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Motor function is a critical aspect of social behaviour in a wide range of
taxa. The transcription factor forkhead box P2 (FoxP2) is well studied in
the context of vocal communication in humans, mice and songbirds, but
its role in regulating social behaviour in other vertebrate taxa is unclear.
We examined the distribution and activity of FoxP2-positive neurons in
tadpoles of the mimic poison frog (Ranitomeya imitator). In this species,
tadpoles are reared in isolated plant nurseries and are aggressive to
other tadpoles. Mothers provide unfertilized egg meals to tadpoles that
perform a begging display by vigorously vibrating back and forth. We
found that FoxP2 is widely distributed in the tadpole brain and parallels
the brain distribution in mammals, birds and fishes. We then tested the
hypothesis that FoxP2-positive neurons would have differential activity
levels in begging or aggression contexts compared to non-social controls.
We found that FoxP2-positive neurons showed increased activation in the
striatum and cerebellum during begging and in the nucleus accumbens
during aggression. Overall, these findings lay a foundation for testing the
hypothesis that FoxP2 has a generalizable role in social behaviour beyond
vocal communication across terrestrial vertebrates.

1. Introduction

In species where parents provision their young, offspring signalling can be
important for obtaining food. Begging behaviour generally involves coordi-
nation of motor circuits, such as vocalization in chicks [1-3], vibrational
displays in amphibian tadpoles [4,5] and chemical and motor signals in
insect larvae [6,7]. There is a rich theoretical literature on the evolution of
offspring signalling and parental investment [8,9], which has been experi-
mentally investigated mostly in birds [10-12]. While the behavioural and
physiological ecology of begging has received much attention, the neural
basis of this critical behaviour is relatively unknown, with the exception that
bird begging behaviour uses the same vocal-motor pathways later used to
produce adult songs [13]. Investigating the neural circuits and gene networks
that regulate offspring signalling would establish a mechanistic view of how
begging behaviour evolves from ancestral neural features. Additionally, this
perspective would complement the existing theoretical models of how and
when begging signals evolve.

Forkhead box P2 (FoxP2) protein is associated with motor processes
related to behaviour in many species. This protein is a transcription factor that
regulates gene networks important in many neuronal functions, including
genes involved in synaptic plasticity, neurotransmission and axonal guidance
[14,15]. Interest in FOXP2 surged when a mutation was linked to speech and
language impairments in humans [16] (human FOXP2 and non-human FoxP2
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homologues are upper case and lower case, respectively). The mutation of a critical residue in the deoxyribonucleic acid-bind-
ing domain of the human FOXP2 (the R553H mutation) causes difficulty with fine, rapid movements of the mouth and face
that impair speech [17]. FOXP2 truncations and intragenic deletions also manifest in language and speech impairments [18-
20]. Individuals carrying FOXP2 disruptions are at risk for other phenotypes, such as difficulties feeding in infancy and low
performance in receptive and expressive language assessments [21]. A conserved role for FoxP2 has been extended to other
species, where FoxP2 manipulations influence vocalizations emitted by birds [22-24] and mice [25-27]. Functional studies in
humans, mice and birds point to the role of FoxP2 in the development and function of corticostriatal and corticocerebellar
circuits important for motor control [16,28,29]. Despite the research emphasis on vocal communication, FoxP2 manipulations
in mice lead to altered social interactions, such as parental care and aggression [30,31], as well as skilled motor tasks [32],
suggesting a broad role for FoxP2 in coordinating motor aspects of behaviour.

