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16. Abstract 
 
This project followed three paths in parallel, all focused on developing vehicle strategies that provide improved 
knowledge of and resilience to positioning uncertainty, in particular, of the potential risk of spoofing. The first path is 
focused on developing resilient connected and automated vehicle (CAV) applications given uncertain PNT services; 
the second is developing resilience techniques through a multi-agent community approach; and the third is to conduct 
research on collaborative radio-frequency interference (RFI) localization.  
 
1.  The focus of the first research path is to develop CAV applications that are “aware” of their positioning uncertainty 
and the potential risk of spoofing and adapt to make them more robust in terms of safety, mobility, and environmental 
factors. This research consists of several tasks, including: 1) searching CAV application literature to identify any 
applications that are adaptable in terms of positioning and spoofing uncertainty; 2) identifying a variety of CAV 
fundamental maneuvers that can be targeted for position uncertainty adaptive algorithms; 3) designing these adaptive 
algorithms for a subset of fundamental maneuvers (e.g. vehicle merging), followed by comprehensive testing both in 
simulation and in the real world; and 4) developing the means for estimating and communicating position uncertainty 
and the risk of undetected spoofed PNT services.  
 
2.  The focus of the second research path is to develop resiliency techniques using a multi-agent community approach 
where a diversity of connected vehicles and infrastructure are operating in close proximity. Within this community, the 
impacts of jamming can be mitigated by community alerts directing vehicles to switch to non-GNSS PNT or to avoid a 
particular area. During spoofing, the spoofed GNSS signals can be generated based on only one vehicle’s predicted 
trajectory; however, spoofed signals are received by all vehicles within a given neighborhood of the broadcaster. All 
other vehicles within the reception volume are receiving inconsistent GNSS signals, which enables community 
detection of spoofing. This research aims at quantifying the performance of this detection approach and at analyzing 
the impact of transportation threats in several scenarios.  
 
3. In the third research path, we demonstrate the ability of multiple connected vehicle receivers to detect and localize a 
common RFI source. We determine the circumstances under which such a collaborative RFI detection and localization 
scheme are possible. For example, if two receivers are within reach of an RFI source, using time-differenced 
measurements over larger than 100-meter separation distances can enable time-of-arrival localization. Phase 
differences can be more challenging to achieve but reduce the baseline requirement to meter level. The research path 
aims at quantifying the resulting localization performance in example use-cases.   
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(CARNATIONS) 
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Project goals summary from original proposal: The main focus of the first research path is to develop 
CAV applications that are “aware” of their positioning uncertainty and the potential risk of spoofing, and 
adapt to make them more robust in terms of safety, mobility, and environmental factors. This consisted of 
several tasks, including: 1) carrying out a CAV application literature search to identify any applications that 
are adaptable in terms of positioning and spoofing uncertainty; 2) identifying a variety of CAV fundamental 
maneuvers that can be targeted for position uncertainty adaptive algorithms; 3) designing these adaptive 
algorithms for a subset of fundamental maneuvers (e.g. vehicle merging), followed by comprehensive 
testing both in simulation and in the real world; and 4) developing the means for estimating and 
communicating position uncertainty and the risk of undetected spoofed PNT services. 

Technical summary of major project achievements for the year and project outputs: In this first-year 
jump start project, we reviewed multiple works focused on ensuring accurate and reliable positioning for 
Connected and Automated Vehicle (CAV) applications, particularly for safety-critical functions. As CAV 
technologies continue to evolve, maintaining precise and resilient positioning has become crucial for 
applications like collision avoidance and autonomous intersection management. Our review highlighted the 
roles of perception sensors such as cameras and LiDAR, as well as Vehicle-to-Vehicle (V2V) and Vehicle-
to-Infrastructure (V2I) communication systems, in enhancing positioning accuracy in mixed traffic 
environments. As part of this review, we created the topology shown in Figure 1. Despite these 
advancements, we identified a significant need to develop a robust integrity monitoring (IM) framework to 
ensure the reliability of positioning data across diverse traffic conditions. 

As part of this project, we identified several challenges associated with positioning in mixed traffic 
conditions. In these scenarios, a wide variety of vehicles — from human-driven vehicles (HDVs) to 
connected vehicles (CVs) and automated vehicles (AVs) — coexist, each equipped with different sensor 
suites and computational capabilities. This diversity leads to inconsistencies in positioning accuracy and 
performance, complicating the task of maintaining reliable data integrity. Moreover, we found that 
environmental factors, such as urban canyons that can obstruct signals, and the presence of vulnerable road 
users (VRUs) with limited or varying positioning capabilities, further complicate the challenge of achieving 
robust positioning integrity monitoring. 
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Figure 1: V2X-Assisted Positioning Topology  

To address these challenges, we conducted a comprehensive review of existing integrity monitoring 
frameworks, both standalone (in-vehicle) and cooperative (involving multiple vehicles or infrastructure). 
We found that standalone IM methods, such as Receiver Autonomous Integrity Monitoring (RAIM), 
Kalman filters, and cross-consistency checks, are widely used for fault detection within a single vehicle’s 
sensor system. However, cooperative IM approaches, which involve sharing data between vehicles and 
infrastructure to enhance overall positioning reliability, are still in their early stages. Our review, illustrated 
in Figure 2, indicates that there are limited studies that thoroughly address the complexities involved in 
multi-source data sharing and the integrity risks that arise from wireless communication between different 
road agents. However, it is clear that cooperative perception shows great promise for improving positioning 
reliability and resiliency. 

