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Abstract

Electroporation is an increasingly common technique used for exogenous gene expression
in live animals, but protocols are largely limited to traditional laboratory organisms. The goal
of this protocol is to test in vivo electroporation techniques in a diverse array of tadpole spe-
cies. We explore electroporation efficiency in tissue-specific cells of five species from across
three families of tropical frogs: poison frogs (Dendrobatidae), cryptic forest/poison frogs
(Aromobatidae), and glassfrogs (Centrolenidae). These species are well known for their
diverse social behaviors and intriguing physiologies that coordinate chemical defenses,
aposematism, and/or tissue transparency. Specifically, we examine the effects of electrical
pulse and injection parameters on species- and tissue-specific transfection of plasmid DNA
in tadpoles. After electroporation of a plasmid encoding green fluorescent protein (GFP), we
found strong GFP fluorescence within brain and muscle cells that increased with the amount
of DNA injected and electrical pulse number. We discuss species-related challenges, trou-
bleshooting, and outline ideas for improvement. Extending in vivo electroporation to non-
model amphibian species could provide new opportunities for exploring topics in genetics,
behavior, and organismal biology.

Introduction

The ability to transfer macromolecules into cells in intact animals offers exciting opportunities
to investigate cellular morphology, development, and function in vivo. Electroporation pro-
vides a versatile and efficient method to transfect cells in targeted tissues [1-4]. This technique
uses standard electrophysiological equipment to deliver a series of short electrical pulses to a
targeted area of the animal, which temporarily increases cell-membrane permeability and
transports charged macromolecules into cells via electrophoresis [2, 5, 6]. Electroporation has
been used for a variety of objectives, from visualizing cells by transfecting plasmid encoded
markers, to functional tests of regulation and foreign gene expression by delivering a range of
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macromolecules (e.g., DNA, RNA, proteins, and morpholinos) [7-11]. Importantly, transfec-
tion efficiency is influenced by several conditions including electrical pulse parameters, cell-
membrane composition, cell orientation and tissue type, as well as species differences in bio-
logical parameters [5-12]. Therefore, exploring the electroporation parameters that transfer
bioactive compounds without causing cell death is important for building capacity for func-
tional tests in diverse organisms [4, 13].

Among amphibians, most electroporation protocols were developed for model species,
such as Xenopus, axolotls, and newts ([14-16]; but see [17]). Indeed, there are many protocols
detailing methods optimized for Xenopus tadpoles that include electroporation of brains [3, 8,
18-22], eyes [23], and tails [16, 24]. Here, we develop electroporation protocols for tadpoles of
five species of Neotropical poison frogs (Dendrobatidae), cryptic forest/poison frogs (Aromo-
batidae), and glassfrogs (Centrolenidae). Tadpoles from these groups exhibit a diversity of phe-
notypes, involving parent-offspring interactions and communication, sociality, and tissue
transparency (Fig 1, [25-29]). Extending protocols for in vivo gene transfer beyond Xenopus
tadpoles could provide new opportunities to explore biological diversity and address questions
in organismal biology, neuroscience and physiology within ecological and evolutionary
frameworks.

Here, we provide electroporation protocols for brain cells and muscle fibers in tadpoles of
the poison frogs Dendrobates tinctorius, Ranitomeya imitator, Ranitomeya variabilis, the cryp-
tic poison frog Allobates femoralis, and the glassfrog Hyalinobatrachium fleischmanni. By
adapting techniques developed for Xenopus tadpoles, we explored the effects of electroporation
pulse parameter and DNA injection volume on the transfection efficiency of a plasmid encod-
ing the gene for green fluorescent protein (GFP). We report electroporation efficiency across
species and tissue types and discuss instances of common problems, troubleshooting, and
prospects.

Materials and methods

The protocol described in this peer-reviewed article is published on protocols.io, https://dx.
doi.org/10.17504/protocols.io.8epv5jjq4llb/vl and is included for printing as S1 File with this
article.

Ethics declarations

All animal procedures were approved by the Institutional Animal Care and Use Committee at
Stanford University (protocol number #33016). An MS222 bath was used as an anesthesia
prior to electroporation, imaging, and euthanasia of all animals.