Frogs use both vocal and non-vocal signalling for social interactions [33,34], but the role of FoxP2 in frog communication
has not yet been investigated, to our knowledge. Like in mammals [35], FoxP2 is expressed in early brain development of
Xenopus [36]. Given the expression of FoxP2 in the larval brain and that FoxP2 is important in regulating motor aspects of social
behaviour in mammals and birds, we reasoned that FoxP2 may play a role in amphibian social behaviours as well. Specifically,
since FoxP2 has an important role in vocal-motor pathways of bird song [22-24], which are more active in begging birds [13],
we reasoned that FoxP2 may be involved in tadpole begging behaviour. Additionally, as FoxP2 leads to altered aggression in
mice [30], we reasoned that FoxP2 may also be associated with tadpole aggression. In this study, we tested the hypothesis that
FoxP2 is associated with begging signals of tadpoles toward adult conspecifics or aggression toward tadpole conspecifics. We
tested this hypothesis in the mimic poison frog (Ranitomeya imitator), where tadpoles beg parents for unfertilized egg meals
by vigorously vibrating back and forth with their heads and nipping at visiting females with their mouths [37]. Tadpoles are
reared in isolated nurseries where they are aggressive to intruder tadpoles [4,38]. We first mapped the neural distribution of
FoxP2 in the R. imitator tadpole brain and then compared the activity of FoxP2-positive neurons across begging, aggressive and
control animals. Given the extensive literature of striatal FoxP2 in vocal communication in birds and mice, we predicted that
FoxP2-positive neurons in the striatum would have higher activity in begging tadpoles.

2. Methods

(a) Animals

Ranitomeya imitator tadpoles were bred from our laboratory colony [39]. Adult R. imitator females from breeding pairs were
used as stimulus animals in the begging context. A conspecific tadpole was used as a stimulus in the aggression context. All
procedures were approved by the Stanford University Animal Care and Use Committee (protocol no. 33097).

(b) Behaviour

We randomly assigned tadpoles (Gosner stage 30-34, no forelimb development and minimal hindlimb development) into one
of three experimental groups: a reproductive adult female (begging, n = 14), a smaller-sized conspecific tadpole (aggression, n
= 15) or exposed to a novel object (a metal bolt, n = 15). Conspecific stimuli were different between trials. All behaviour trials
were conducted between 09.00 and 12.00 h. Tadpoles were placed into individual square arenas (5 x 5 x 5 cm) filled with 50
ml of conditioned water (Josh’s Frogs R/O Rx, Owosso, MI, USA). Tadpoles were recorded from above using GoPro cameras
(GoPro HERO? Black, 1080p, 240 fps). Each tadpole acclimated for 10 min in the arena. Then, the stimulus was introduced
to the arena, and behaviour was recorded for 30 min. Stimuli were then removed from the arena, and tadpoles were placed
in the dark for 15 min to minimize post-stimulus neural activity. This additional time was included as pilot experiments with
pS6-immunoreactivity suggest this marker peaks 45 min post-stimulus. Tadpoles were then anaesthetized with topical 20%
benzocaine and euthanized by decapitation.

Videos were scored using Boris software [40] by an observer uninformed of tadpole identity (electronic supplementary
material, figure S1). Begging was quantified by the number and duration of each begging bout, where the tadpole orients to,
intensely vibrates near and occasionally nips at a conspecific. Aggression and cannibalism are observed in tadpoles of this
species, where tadpoles will attack conspecifics. In this study, aggression was quantified by the number and duration of attacks
toward the other tadpole. Control tadpoles did not display either of these behaviours.

(¢) Immunohistochemistry

Whole tadpole heads were fixed with 4% paraformaldehyde in 1X phosphate-buffered saline (PBS) at 4°C overnight, rinsed
in 1X PBS and transferred to a 30% sucrose solution for cryoprotection at 4°C overnight. Samples were then embedded
in mounting media (Tissue-Tek® O.C.T. Compound; Electron Microscopy Sciences, Hatfield, PA, USA) and stored at -80°C
until cryosectioning at 15 pm into three series. Sections were thaw-mounted onto SuperFrost Plus microscope slides (VWR
International, Radnor, PA, USA) and then stored at —80°C until immunohistochemistry.

We used double-label fluorescence immunohistochemistry to detect FoxP2 and phosphorylated ribosomes (phospho-S6
(pS6)) as a proxy of neural activity [41], as previously described [42]. Slides were incubated overnight in a mix of both primary
antibodies (rabbit anti-pS6 (Invitrogen, cat. no. 44-923G) at 1 : 500 and goat anti-FoxP2 (Abcam, cat. no. AB1307) at 1 : 500 in 2%
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normal donkey, 0.3% TritonX-100, 1X PBS). Following several washes, slides were incubated in a mix of fluorescent secondary n

antibodies (1 : 200 Alexa 488 donkey anti-goat and 1 : 2 00 Alexa 568 donkey anti-rabbit in 2% normal donkey serum, 0.3%
TritonX-100, 1X PBS) for 2 h. Slides were then rinsed in water and cover-slipped using VECTASHIELD HardSet Mounting
Medium with 4',6-diamidino-2-phenylindole (DAPI; Vector Laboratories, Burlingame, CA, USA) and stored at 4°C. FoxP2 was
restricted to cell nuclei, and additional antibody characterization can be found in electronic supplementary material, figures
S2-S5.