 
Figure 2: Standalone and Cooperative Positioning Solutions  

As an example of V2V cooperative perception, we have conducted experiments identifying other vehicles 
around an ego-vehicle, as shown in Figure 3 (from [3]). As an example of V2I cooperative perception, the 
research team has carried out a variety of experiments on Riverside’s Innovation Corridor 
(https://www.cert.ucr.edu/riverside-innovation-corridor), illustrated in Figure 4.  
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Figure 3: Example of V2V cooperative perception conducted by research team (from [2]) 

 

 
Figure 4: Example of V2I cooperative perception (using LiDAR) conducted by research team (from [1, 3]) 

Based on our findings, we identified several key areas for improvement in existing IM frameworks. For 
instance, we propose introducing new evaluation parameters such as timeliness and interoperability to better 
assess the performance of cooperative ITS applications. Additionally, we emphasize the importance of 
conducting hardware-in-the-loop simulations to test various sensor modalities and driving conditions that 
are difficult to replicate in real-world scenarios. This approach would allow us to explore different 
configurations and failure modes in a controlled environment, accelerating the development of robust IM 
methods. We also recognized the need to standardize the required navigation performance (RNP) values 
across different CAV applications to ensure consistency and interoperability among diverse vehicles and 
systems, which would be essential for the widespread adoption of these technologies. 

Vehicles detected by 
ego vehicle

Vehicles detected by 
the other test vehicle

• Detections from on-board 
LiDARs on two vehicles are 
represented in the ego-vehice’s 
coordinate system.

• Cooperative perception helps 
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In parallel, the Illinois Tech (PI: Spenko) and Virginia Tech (PI: Joerger) teams met weekly to evaluate 
collaborative Kalman-filter-based LiDAR/inertial navigation integrity monitoring methods.  We showed 
using simulation and experimental data that combining LiDAR/IMU measurements from multiple vehicles 
improves accuracy, which was to be expected.  The integrity performance, however, depends on the 
accuracy and failure rate of the inter-vehicle link.  Field testing was performed using two cars equipped 
with tightly-integrated LiDAR/inertial systems, with real-time kinematic (RTK) GNSS for ground truth, 
and with retro-reflective markers.  Integrity performance was significantly improved for the collaborative 
versus individual vehicle implementation in the along-track direction.  This research is described in detail 
in Appendix A of this report.  Additional research is needed to achieve significant improvement in the 
cross-track direction, which is needed in lane following operations.   

In conclusion, our work in this first-year jump-start project has identified several gaps in the existing 
integrity monitoring methods, particularly for cooperative environments where vehicles must share and 
trust each other’s data. We believe further research is necessary to address these challenges and enhance 
the safety and reliability of CAV applications. Moving forward, we plan on conducting new research 
projects to develop more sophisticated algorithms for data fusion and fault detection and create standardized 
performance metrics to improve positioning integrity in mixed traffic scenarios. These efforts are directly 
aligned with our goal of developing a robust framework for multi-object tracking and positioning in low-
data-rate environments, which is crucial for the future of cooperative positioning systems.  

 
Ways that the project has contributed to CARNATIONS goals and US DOT Priorities:  

The project has made substantial contributions to the goals of the CARNATIONS initiative and the U.S. 
Department of Transportation (US DOT) priorities by pioneering innovative positioning integrity 
monitoring solutions. These advancements play a crucial role in enhancing the safety of transportation 
systems, fostering technological innovation, improving infrastructure efficiency, promoting environmental 
sustainability, and ensuring equity across all modes of transportation. By developing methods to deliver 
accurate and reliable positioning data for Connected and Automated Vehicles (CAVs) operating in mixed 
traffic environments, the project supports safety-critical applications such as collision avoidance systems 
and autonomous intersection management. This aligns closely with the US DOT’s Vision Zero goal of 
eliminating traffic fatalities and serious injuries on American roads. 

Moreover, the project’s emphasis on cooperative data sharing and multi-source data integration strengthens 
a connected transportation ecosystem. This fosters improved traffic management by optimizing traffic flow, 
reducing congestion, and lowering emissions, thereby contributing to the US DOT’s sustainability goals. 
Furthermore, by promoting an inclusive network that integrates diverse transportation modes and serves all 
communities equitably, including those that have been traditionally underserved, the project aligns with the 
US DOT’s commitment to equity in transportation. This focus on inclusivity ensures that the benefits of 
technological innovation and sustainable development reach every part of society, supporting broader social 
and economic development objectives. 

Contributions to CARNATIONS project’s research performance metrics: Research articles [1,2,3] 
were presented in conferences and published in peer-reviewed journals. 

