Rn Nay1.4 N1584T (blue circles), +BTX (magenta circles; d). (e) G-V relationships. (f) Steady-state inactivation voltage dependencies for Rn
Nay1.4 (open circles) and Rn Nay1.4 N1584T (blue circles). (g) Current densities for Rn Nay1.4 (white) and Rn Nay1.4 N1584T (blue).
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Figure S6. Functional cost of DIV-S6 Asn mutation in Pum Nayl.4 and Hs Nay1.4. (a) Exemplar current recordings for Pum Nayl.4 (left), Pum Na,1.4
N1609T (middle), and Pum Nay1.4 N1609A (right) expressed in HEK293 cells. Trace at 0 mV is highlighted, and currents were evoked with the shown multistep
depolarization protocol (inset). Cartoon shows a diagram of the identities of the S6 Asn for the Asn mutants. (b-d) G-V relationships (b). Steady-state in-
activation voltage dependencies (c), and current densities (d) for Pum Nay1.4 (black diamonds), Pum Nay1.4 N1609T (blue triangles), and Pum Nay1.4 N1609A
(teal inverted triangles). (e) Exemplar current recordings for Hs Nay1.4 (left), Hs Nay1.4 N1591T (right), expressed in HEK293 cells. Trace at 0 mV is highlighted.
Currents were evoked with the shown multistep depolarization protocol from a. (f-h) G-V relationships (f), steady-state inactivation voltage dependencies (g),
and current densities (h) for Hs Nay1.4 (black circles) and Hs Nay1.4 N1591T (blue diamonds). (i) Exemplar current recordings for Pum Nay1.4 N1609A (left) and
in the presence of 10 uM BTX (right). (j) G-V relationships for Pum Nay1.4 N1609A (green inverted triangles) and in the presence of 10 uM BTX (orange inverted
triangles).
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Figure S7. Functional cost of DIV-S6 N->T mutation in poison frog Nay1.4s. (a-c) G-V relationships (a), steady-state inactivation voltage dependences (b),
and current densities (c) for mock-transfected cells and Pt Nay1.4 (black circles), Pt Nay1.4 N1600T (cyan triangles), Dt Nayl.4 (grey squares), and Dt Nayl.4
N1600T (magenta downward triangles) expressed in HEK293 cells. (d-g) Exemplar current recordings for Pt Nay1.4 (d), Pt Nay1.4 N1600T (e), Dt Nay1.4 (f), and
Dt Nay1.4 N1600T (g) expressed in Xenopus oocytes. 10x magnifications of Pt Nay1.4 N1600T and Dt Nayl.4 N1600T traces are shown in e and g, right panels.
Trace at O mV is highlighted in each panel. Currents were evoked with the shown multistep depolarization protocol (inset in e). (h) Current amplitudes
normalized to the amount of injected RNA for the indicated poison frog constructs.
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Figure S8. Functional studies of S6 Asn mutants support asymmetric properties of the channel pore. (a-d) Exemplar current recordings (a), G-V
relationships (b), steady-state inactivation voltage dependences (c), and current densities (d) for Pum Nay1.4 (black diamonds), Pum Nay1.4 N432T (dark red
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downward triangles) expressed in HEK293 cells. Trace at 0 mV is highlighted in each panel. Cartoon shows a diagram of the identities of the S6 Asn for each
construct. (e and f) Side (e) and bottom (f) views of the locations the S6 conserved asparagines. Residues are mapped on the structure of human Nay1.4
(Protein Data Bank accession no. 6ADF; (Pan et al, 2018) and are labeled using the Pum Nayl.4 numbering.
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Figure S9. Sxph reverses STX block of Pt Nay1.4. (a-f) Exemplar two-electrode voltage-clamp (TEVC) time courses showing Pt Nay1.4 peak currents after
application of 100 nM STX (red bar) and the indicated concentrations of Sxph (blue-green bar). (g and h) Exemplar TEVC time courses showing Pt Nay1.4 peak
currents after application of 300 nM TTX (magenta bar) and the indicated concentrations of Sxph (orange bar).

Three tables and a dataset are provided online. Table S1 lists Nay inactivation parameters. Table S2 lists human - poison frog
Nay1.4 amino acid variants. Table S3 shows the recovery time from anesthesia. Data S1 provides gene assembly scripts.
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