(d) Fluorescence microscopy and cell counting

Brain sections were imaged on a Leica compound fluorescent microscope with a QImaging Retiga 2000R camera as previously
described [42]. Brain regions containing FoxP2 were identified using DAPI-stained nuclei while referencing a poison frog brain
atlas [42]. ru1 software [43] was used to measure the area of the nucleus accumbens, striatum and cerebellum within a single
hemisphere. The number of FoxP2-positive cells, pS6-positive cells and colocalized cells were quantified within each area using
the “Cell Counter” function. Due to tissue quality, one to four sections were counted per individual per brain region.

(e) Data analysis

All statistics and figures were generated in RStudio (v. 1.1.442) running R (v. 3.5.2). We used the glmmTMB R package [44]
to analyse cell count data with generalized linear mixed models. For FoxP2-positive and pS6-FoxP2 colocalized cells, we ran
separate models using a negative binomial distribution; model fit was confirmed using DHARMa [45]. For both models, we
tested the main effects of the experimental group (begging, aggression and control), brain region and their interaction. Tadpole
identity was included as a random variable to account for repeated sampling of brain regions within individuals. The log of
the brain region area was included as an offset. For colocalization data, the number of colocalized (pS6 + FoxP2) cells was the
dependent variable, and the number of FoxP2 cells was included as a weight in the model. We then used the Anova.glmmTMB
function for reported statistical values. When there was a significant interaction between the group and brain region, we ran
a post hoc test with the emmeans R package (v. 1.5.3) and used false discovery rate correction for multiple hypothesis testing.
Correlations between behaviour and cell counts were tested using the cor.test function in the R base package with the Spearman
method.

3. Results
(a) Neural distribution of forkhead box P2

We observed a broad distribution of FoxP2-positive cells throughout the tadpole brain (figure 1; electronic supplementary
material, figure S6). The highest densities of FoxP2-positive cells were found in the subpallial forebrain, optic tectum, thalamus
and cerebellum. Notably, there were many FoxP2 cells in regions linked to sensory processing, such as the olfactory bulb
(chemosensory), torus semicircularis (acoustic processing) and optic tectum (vision).

(b) Forkhead box P2-positive neuronal activity changes with different social stimuli

We investigated whether FoxP2-positive neuronal activity is associated with social behaviour by quantifying the proportion
of FoxP2-positive cells that colocalized with the pS6 marker of neural activity in tadpoles showing begging or aggression
compared to those exposed to a novel object (asocial control; figure 2). We focused our quantification efforts on the basal
ganglia (nucleus accumbens and striatum) and cerebellum given their robust expression of FoxP2 in mice and birds [46],
and functional studies suggesting FoxP2-associated vocalization deficits are due to altered corticostriatal and corticocerebellar
circuits [16,28,29]. The activity of FoxP2-positive cells depended on an interaction of behavioural group and brain region (group
x region: Fy = 130.66, p < 0.001). Begging tadpoles had more active FoxP2-positive cells than aggressive and control tadpoles
in the striatum (Str, aggression vs. begging: z = -3.144, p = 0.005; begging vs. control: z = 2.517, p = 0.018) and cerebellum (Cb,
aggression vs. begging: z = -2.490, p = 0.019; begging vs. control: z = 3.626, p < 0.001). The number of active FoxP2-positive
cells did not differ between aggressive and control animals in the striatum (p = 0.175) or cerebellum (p = 0.920). Aggressive
tadpoles had more active FoxP2-positive cells than control tadpoles in the nucleus accumbens (NAcc, z = 2.989, p = 0.008),
whereas the activity of FoxP2-positive cells in this brain region did not differ between begging and aggression (p = 0.125) or
control (p = 0.125) contexts. There was a significant difference in the number of FoxP2-positive cells within these brain regions
across groups, where aggressive tadpoles had more FoxP2-positive cells in the striatum (electronic supplementary material,
figure S7). There were no significant differences in the number of pS6 cells within these brain regions across groups, and there
were no significant correlations between the activity of FoxP2-positive cells and measures of begging or aggressive behaviours
(electronic supplementary material, figure S8).