Contributions to CARNATIONS project’s tech transfer and education performance metrics: Several 
posters and presentations related to this project were made at the 2024 IEEE Forum for Innovative 
Sustainable Transportation Systems (FISTS24), held in February 2024. This conference was attended by 
academics (faculty, students), industry members, and members from various government agencies.   
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Appendix A.  Impact of Sensor Faults on Connected Autonomous Vehicle Localization 

Shinsaku Kuwada (Illinois Tech), Matthew Spenko (Illinois Tech), and Mathieu Joerger (Virginia Tech) 

 

A-1. Introduction 

Precise localization and predictable localization error bounding are crucial to mobile robot safety. However, 
achieving this is challenging because robots typically rely on exteroceptive sensors such as GNSS, cameras, 
LiDAR, and radar that may experience undetected faults and unpredictable interference due to jamming 
and collateral spoofing. This project focuses on LiDAR/inertial navigation to augment positioning, 
navigation and timing (PNT) in areas where GNSS service might be denied.  It shows that, in case of LiDAR 
measurement or processing faults, collaboration and communication among connected autonomous 
vehicles (CAVs) can enhance navigation safety. 

A system of multiple CAVs can be categorized as either centralized or decentralized, and is similar to a 
multi-robot collaboration scenario, where much of the literature exists. In a centralized system, a single hub 
manages all robots’ information. A centralized approach is impractical for large numbers of robots. In 
contrast, a decentralized system considers smaller groups of robots, making it more scalable, but the 
challenge is then to accurately capture inter-group correlations. In both approaches, collaborative 
localization allows a CAV to access information that would otherwise be unavailable, thereby enhancing 
its estimation accuracy.  

Unfortunately, collaboration also introduces risks. If a robot with faulty sensor data shares incorrect 
information, it can compromise other robots’ localization accuracy. Moreover, if communication is 
maliciously spoofed, the resulting collaborative position and orientation (or pose) estimates can be 
corrupted. 

Navigation safety for a mobile robot is typically assessed considering its sample estimation error and 
covariance [A1]. These metrics are insufficient when considering the possibility of rarely-occurring, 
undetected sensor and processing faults. Fault detectors can be implemented to exclude measurements or 
raise alerts [A2], but there is still a risk that undetected faults impact the pose estimation error. To address 
this, methods developed in GNSS-based navigation safety can be leveraged: integrity monitoring can be 
used to evaluate the effects of undetected sensor measurement faults on pose estimation [A3, A4, A5]. 

Previous work evaluated the impact of undetected sensor measurement faults on a single robot’s 
localization in GNSS-denied environments [A6, A7, A8, A9]. However, there has been limited analysis on 
the effect of such faults on collaborative localization. In [A10], a fault detector using GNSS measurements 
from multiple CAVs identified common GNSS satellite faults. Building on this, reference [A11] enhanced 
the fault detector performance by incorporating CAV collaboration, enabling the detection of GNSS faults 
and faults in inter-vehicle relative measurements. While these approaches achieved notable results by 
leveraging CAV collaboration, they focus on improving CAV fault detectors and do not address undetected 
faults, a critical component of integrity analysis [A12]. 

To analyze the impact of undetected faults on multi-robot navigation systems, this project extends an 
integrity monitoring approach based on previous work to multi-robot systems by assessing the impacts of 
undetected sensor measurement and processing faults on collaborative localization for both centralized and 
decentralized systems. 

 

A-2. Problem Statement: Assumptions and Assertions 

State Propagation and Measurement Model 



 

 

Consider a system of 𝑁 homogeneous robots: ℛ = {𝑅!   | 1 ≤  𝑖  ≤  𝑁,  𝑖 ∈  𝑁} where 𝑅! represents the 𝑖"# 
robot. Given a robot’s state at epoch 𝑘, 𝑥$ ∈ ℝ%, the state evolution model is given by: 

𝒙𝒌𝒊 = 𝒈2𝒙𝒌(𝟏𝒊 , 𝒖𝒌(𝟏𝒊 4 + 𝒘𝒌(𝟏
𝒊 (1) 

where 𝑢$(*!  is the control input, 𝑔(⋅,⋅) is a nonlinear state evolution function, and 𝑤$(*! ∼ 𝒩20,𝑊$(*
! 4 is 

a Gaussian disturbance with known covariance 𝑊$(*
! . To be more accurate, 𝑤$(*!  does not have to follow 

a Gaussian distribution, but we assume that it is overbounded by a Gaussian function 𝒩20,𝑊$(*
! 4 [A4,A 

6-10]. If 𝑅! detects 𝑛$!  landmarks at epoch 𝑘, each with 𝑚+ measurable features, the measurement vector 
of 𝑅! is denoted as: 

𝒛𝒌
𝒊 = D𝒛𝒌,𝟏𝑻 	 ⋯	 𝒛𝒌,𝒏𝒌𝒊

𝑻 G
/
∈ ℝ0#

$,&
(2) 

where 𝑛$
+,! = 𝑛$!𝑚+. 

The measurement model is given by: 

𝒛𝒌𝒊 = 𝒉2𝒙𝒌𝒊 4 + 𝒗𝒌𝒊 + 𝒇𝒌𝒊 (3) 

where ℎ(⋅) is a nonlinear measurement function, 𝑣$!~𝒩20, 𝑉$!4 is Gaussian white noise with known 
covariance 𝑉$!, and 𝑓$! is a vector of unknown measurement faults that is zero if all measurements are fault-
free. Similar to 𝑤$(*! , 𝑣$!  does not have to follow a Gaussian distribution, but we assume that it is 
overbounded by a Gaussian function 𝒩20, 𝑉$!4. Faults can occur when extracted features are incorrectly 
associated with non-corresponding mapped landmarks (misassociation) or when an unmapped object is 
associated with a mapped landmark (unmapped association). We assume that only unmapped association 
faults are present and leave misassociation faults to future work.  