Animals

We worked with captive-bred tadpoles of the glassfrog Hyalinobatrachium fleischmanni (Cen-
trolenidae), the cryptic poison frog Allobates femoralis (Aromobatidae), and three poison frogs
Dendrobates tinctorius, Ranitomeya imitator, and Ranitomeya variabilis (Dendrobatidae)

(Fig 1). Tadpoles of the African clawed frog Xenopus laevis (Pipidae) were purchased from a
commercial supplier (Nasco, Fort Atkinson, WI, USA). The species studied here lay larger

(> 2 mm) but fewer eggs at oviposition compared to Xenopus (~1.2 mm). The non-model
embryos also hatch larger and at more developed stages, although X. laevis can grow to a larger
size at metamorphosis [37-41]. Many of these Neotropical species also exhibit considerable
plasticity in hatching age, being capable of hatching at different development stages and hatch-
ing in response to environmental cues and parents [28, 42-44]. Differences in species sampling
for each protocol were due to availability tadpoles during protocol development.
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Fig 1. Species relationships and phenotypes of the study species. (A) The African clawed frog Xenopus laevis
(Pipidae) is a model organism for laboratory studies and for developing in vivo techniques for testing gene function.
Images by JD, the adult was photographed near Hluhluwe, KwaZulu-Natal, South Africa. (B) The glassfrog
Hyalinobatrachium fleischmanni (Centrolenidae) exhibits transparent tissues, through which many organs are visible
during embryonic, tadpole and adult life-stages. Fathers provide parental care to developing eggs and embryos can
time hatching in response to parenting [28-31]. Images by JD, the adult was photographed near San Gabriel Mixtepec,
Oaxaca, Mexico. (C) Allobates femoralis is a cryptic poison frog (Aromobatidae) whose adult behavior is well studied
in the context of spatial cognition and parental behavior [32-35]. Images by DS (tadpole) and Andrius Pasukonis
(adult from Nouragues Nature Reserve, French Guiana). (D) Poison frogs of the Dendrobatidae are well known for
their aposematic coloration, chemical defenses, and diverse social behaviors [25-27, 36]. Images are of Dendrobates
tinctorius by DS (captive animals) and Ranitomeya imitator, by DS (tadpole) and Evan Twomey (adult from near San
Jose, San Martin, Peru).

https://doi.org/10.1371/journal.pone.0289361.g001
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For all experiments, we anesthetized tadpoles by bathing them in 0.03% 3-aminobenzoic
acid ethyl ester (MS222, Millipore Sigma, St Louis, MO, USA) buffered with 0.1% sodium
bicarbonate prior to the electroporation procedure, then again prior to live imaging. Tadpoles
were euthanized via immersion in a lethal dose of buffered 0.15% MS222 before brain dissec-
tion. Electroporation procedures were conducted on tadpoles in stages ranging between 25-29
Gosner [45] stages or 44-49 [37] stages for Xenopus. Following injection and electroporation,
all tadpoles were transferred to fresh tadpole water (DI with osmolyte drops, Josh’s Frogs R/O
rx, Josh’s Frogs, Owosso, MI, USA) for up to three hours for recovery and then moved to their
home aquaria.

In vivo microinjection of plasmid DNA

Glass capillaries (3.5-inch length, 0.02-inch width: Drummond Scientific) were pulled (Sutter
Instrument Co P-97) and the tip was broken under a dissecting scope using forceps. We
injected a solution of 0.25-0.27 ug/pl of purified plasmid DNA (pCMV-GFP, Addgene
#11153) mixed with 0.01% Fast Green using a Nanoject II injector (Drummond Scientific).
Injection volumes are listed below with the corresponding protocol. We used plasmid concen-
trations based on that reported for X. laevis [3, 16, 46].

Practice sessions

Prior to formal experiments and data collection, we conducted practice trials to learn how to
target specific tissues and evaluate species-specific ways to establish good electrode contact.
These sessions were conducted for each species and each tissue type until we observed consis-
tent transfection within replicate groups of tadpoles. Once successful and consistent transfec-
tion was confirmed for each species and tissue type, we initiated a formal experiment testing
each protocol and collected the resulting quantitative data for statistical analyses.