4. Discussion

Across species, there is variation in whether and how young animals display aggression or signalling to caregivers, but
both behaviours require motor function coordinated by neural processes. Among other functions, the transcription factor
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Figure 1. Neural distribution of FoxP2 in amphibians is similar to other vertebrates. FoxP2 is widely distributed throughout the amphibian brain, including the
subpallial forebrain (A), midbrain (B) and a few hindbrain regions (C). The centre sagittal brain schematic (rostral is to the left) shows brain regions (green) with
FoxP2-positive cells. Grey boxes represent areas of interest for more detailed neuroanatomy and micrographs (A1-C1), where green dots represent the qualitative
presence of FoxP2. Micrographs show FoxP2-positive cells (cyan) and DAPI-stained nuclei (blue). Scale bar, 20 um. The complete neural distribution for FoxP2 can be
found in the electronic supplementary material. Abbreviations: AMY, amygdala; aPOA, anterior preoptic area; BST, bed nucleus of the stria terminalis; Ch, cerebellum;
Gg, central grey; Ls, lateral septum; mPOA, magnocellular preoptic area; NAcc, nucleus accumbens; 0B, olfactory bulb; OT, optic tectum; SCN, suprachiasmatic nucleus;
Str, striatum; VH, ventral hypothalamus.
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Figure 2. Activity of FoxP2 neurons changes with social behaviour. (a) Proportion of active FoxP2-positive cells in aggressive (orange), begging (dark green) and
control (light green) tadpoles are shown in boxplots with individual tadpoles displayed with dots. Within each brain region, groups not connected by the same letter
are significantly different. (b) Representative micrographs of FoxP2 (green) and pS6 (pink) colocalization in the striatum (top) and cerebellum (bottom) of begging
(left) or control (right) tadpoles. Scale bar, 10 um. Abbreviations: Cb, cerebellum; NAcc, nucleus accumbens; Str, striatum.

FoxP2 plays a well-established role in coordinating social behaviours, such as vocal communication in mammals and birds
[17,20,24,28,47,48]. Our study expands the role of FoxP2 to social behaviour in amphibians, laying a foundation for testing the
generalizable function of FoxP2 in coordinating aspects of social behaviour across terrestrial vertebrates in future studies.

FoxP2 is widespread throughout the amphibian brain, with a distribution pattern consistent with those found in other
vertebrates (mammals: [35,49,50], birds: [51] and fish: [52-54]). Across these taxa, there is a conserved pattern of expression
in brain areas involved in motor output, sensory processing and sensorimotor integration. In R. imitator tadpoles, brain regions
that regulate motor output and social behaviour, including the basal ganglia and cerebellum, had many FoxP2-positive cells.
FoxP2 is expressed in the basal ganglia and cerebellum in avian vocal and non-vocal learners, crocodiles and rodents, suggest-
ing conserved expression in motor-related areas regardless of the ability to learn acoustic communication [49,51]. Although
there is conservation in the presence of FoxP2, its abundance is variable in songbirds depending on age and environment,
suggesting FoxP2 expression may be linked to periods of vocal plasticity [51]. We also noted FoxP2-positive cells in many
sensory processing regions such as the olfactory bulb (chemosensory), optic tectum (visual processing) and torus semicircularis
(acoustic processing). In bats, species differences in FoxP2 expression in the olfactory bulb are associated with different feeding
habits (frugivorous vs. insectivorous) [55], suggesting that FoxP2 may influence olfactory processing. Given R. imitator tadpoles
rely on smell to distinguish between heterospecific stimuli [39], investigating FoxP2’s role in sensory integration broadly may
be a valuable future research direction. However, the expression pattern of FoxP2 is variable across sex, age and species [49,56],
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including species differences in the expression of FoxP2 in neuronal and non-neuronal cells in the mammalian cortex [57]. “

This variability in expression makes the regulatory role of FoxP2 in behaviour unclear but a fruitful avenue of future research.
Overall, the distribution of FoxP2 in the amphibian brain suggests a largely conserved pattern across terrestrial vertebrates.