Similarly, if the 𝑖"# robot detects observable features, such as relative position and velocity, of another 
robot, 𝑅1, at epoch 𝑘, the relative measurement vector from 𝑅! to 𝑅1, 𝑧$

!→1 ∈ ℝ0#
&→(

 is modeled as: 

𝒛𝒌
𝒊→𝒋 = 𝒉𝒊→𝒋S𝒙𝒌𝒊 , 𝒙𝒌

𝒋 T + 𝒗𝒌
𝒊→𝒋 + 𝒇𝒌

𝒊→𝒋 (4) 

where ℎ!→1(⋅,⋅) is a nonlinear relative measurement function, 𝑣!→1 ∼ 𝒩20, 𝑉$
!→14 is overbounded by a 

Gaussian function with known covariance 𝑉$
!→1, and 𝑓$

!→1 is a vector of unknown relative measurement 
faults. 

Incorrect relative measurement associations are less common than incorrect landmark measurement 
associations because CAVs are typically equipped with radios that transmit detailed information that 
improve association accuracy [A13]. Relative measurement faults are more likely due to external factors 
such as multi-path interference [A14], communication delays [A15], or a biased state estimate of the 
observed robot. 

We assume that relative measurement faults are not caused by the estimation bias of other robots to ensure 
consistency in each robot’s estimation [A16, A17]. 

Collaborative Integrity Monitoring Assumptions 

If each robot’s state estimate error distribution can be overbounded by a Gaussian function or approximated 
to be normally distributed with respect to its estimate, then the distribution may be biased if measurement 
faults are present in (3) and (4): 

𝛿𝒙W = 𝒙W − 𝒙 ∼ 𝒩2𝒇𝒙5, 𝑷Z4 (5) 



 

 

where 𝑓67 represents the unknown estimation bias. If such a bias exists, the estimation may not be consistent, 
i.e., it is not guaranteed to converge [A18, A19], highlighting the need for monitoring such faults. This can 
be achieved by introducing a fault detector constructed from test statistics (e.g., estimation error or 
measurement vector). Faults that cause considerable estimation bias can be easily detected. However, there 
remains a small, but non-negligible, probability that a non-zero number of measurement faults go 
undetected despite causing bias in the estimation. Small faults might not cause significant estimation 
divergence, but they can still have a strong impact on the resulting estimation. Thus, it is important to 
analyze situations where the fault detector is not triggered but the estimation error exceeds a predefined 
threshold (known as Hazardous Misleading Information (HMI)). 

To quantify the impact of such events, the probability of HMI, or integrity risk, is defined as: 

𝑃(𝐻𝑀𝐼$) = 𝑃2𝛿𝒙$̀ > 𝑙 ∩ 𝑞$ < 𝑇8#4 (6) 

where δ𝑥i represents the estimation error, 𝑙 is a predefined acceptable error threshold, 𝑞 is the fault detector, 
and 𝑇8 is the detector threshold such that when 𝑞$ ≥ 𝑇8# an alarm is triggered. 

Since both the estimation error and fault detector are affected by measurement faults, integrity risk is 
evaluated under several fault hypotheses that specify which set of measurements might be faulted. Given a 
set of mutually exclusive and collectively exhaustive fault hypotheses, {𝐻9, ⋯ , 𝐻0)}, the integrity risk at 
epoch 𝑘 is defined as: 

𝑃(𝐻𝑀𝐼$) = l𝑃(𝐻𝑀𝐼$|𝐻#)𝑃(𝐻#)
0)

#:9

(7) 

where 𝑃(𝐻#) is the probability of the ℎ"# hypothesis, 𝑛; is the total number of fault hypotheses, and 𝐻9 is 
the fault-free hypothesis. [20] describes how to quantify this probability given the probability of each 
measurement being faulted. 

To evaluate the integrity risk in (6), both the estimation error and the fault detector's distributions must be 
derived. The remainder of the report presents these distributions for both centralized and decentralized CAV 
systems. 

 

A-3. Collaborative Estimator Design: Two Approaches 

Centralized Extended Kalman Filter 

Here, we use the Centralized Extended Kalman Filter (CEKF) for the centralized system's estimator because 
it can explicitly and analytically track the inter-robot cross-correlations through first-order approximations, 
unlike other nonlinear estimators such as the Particle Filter [A21]. Given ℛ, the joint state and its covariance 
for robots in ℛ are: 

𝒙 = D𝒙𝟏𝑻⋯𝒙𝒊𝑻⋯𝒙𝑵𝑻G
/

(8) 

𝑷 = o
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𝑷𝟐𝟏 𝑷𝟐𝟐

⋯ 𝑷𝟏𝑵
⋯ 𝑷𝟐𝑵

⋮ ⋮
𝑷𝑵𝟏 𝑷𝑵𝟐

⋱	 ⋮
⋯ 𝑷𝑵𝑵

r (9) 

where 𝑥! is the state of 𝑅!, 𝑃!! or 𝑃! is the covariance of 𝑅! 's state estimate, and 𝑃!1 is the cross-covariance 
between 𝑅! and 𝑅1 (𝑖 ≠ 𝑗). With this joint state and covariance, the CEKF prediction and update steps are 
formulated similarly to the EKF [A22]: 