Muscle-cell electroporation

We tested whether we could label myocytes and experimentally alter the number of cells trans-
fected in tadpole tails by modifying protocols developed for Xenopus muscle tissue [16, 46].
Briefly, we built an electroporation setup similar to that used by Mochii and Taniguchi (2009),
using platinum foil for electrodes soldered with electric leads to wire them to the stimulator
(Fig 2). The anode (~ 5 x 8 mm) was mounted on the end of a hard plastic tube (~1 cm diame-
ter), and embedded flat in a platform of molding clay fixed on top of a Petri dish. The clay plat-
form allowed us to quickly mold a size-specific depression in the clay around the anode, such
that the anesthetized tadpole lay flat on its side with its head in the depression and a ~5 mm
section of its tail across the anode plate. The cathode (~ 5 x 8 mm) was fixed to the end of a
plastic tube (~1 cm diameter) and mounted to a micromanipulator. The tip of the cathode was
bent such that a ~5 mm section could be pressed flat on the animal’s tail directly above the
anode—these probes intersected the animal’s tail perpendicularly. We mounted a Nanoject
injector on a second micromanipulator opposite to the electroporation setup with the two
instruments placed on either side of a dissecting scope. After covering the platform with a
moistened Kimwipe, we positioned the anesthetized tadpole on the platform. During the pro-
cedure, we injected the plasmid DNA into a myomere on the tail, and then delivered a series of
electrical pulses to the injection area 5-10 s after the injection. The animal was transferred to
fresh tadpole water to recover immediately following electroporation.

We conducted a preliminary experiment using X. laevis tadpoles to determine the range of
electroporation parameters that could be applied to glassfrog and poison-frog tadpoles with
low mortality. Using a group of 100 X. laevis tadpoles, we compared two treatments for each of
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Fig 2. Electroporation set-up. (A) We placed the tadpole on a platform of modeling clay and positioned it under a dissecting scope to target the tissue for
injection and electroporation. We positioned micromanipulators on both sides of the platform, mounted with either the electrode/s (L) or the microinjector
(R). (B) Muscle electroporation in a Ranitomeya imitator tadpole. (C) Brain electroporation in a Ranitomeya imitator tadpole. Note that the clay has been
molded to counteract the pressure and maintain head shape during injection and electroporation. (D) In tadpoles that are soft and globular, platinum needles
are recommended instead of platinum foil sheets.

https://doi.org/10.1371/journal.pone.0289361.9002

the following parameters (10 tadpoles per group): 82.4 vs 128.8 nl of plasmid DNA solution, 8
vs 16 pulses, 30 vs 50 volts, and a control group of injection-only tadpoles (82.4 nl). To manip-
ulate DNA injection volumes, we delivered two injections per treatment level (of 41.2 nl vs
64.4 nl) spaced at 5-10 s intervals using the slow injection setting. We delivered double square
pulses lasting 5 ms in duration spaced at 5 ms intervals, with each set of double pulses delivered
at 1 s intervals using a Grass SD9 stimulator. We quantified mortality during the three days fol-
lowing the experiment and, on the third day, counted the numbers of GFP-positive myocytes
by imaging the tadpoles under a fluorescent dissecting microscope with a GFP filter (Leica
M165 FC) mounted with a camera (Leica DFC7000 T). We identified myocytes in Xenopus
and the other species (below) based on their morphology using GFP-labeling and fluorescence
microscopy. Myocytes are large cells that exhibit a distinct cylindrical morphology and are
organized in parallel bundles within myomeres in tadpole tails [16, 24, 47, 48] (Fig 3). We
counted myocytes directly under a dissecting (fluorescent) microscope, where we could
quickly adjust light levels, the animal’s position, and use forceps and probes to carefully exam-
ine the tail muscle to better delimit the edges of individual myocytes.

Next, we conducted experiments to generalize this method across H. fleischmanni (n = 13),
R. imitator (n = 20), and R. variabilis (n = 20), in addition to repeating these parameters in X.
laevis (n = 20). We found that DNA injection volume accounted for the largest proportion of
variance in our statistical model of myocyte transfection in X. laevis and that the electropora-
tion parameters of 30 volts and 8 pulses (4 double pulses) had low mortality (see results sec-
tion). Therefore, we manipulated the injection volume (82.4 vs 128.8 nl of plasmid solution)
and held all other electroporation parameters constant at 30 volts of 4 double pulses, each
pulse 5 ms in duration spaced at 5 ms intervals. We quantified mortality for three days
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Fig 3. GFP expression in muscle cells in tadpole tails. (A) The number of transfected myocytes increased with the
volume of plasmid DNA across all 4 species. Smaller circles show individual data points, larger circles and error bars
show mean + 95% CI (estimated from a quasi-Poisson GLMM). Datapoints are jittered to show stacked points. (B)
Images of live tadpoles showing GFP-positive myocytes (green; from fluorescence microscopy) in their tail myomeres.
Note that specie’s differences in the extent of skin pigmentation and muscle-tissue opacity made counting cells difficult
from images alone (i.e., adjusting exposure to capture specific cells can overexpose others and vice-versa depending on
cell depth, position, and expression levels). Therefore, we counted myocytes directly under a dissecting (fluorescent)
microscope, where we could adjust light levels, the animal’s position, and use forceps and probes to delimit the edges of
individual myocytes at different depths. (C) An image showing the targeted region of muscle tissue in a tadpole’s tail.
Inset: myomeres are blocks of muscle tissue that are arranged in sequence across the tadpole’s tail. Note the individual
myocytes arranged in parallel within myomeres, which are large cylindrical cells. (D) Brightfield (left) and fluorescent
(right) images showing GFP-labeled myocytes within and delimited by the boarders of the myomeres.