(b) A general role for forkhead box P2 in social behaviour

We found that activity of FoxP2-positive neurons was higher in the striatum and cerebellum of begging tadpoles and in
the nucleus accumbens of aggressive tadpoles. Whether this pattern is directly relevant to these behaviours requires func-
tional manipulations in a brain region-specific manner. Regardless, the context-dependent neuronal activation points to brain
region-specific roles for FoxP2-positive cells in social behaviour. These findings lay a foundation for testing the hypothesis that
FoxP2 has a generalizable role in social behaviour beyond vocal communication.

The striatum is important for motor skills in many vertebrates [58] and has been linked to vocal communication in several
taxa [59]. We found that FoxP2-positive cells in the striatum have increased activity during tadpole begging, suggesting a
function for this brain region in tadpole signalling. This is supported by many studies regarding the role of FoxP2 in the
striatum of vocalizing birds and mammals. Deficits in songbird vocalizations are observed after FoxP2 knockdown in Area
X, a striatal nucleus involved in song learning [24]. At a cellular level, FoxP2 has been implicated in structural plasticity,
where FoxP2 modifications influence spiny dynamics of Area X neurons in zebra finches [60] and dendrite lengths of striatal
neurons in mice [61]. In this same study, the variant of FoxP2 expressed in these mice also impacted dopamine concentrations
in the striatum and nucleus accumbens. Dopamine signalling is critical to tadpole begging behaviour [39], and our results
here suggest a potential role for FoxP2 in dopamine signalling that should be investigated in the future. This general cellular
dysregulation can be seen in mice with FoxP2 mutations, where the striatum is more active and motor-skill learning is disrupted
due to abnormal temporal coordination of striatal firing [62]. Together, our work expands the potential role of FoxP2 in the
striatum to behavioural signalling in amphibians, suggesting a conserved role for striatal FoxP2 in communication across
tetrapod vertebrates.

The cerebellum is a highly conserved vertebrate brain region that coordinates voluntary movements and motor learning
[63]. The cerebellum is also implicated in language [64], as there is higher overall cerebellar activity during language tasks in
humans [65]. Mice expressing the FoxP2 with the R552H mutation (that leads to speech-language disorders in humans) have
impaired ultrasonic vocalizations and poor dendritic development of FoxP2-positive cerebellar Purkinje cells [46]. A reduction
of FoxP2 expression, specifically in cerebellar Purkinje neurons, leads to a reduction of ultrasonic vocalizations in mouse pups
[66]. Moreover, expressing the wild-type human FOXP2 in the cerebellum partially rescues ultrasonic vocalizations in mice with
global expression of FoxP2 with the R552H mutation [67]. To our knowledge, the role of FoxP2 in the cerebellum during vocal
learning in songbirds is unknown, but cerebellar lesions impair song learning [68]. Our study, along with studies in neonatal
mice, suggests that investigating the function of cerebellar FoxP2 during vocal signalling in songbirds would resolve whether
the role of these neurons in coordinating motor signalling is generalizable across taxa.

The nucleus accumbens is involved in motivation and behavioural reinforcement. In this study, we found increased
colocalization of pS6 and FoxP2 in the nucleus accumbens of aggressive tadpoles compared to controls. In mice, increased
neural activation in the nucleus accumbens is observed with aggression-seeking behaviour [69]. Only one study, to our
knowledge, has examined the role of FoxP2 specifically in the nucleus accumbens, where deletion in adult mice leads to
altered reward and fear learning [70]. This study did not report effects on aggression. Heterozygous FoxP2”" mice show altered
aggression in resident-intruder and maternal aggression assays, although the brain regions regulating these altered behaviours
were not studied [31]. Our data suggest that investigating the nucleus accumbens FoxP2 function in the context of aggression
would be a fruitful avenue of research.

5. Summary

We present evidence that FoxP2 has conserved brain expression patterns across vertebrates by filling a critical taxonomic gap
from amphibians. We also show that parent-directed signalling by tadpoles is associated with the activity of FoxP2-positive
cells in the striatum and cerebellum. In contrast, the activity of FoxP2-positive cells in the nucleus accumbens was associated
with aggression. Overall, this work supports the hypothesis that the FoxP2 transcription factor is part of a molecular toolkit
important for social behaviour via striatal and cerebellar circuits across many animals.
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