𝒙v$ = 𝑔(𝒙W$(*, 𝒖𝒌(𝟏) (10) 



 

 

𝑷v$ = 𝑮𝒌𝑷Z$(*𝑮𝒌𝑻 +𝑾𝒌 (11) 

𝒙W$ = 𝒙v$ +𝑲𝒌𝜸𝒌 (12) 

𝑷Z$ = (𝑰 − 𝑲𝒌𝑯𝒌)𝑷v$ (13) 

where γ$ = 𝑧$ − ℎ(𝑥̅$) is the joint innovation, 𝐾$ = 𝑃�$𝐻$/𝑌(* is the Kalman gain, 𝑌$ = 𝐻$𝑃�$𝐻$/ + 𝑉$ is 
the covariance of the joint innovation, and 𝐺$ and 𝐻$ are the joint Jacobians for 𝑔(⋅,⋅) and ℎ(⋅), respectively. 

The full form of the joint motion Jacobian 𝐺 is: 

𝑮 = 𝑑𝑖𝑎𝑔(𝑮𝟏, ⋯ , 𝑮𝒊, ⋯ , 𝑮𝑵) (14) 

where 𝐺! = ∂𝑔2𝑥i! , 𝑢!4/ ∂𝑥! and 𝑑𝑖𝑎𝑔(⋅) denotes a block diagonal matrix. 

The joint measurement vector is assumed to be: 

𝒛𝒌 = D⋯𝒛𝒌𝒊
𝑻
⋯�����

>?

⋯𝒛𝒌𝒊→𝒋
𝑻⋯G

/

���������
@?

(15) 

where LM represents landmark measurements and RM represents relative measurements. Accordingly, the 
joint measurement Jacobian 𝐻 is: 

𝑯 = �⋯𝑯𝒊𝒊
𝑻⋯𝑯𝒊𝒋

𝑻⋯�
/ (16) 

where  

𝑯𝒊𝒊 = �𝟎𝟏:𝒊(𝟏
𝒏𝒌
𝑭,𝒊

	 B𝒉D𝒙,E F
B𝒙𝒊

	 𝟎𝒊G𝟏:𝑵
𝒏𝒌
𝑭,𝒊

� (17)  

is the landmark measurement Jacobian of 𝑅!,  

𝑯𝒊𝒋 = �𝟎𝟏:𝒊(𝟏
𝒏𝒌
𝒊→𝒋

	 𝑯𝒊
𝒊	 𝟎𝒊G𝟏:𝒋(𝟏

𝒏𝒌
𝒊→𝒋

	 𝑯𝒊
𝒋	 𝟎𝒋G𝟏:𝑵

𝒏𝒌
𝒊→𝒋

� (18) 

is the relative measurement Jacobian of 𝑅! observing the relative pose of 𝑅1, where 0H:IJ ∈
ℝJ×%(I(HG𝟙), 𝐻!! = ∂ℎ!→12𝑥̅! , 𝑥̅14/ ∂𝑥!$, and 𝐻1! = ∂ℎO→12𝑥̅! , 𝑥̅14/ ∂𝑥1. Note that the measurement 
update step can be processed even if some of the robots in the system could not obtain measurements. 

The covariance of the state evolution disturbance and the measurement noise in the joint form are: 
𝑊 = 𝑑𝑖𝑎𝑔2𝑊*, ⋯ ,𝑊! , ⋯ ,𝑊P4 and 𝑉 = 𝑑𝑖𝑎𝑔2⋯ , 𝑉! , ⋯ , 𝑉!→1 , ⋯ 4. 

The subscript 𝑘 is omitted to lighten notations. 

 

Discorrelated Minimum Variance 

In this report, the Discorrelated Minimum Variance (DMV) [A23, A24] is applied to the relative 
measurement update steps of the decentralized system's estimation process. Although the method's 
estimation performance is not as accurate as the CEKF, the method is compatible with integrity monitoring 
since the approach explicitly bounds the unknown inter-robot correlations, like Covariance Intersection 
(CI) [A17]. 

For the prediction step and the landmark measurement update step, an EKF is deployed for each robot in 
ℛ: 

𝒙v$! = 𝒈2𝒙W$(*! , 𝒖𝒌(𝟏𝒊 4 (19) 

𝑷v!,$ = 𝑮𝒊,𝒌𝑷Z!,$(*𝑮𝒊,𝒌𝑻 +𝑾𝒌
𝒊 (20) 



 

 

𝒙W$
!,>? = 𝒙v$! +𝑲𝒌

𝑳𝑴𝜸𝒌𝒊 (21) 

𝑷Z!,$>? = 2𝑰 − 𝑲𝒌
𝑳𝑴𝑯𝒌

𝒊 4𝑷v!,$ (22) 

where γ$! = 𝑧$! − ℎ2𝑥̅$! 4, 𝐾$>? = 𝑃�!,$𝐻$!
.
𝑌>?/0, 𝑌>? = 𝐻$O𝑃�!,$𝐻$!