https://doi.org/10.1371/journal.pone.0289361.9003
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following the experiment and counted GFP-positive myocytes in vivo using fluorescence
microscopy (described above). Cell counts were likely influenced by species’ differences in the
extent of skin pigments and muscle-tissue opacity, with the platanna and Hyalinobatrachium
glassfrogs being highly transparent, and the poison frogs having more pigmented skin (see
images in Fig 3). Importantly we conducted a within-species experimental design and com-
bined mixed-modeling to compare within species’ effects. Our statistical model did not detect
species-level or interaction effects (e.g., similar effect sizes across species, see results below).

Brain-cell electroporation

We tested whether we could label brain cells of Neotropical tadpoles through electroporation
of plasmid DNA. We started by testing protocols developed for Xenopus tadpole brains [3, 9].
For this setup, we soldered two ~1mm square platinum plates to separate wires and positioned
them at the end of a single hard-plastic tube (~1 cm diameter), such that the plates were paral-
lel and separated by ~1 mm (we made slight changes to this spacing as needed using dissecting
forceps). We constructed a platform out of molding clay on top of a Petri dish. A body-sized
depression was made on the mound edge to fit each tadpole, and each animal’s head was
draped slightly over the edge such that the probe would contact the brain area almost perpen-
dicularly. This design was important to maintain pressure, body shape, and accuracy for both
injections and electrode contact, as the Neotropical tadpole species used here are soft and
deform with compression without proper support. We placed the platform underneath a dis-
section microscope with the electrode rod connected to a micromanipulator on one side and
the Nanoject injector on a second manipulator on the other. After covering the platform with
a moistened Kimwipe, we positioned the anesthetized tadpole on the platform. During the
procedure, we injected plasmid DNA into the brain ventricle and then delivered a series of
electrical pulses to the injection area 5-10 s after the injection. The animal was transferred to
fresh tadpole water to recover immediately following electroporation.

Based on preliminary sessions and results from others [9], we decided to manipulate pulse
number and keep all other parameters constant. Tadpoles (A. femoralis n = 28, D. tinctorius n
=32, H. fleischmanni n = 42, and R. imitator n = 62) received either 4 or 10 square (single)
pulses of 30 volts lasting 50 ms in duration and spaced at ~ 1 s intervals. We delivered a total
193.2 nl of DNA plasmid solution into the ventricle with three injections of 64.4 nl spaced at
5-10 s using the slow setting of the injector. We quantified mortality for three days following
the experiment. On the third day, we imaged live tadpole heads (using the fluorescence micro-
scope setup described above), then euthanized them and immediately collected their brains.
Tadpole brains were fixed in 4% paraformaldehyde for 24 h, washed in 1x phosphate-buffered
saline, and then the dorsal side of whole-brains were photographed using the fluorescence
microscope setup described above. These images account for the signal that can be detected
only in dorsal view, and GFP signal was likely influenced by species differences in brain size,
opacity, and melanin content. However, this rough estimate is sufficient to confirm successful
labeling and examine for relative differences in GFP-signal area.

Images were processed and measured in Image] v 1.53a [49]. For each brain, we built a
stack using a brightfield overlay and a corresponding fluorescent GFP image—the fluorescent
image was median filtered to reduce noise (using the default setting of 2 pixels). We measured
brain area from the optic tectum to the forebrain in the brightfield image. To select this region
and facilitate segmenting, we first created a straight line across the brain at the posterior edge
of the optic tectum, erased nerves and connective tissues that remained on the brain during
imaging, selected this region using the magic wand tool, and measured area as the number of
pixels. We then converted the GFP image to 8-bit and conducted Otsu thresholding [50] to
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segment regions with GFP signal within the same selected brain region using automated set-
tings in Image]. For analyses, we calculated the proportional area of brain tissue with GFP sig-
nal as the area with GFP signal divided by the total brain area (in pixels, in dorsal view).