.
+ 𝑉$!, and 𝐻$! = ∂ℎ2𝑥̅$! 4/ ∂𝑥!. The 

superscript 𝐿𝑀 represents that the variables are obtained after landmark measurement update step. When 
𝑅! observes 𝑅1, then a relative measurement update step, or a DMV update step, is processed:     

𝒙W$
!,8?S = 𝒙W$! +𝑲𝒌

𝑫𝑴𝑽𝜸𝒌
𝑰→𝒋 (23) 

𝑷Z!,$8?S = 𝑷Z!,$2𝜔⋆!4 (24) 

𝑲𝒌
𝑫𝑴𝑽 = 𝑲Z⋆! 2𝜔⋆!4 (25) 

where 𝑥i$! = 𝑥i$
!,>? if 𝑅! observes landmarks before the DMV update step, or 𝑥i$! = 𝑥̅$!  if not. 

The DMV updated covariance and gain are obtained by: 

𝑷Z!(𝜔) = �𝜔(𝑷v!)(* + (1 − 𝜔)𝑯𝒊
𝒊𝑻 �𝑯𝒋

𝑰𝑷v1𝑯𝒋
𝒊𝑻 +

1 − 𝜔
𝛾 𝑽𝑰→𝒋�

(*

𝑯𝒊
𝒊�
(*

(26) 

𝑲Z⋆! (𝜔) =
1
𝜔
𝑷v!𝑯𝒊

𝒊𝑻 �
1
𝜔
𝑯𝒊
𝒊𝑷v!𝑯𝒊

𝒊𝑻 +
1

1 − 𝜔
𝑯𝒋
𝒊𝑷v1𝑯𝒋

𝒊𝑻 +
1
𝛾
𝑽𝒊→𝒋�

(*
(27) 

Here, the subscript 𝑘 is omitted. 

Finally, the optimization parameter ω⋆!  is calculated by: 

𝜔⋆! = argmin
9XYX*

Slog det𝑷Z! (𝜔)T (28) 

Here, γ in (26) and (27) are selected as γ = 	1 − ω to ensure convex optimization for (28). 

 

A-4. Estimation error and fault detector distributions 

Here, the distribution of the estimation error and fault detector will be discussed in the presence of 
measurement faults in preparation for the integrity monitoring derivation. 

Centralized EKF Estimation Error 

The updated estimate is: 

𝑥i$ = 𝑥̅$ + 𝐾$(𝑧$ − 𝑧̂$)																																	
= 𝑥̅$ + 𝐾$(ℎ(𝑥$) + 𝑣$ + 𝑓$ − 𝑧̂$)	
≈ 𝑥̅$ + 𝐾$(𝐻$(𝑥$ − 𝑥̅$) + 𝑣$ + 𝑓$) (29) 

Thus, 

δ𝑥i$ ≈ (𝐼 − 𝐾$𝐻$)(𝑥̅$ − 𝑥$) + 𝐾$(𝑣$ + 𝑓$) (30) 

From the prediction step: 

𝑥$ = 𝑔(𝑥$(*, 𝑢$(*) + 𝑤$(*																							

≈ 𝑥̅$ + 𝐺$(𝑥$(* − 𝑥i$(*) + 𝑤$(* (31) 

Substituting into (30) yields: 



 

 

δ𝑥i$ ≈ (𝑰 − 𝑲𝒌𝑯𝒌)���������(𝑮𝒌
𝑲𝒌
1�����������

𝑲𝒌
11

𝛿𝒙W$(* −𝒘𝒌(𝟏) − 𝐾$(𝑣$ + 𝑓$)	

= 𝐾$[[δ𝑥i$(* − 𝐾$[𝑤$(* + 𝐾$(𝑣$ + 𝑓$) (32) 

Taking the expectation gives: 

𝔼[δ𝑥i$] = 𝑓67# ≈ 𝐾$[[𝑓67#/0 + 𝐾$𝑓$ (33) 

= [𝐾$ 	 𝐾$[[]�������
\#

�𝑓$/ 	 𝑓67#/0
/ ��������

]̅#

/ (34) 

To be conservative, we assume the prior estimate may be faulted (i.e., 𝑓67#/0 may be non-zero) but remains 
at a consistent level as defined in [A17]. Each element of the fault vector 𝑓$ corresponds to the elements 
of the joint measurement vector shown in (15). Note that the covariance of δ𝑥i$ remains 𝑃©$, even if faults 
exist in measurements and prior estimates. 

Centralized EKF Fault Detector 

Without collaboration, a robot's fault detector is constructed using only its own innovation: 

𝑞$! = γ$!
.
𝑌$!

/0
γ$! (35) 

Once 𝑅! collaborates with 𝑅1, both the measurements and prior estimate of 𝑅1 become correlated with 𝑅! 's 
state estimate. Therefore, a common fault detector is used across all collaborating robots to account for 
these correlations: 

𝑞$! = 𝑞$
1 = γ$

!1.𝑌$
!1/0γ$

!1 (36) 

where γ$
!1 is the joint innovation of 𝑅! and 𝑅1, and 𝑌$

!1 is its covariance. This common fault detector is used 
even after the robots stop collaborating to rigorously bound inter-robot cross correlation even if it has small 
impact on another robot’s estimation. 

The general form of the joint innovation vector is: 

γ$ = 𝑧$ − ℎ(𝑥̅$)																																																															

≈ 𝐻$(𝐺$(𝑥$(* − 𝑥i$(*) + 𝑤$(*) + 𝑣$ + 𝑓$ (37) 

Taking the expectation yields: 
𝔼[γ$] = −𝐻$𝐺$𝑓67#/0 + 𝑓$ (38) 

Since γ$ is normally distributed, 𝑞$ in the presence of a fault follows a non-central chi-squared distribution: 

𝑞$ ∼ χ0#,_#
`  

where χH,I`  is the chi-squared distribution with 𝑎 DOF and non-centrality parameter 𝑏, 𝑛$ is the dimension 
of the joint innovation vector, and λ$ is the non-centrality parameter: 

λ$ = 𝔼[γ$]/𝑌(*𝔼[γ$]																																																	

= 𝑓$̅/ [𝐼	 − 𝐻$𝐺$]/𝑌(* [𝐼	 − 𝐻$𝐺$]���������
a#���������������������

?#

𝑓$̅ (39)
 

Lastly, the fault detector threshold 𝑇8# is determined by: 



 

 

𝑇8# = 𝑋0#
(`[1 − α] (40) 

where 𝑋H(` is the inverse cumulative distribution function of the chi-squared distribution with 𝑎 DOF, and 
α is the fault detection's predefined false negative probability. Each set of collaborating robots uses the 
corresponding common 𝑞$ and 𝑇8#. 

Discorrelated Minimum Variance Estimation Error 

If the relative measurement update is performed after the landmark measurement update, then, similar to 
(29), 𝑅! 's state estimate error after the DMV update step becomes: 

𝑥i$
!,8?S = 𝑥i$

!,>? + 𝐾$8?S2𝑧$
O→1 − 𝑧̂$

O→14																																																																																				

≈ 𝑥i$
!,>? + 𝐾$8?S2𝐻!,$! 2𝑥$! − 𝑥i$

!,>?4 + 𝐻1,$! 2𝑥$
1 − 𝑥i$

14 + 𝑣$
O→1 + 𝑓$

!→14 (41) 

which yields: 

δ𝑥i$
!,8?S = 2𝐼 − 𝐾$8?S𝐻!,$! 42𝑥i$

!,>? − 𝑥$! 4 + 𝐾$8?S𝐻1,$! 2𝑥$
1 − 𝑥i$

14 + 𝐾$8?S2𝑣$
!→1 + 𝑓$

!→14 (42) 

Taking the expectation yields: 

𝔼�δ𝑥i$
!,8?S� = 𝑓67#&,234 																																																																																																																		

= 2𝐼 − 𝐾$8?S𝐻!,$
!→14�����������

b#
1234

𝑓67#&,53 + 𝐾$
8?S S−𝐻1,$

!→1𝑓67#(,53
+ 𝑓$

!→1T���������������
]#̅
63

(43)
 

Here, as explained in Section 2.1., the other robot's estimation fault, 𝑓67#
(,53, is not considered in the relative 

measurement fault. Therefore, 𝑓$̅@? = 𝑓$
!→1 is always satisfied. 

Like (33), the fault vector after the landmark measurement update step is: 

𝑓67#&,53 = 2𝐼 − 𝐾$>?𝐻$! 4���������
b#
153

𝐺$
�����������

b#
1153

𝑓67#/0& + 𝐾$>?𝑓$! (44)
 

Substituting into (43) yields: 

𝑓67#&,234 = 𝐾$[8?S𝐾$>?𝑓$! + 𝐾$[8?S𝐾$[[>?𝑓67#/0& + 𝐾$8?S𝑓$
!→1 

= DKc
def Kcg789

[def Kcg71189
[def G�����������������

h7

o
fc
i→j

fci

fk77/0:

r

���
l7E

(45) 

Discorrelated Minimum Variance Fault Detector 

Similar to (35), the decentralized fault detector is constructed using only an individual robot's weighted 
norm of its innovation: 

𝑞$! = γ$/𝑌$(*γ$ (46) 

where γ$ = Dγ$
!→1. 	 γ$!

.
G
/

 and 𝑌$ is its covariance matrix (Note that the DMV's innovation vector order 
differs from the CEKF since the relative measurement update is performed after the landmark measurement 



 

 

update). The dimension of γ$ increases as the number of robots observed by 𝑅! increases. For simplicity, 
we assume the case where only the relative measurement from 𝑅! to 𝑅1 is obtained. 

The innovation vector of the relative measurement is expressed as: 

γ$
!→1 = 𝑧$

!→1 − ℎ!→12𝑥i$
!,>? , 𝑥i$

14																																																															

≈ 𝐻!,$! 2𝑥$! − 𝑥i$
!,>?4 + 𝐻1,$! 2𝑥$

1 − 𝑥i$
14 + 𝑣$

!→1 + 𝑓$
!→1 (47) 

Taking the expectation while assuming no 𝑅1 estimation fault: 

𝔼�γ$
!→1� = −𝐻!,$! 𝑓67#&,53 − 𝐻1,$! 𝑓67#(,53

+ 𝑓$
!→1 																										 (48) 

= −𝐻!,$! 𝐾$[[>?𝑓67#/0& −𝐻!,$! 𝐾$>?𝑓$! + 𝑓$
!→1 (49) 

= �I −Hi,ci Kcme −Hi,ci Kc[[me� o
fc
i→j

fci

fk77/0:

r

���
l7̅

(50) 

Here, as explained in Section 4.2.1., 𝒇𝒙5𝒌
𝒋,𝑳𝑴 is assumed to be zero. Similarly, as in (38), the expectation of 

γ$!  is: 

𝔼�γ$! � = −𝐻$!𝐺!,$𝑓67#/0& + 𝑓$! (51) 

Thus, the expectation of γ$ becomes: 

𝔼[γc] = ³
I −Hi,ci Kcme −Hi,ci Kc[[me

0 I −Hc
i Gi,c

µ
�������������������

n7

fcv (52) 

Finally, 𝑞$!  follows: 

𝑞$! ∼ χ0#,_#
` (53) 

where 𝑛$ is the dimension ofγ$ and λ$ = 𝑓$̅/ 𝐵$/𝑌$(*𝐵$�������
?#

𝑓$̅. 