We examined whether we could visualize GFP-labeled brain cells in vivo by using two-pho-
ton imaging (Prairie Ultima IV Two-photon microscope) of a R. imitator tadpole. After the
animals were anesthetized, they were embedded in 2% agarose solution for mechanical stabili-
zation. Animals were centered in the field of view using a low magnification objective lens to
ensure the brain is within the viewing range of the high magnification two-photon objective
lens. Images were collected with 920 nm excitation wavelength to capture GFP-signal
distribution.

Data analysis

We conducted statistical analyses in R v 3.6.1 [51]. For across species experiments, we used a
generalized linear mixed modeling approach (GLMM) in the package glmmTMB [52]. This
approach allowed us to account for random variance attributed to different experimental ses-
sions while modeling the approximate error distribution that best handled each dataset. For
these models, we tested the main effects of experimental treatment (either DNA plasmid vol-
ume, or pulse number), species, and their interaction. To analyze the preliminary experiment
using X. laevis tadpoles—evaluating key parameters for myocyte transfection—we computed a
GLM using the package stats, as this experiment was conducted over only two experimental
sessions. We selected the appropriate error distribution for each model by first testing residual
model fit using a series of diagnostic plots and, for GLMMs, using plots and test functions in
the DHARMa package (version 0.3.3.0, [53]). For statistical inference of the fixed effects, we
calculated P values using likelihood ratio tests (LRT) comparing increasingly simplified mod-
els. When we did not detect a significant interaction effect, we dropped it from the model and
reran it to test and report the main fixed effects. We estimated effect sizes, group means, and
95% CI directly from all models and, when necessary, conducted post-hoc comparison (Tukey
method) in the package emmeans (version 1.4.5, [54]).

To determine whether our experimental treatments influenced the likelihood of tadpole
mortality, we modeled the binary outcome of alive/dead using GLMMs with a binomial error
distribution and logit-link function. We modeled tadpole fates for only the brain-cell protocol
(4 species), as only 1 in 73 tadpoles died during the across species experiment of muscle-cell
electroporation (4 species).

For the myocyte dataset generated from X. laevis, our goal was to determine the range of
key parameters to test in glassfrog and poison frog tadpoles. We modeled the number of trans-
fected myocytes in X. laevis using a quasi-Poisson GLM with a log-link function (n = 87) and
examined the fix effects of pulse number (8 vs 16), voltage (30 vs 50), the volume of DNA solu-
tion injected (82.4 vs 128.8 nl), and their interactions. Next, we tested whether DNA injection
volume (82.4 vs 128.8 nl), species, and their interaction impacted the number of detectable
GFP-positive myocytes using the cross-species dataset (n = 68). For both datasets, initial mod-
els using Poisson error distributions were overdispersed. Therefore, we modeled the number
of transfected cells using a quasi-Poisson distribution (family ‘nbinom?2’) and a log-link func-
tion, which better accounts for overdispersed count data [55].

For the brain-cell dataset, we tested whether pulse number, species, and their interaction
influence successful transfection by modeling the proportion of brain area with GFP-positive
cells using a GLMM with a beta-binomial error and logit-link function. These models are
appropriate for bounded data and account for overdispersion typical of clumped proportional
estimates [56].
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Expected results

Exogenous gene expression in muscle tissue

We first explored electroporation parameters using X. laevis tadpoles and found that increas-
ing the volume of DNA plasmid solution (82.4 vs 128.8 nl) significantly increased the number
of transfected myocytes among the surviving tadpoles (87 of 100 individuals) (quasi-Poisson
GLM: x* = 26.43, p < 2.72e-07). We did not detect pulse-number effects, voltage effects (pulse
number x> = 0.24, p = 0.62; voltage x> = 1.99, p = 0.15), nor interaction effects in the initial
model (all interactions p > 0.05).

Next, we determined if these parameters generalized across tadpole species and found that
the volume of plasmid DNA injected into tail myomeres significantly increased the number of
transfected myocytes (quasi-Poisson GLMM: x> = 5.7, p = 0.017, n = 68, Fig 3). We did not
detect species-level effects (x*=2.17, p = 0.54) or interaction effects (in the initial model; ¥ =
1.09, p = 0.77), indicating that this protocol worked equally well across the major tadpole fami-
lies tested here. Furthermore, tadpole mortality was very low during our experiment, occurring
in only 1 of 73 individuals (in R. variabilis); tail loss occurred in 4 individuals at the site of
electroporation.

Exogenous gene expression in the brain

We adapted protocols originally designed for X. laevis tadpoles [3, 9] and successfully
expressed an exogenous gene (GFP) from a plasmid into brain cells of tadpoles from the Aro-
mobatidae, Centrolenidae, and Dendrobatidae families (Fig 4). Mortality was relatively low
during this experiment, with species-level averages ranging from 0% to 33% mortality
(depending on the treatment level). We found that increasing pulse number (4 vs 10) signifi-
cantly increased mortality (binomial GLMM: * = 23.5, p = 1.26e-06, n = 164, Fig 4A). We did
not detect species-level effects (x*=0.8, p = 0.85) or interaction effects (in the initial model; x
=3.24,p=035).

Next, we found that increasing pulse number (4 vs 10) significantly increased the propor-
tion of brain area with GFP-positive cells across all species (beta-binomial GLMM: y* = 20.77,
p =5.17e-06, n = 97, Fig 4B). We also detected species-level effects (x* = 16.07, p =0.001).
However, they did not interact with the experimental treatment (in the initial model, x> = 3.41,
p = 0.33), indicating that transfection success was influenced by the treatment in all species.
Differences between species appeared to be due to low levels of transfection in dendrobatids,
with both D. tinctorius and R. imitator exhibiting the lowest level of transfection and the small-
est treatment-effect sizes compared to the centrolenid H. fleischmanni (post-hoc comparison
of species-level contrasts with H. fleischmanni: p = 0.0009 and 0.0003, respectively). The aro-
mobatid A. femoralis appeared to fall out intermediate between the glassfrog (p = 0.64) and the
dendrobatids (contrast with D. tinctorius p = 0.084, and with R. imitator 0.047). Finally, we
were able to capture GFP signal in the brain cells of a live R. imitator tadpole using two-photon
microscopy (Fig 4D).

There are several steps investigators could pursue to optimize electroporation in their spe-
cies of interest. Other pulse settings, not explored here, were shown to be effective in Xenopus
brains (e.g., pulses with exponential decay, [3]). Experimenters are encouraged to explore
additional pulse types and develop electrodes and/or platforms that improve contact with the
brain of the species being manipulated, as tadpoles shape and size varies across species. In
addition, this electroporation protocol can be further optimized by users to induce cellular
uptake of various molecules, as has been done in Xenopus tadpoles, including morpholinos
[57, 58], fluorescent dyes [59], and or single-cell electroporation methods [18, 19, 22].
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Fig 4. Tadpole mortality and GFP expression in brain cells. (A) Tadpole mortality increased with pulse number during brain electroporation. Smaller circles
show tadpoles that survived (0) or died (1), larger circles and error bars show the mean + 95% CI of the proportion of tadpoles that died (estimated from a
binomial GLMM). (B) The proportional area of transfected brain cells increased with pulse number across all species. However, the magnitude of treatment
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row) and live tadpoles (bottom row) showing GFP-positive brain cells (green; from fluorescence microscopy). (D) An image from two-photon microscopy
showing GFP-labeled cells in vivo within the hindbrain of an R. imitator tadpole.

https://doi.org/10.1371/journal.pone.0289361.9004

We found that the shape of the electrodes likely impacts successful brain electroporation.
For the two Dendrobatid species, inconsistent electrode contact contributed to low levels of
brain-cell transfection, as we found it difficult to wrap the electrodes around the brain due to
their globular and soft body-structure. When pressing the electrodes into their head, the brain
shifts ventrally into the body, such that the electrode contact was primarily limited to the skin
and muscle tissue. Moreover, skin pigmentations in these two species made it difficult to visu-
ally confirm electrode contact with the brain and there appeared to be a high occurrence of
poor contact in our experiment. To account for the potential effects of electrode shape on plas-
mid uptake in brain cells, we redesigned the electrodes for a single tadpole species (R. imita-
tor). We purchased disposable paired 13 mm subdermal needle electrodes to replace the foil-
plate electrodes. The electrode wires were each run separately through a hard plastic tube, then
mounted on a micromanipulator side-by-side with the needles ~1 mm apart and parallel to
one another. The lighter weight of the needles reduced brain movement and thus improved
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electrode contact with the brain. We also observed reduced skin burning using this new setup.
Moreover, electroporation efficiency likely impacts the extent of mosaicism, as species with
more globular shapes tend to have sparser and asymmetric uptake in the brain. Thus, we rec-
ommend optimizing electrode shape to account for species differences in tadpole shape.

Supporting information

S1 File. Step-by-step protocol, also available on protocols.io.
(PDF)
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S1 Data.
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