 

A-5. Integrity Monitoring 

As shown in the previous sections, the distributions of the estimation error and the fault detector can be 
generalized as: 

δ𝑥i$ ∼ 𝒩2𝐴$𝑓$̅ , 𝑃©$4 (54) 

𝑞$ ∼ χ0#,_#
` (55) 

where 𝐴$, 𝑓$̅, 𝑛$, and 𝑀$ in λ$ were defined differently for two estimators in Section 4. The worst-case 
fault that maximizes the integrity risk under each fault hypothesis is derived to upper bound the integrity 
risk. Since each innovation vector and estimation error are independent [25]:  

𝑃(𝐻𝑀𝐼$|𝐻#) = 𝑃(|δ𝑥i$| > 𝑙|𝐻#)𝑃2𝑞$ < 𝑇8=¸𝐻#4 (56) 

The worst-case fault η that maximizes the integrity risk is: 



 

 

η = argmax
𝒇

𝑃(|𝛿𝑥i| > 𝑙|𝐻#)𝑃(𝑞 < 𝑇8|𝐻#) (57) 

The worst-case fault's direction is in the direction that maximizes the failure mode slope [26], the ratio of 
the estimation error's squared mean and the fault detector's non-centrality parameter, 𝑓67#

` /λ$. [A25] proved 
this to be: 

ηp!q = 𝐸#/�𝐸#𝑀𝐸#/�
(*𝐸#𝐴/𝑡 (58) 

where 𝑡 extracts the element of the robot's state of interest, such as the robot's heading direction or cross-
track direction, and 𝐸# extracts the corresponding faulted elements under hypothesis 𝐻# (see [A6] for a 
detailed explanation). Given the worst-case direction, its magnitude is obtained by: 

η%Hr = argmax
s

𝑃2¸𝑍s]t𝒙?,u5@¸ > 𝑙4𝑋0A,s@vw
` [𝑇8] (59) 

where 𝑍H,I is a random Gaussian variable with mean 𝑎 and variance 𝑏, and 𝑋J,p` [⋅] is the cummulative 
distribution function of the chi-square distribution with 𝑐 DOF and non-centrality parameter 𝑑. Also, 𝑓¿67 =
𝑡/𝐴ηp!q and λÀ = ηp!q/ 𝑀ηp!q. Finally, the upper bound of the integrity risk under each hypothesis is obtained 
by substituting ηp!q and η%Hr into (57). 

 

A-6. Performance Evaluation 

Simulation 

Two simulated collaborating homogeneous robots move in parallel from left to right, collecting 
measurements and simultaneously update their estimates (see Fig. A1 and Table A1). Fig. A2 compares the 
3σ envelope of robots' position estimates along heading direction, while Fig. A3 compares the integrity 
risk. 

 

lidar SD lidar range RM SD velocity SD steering SD 

0.3 m 20 m 0.1 m 0.5 m/s 5° 
Table A1.  Sensor parameters used in the simulation. 

Fig.A 1.  Simulated landmark map. Two robots are collabora:ng throughout the en:re opera:on. The 
sampling rate for all sensors is 0.1𝑠. 



 

 

 

The CEKF shows a lower integrity risk than the non-collaborative EKF because the CEKF benefits from 
relative measurements, which results in more accurate estimations compared to the EKF. Although the 
DMV does not improve estimation accuracy beyond the EKF, it has better integrity risk due to the additional 
measurements provided by the relative measurement, which enhance the fault detection performance. 
Overall, the simulations demonstrate that collaboration can improve estimation accuracy and reduce 
integrity risk. 

Experiment 

Two vehicles collected data on the Illinois Tech campus to experimentally evaluate integrity risk. Each 
vehicle was equipped with a STIM-300 tactical-grade IMU, an Ouster OS1-64 lidar, and a Novatel GNSS 
receiver. The IMU readings were used as control inputs. The lidars detected landmarks (e.g., tree trunks 
and light posts) and measured the vehicles' relative positioning via reflective tape placed on each vehicle. 
The GNSS clock synchronized the timing of measurements between the vehicles. 

Vehicle pose ground truth was obtained by scan matching. The experimental map was generated by merging 
the maps created by each vehicle using EKF-SLAM (see Fig. A4). Initially, 𝑅* was behind 𝑅`, but midway 
through the operation 𝑅* overtook 𝑅`.  

 

Fig. A2.  3𝜎 envelope of robots' state of interest, with the robots' heading direc:on selected. 

Fig. A4.  Integrity risk results of the simula:on. The alert limit 𝑙 = 0.5	𝑚 and 𝛼 = 0.1 are 
selected for both robots. 

Fig. A3.  Experiment landmark map. Two robots move from leG to right. 



 

 

Fig. A6 compares the 3σ envelope of the robots' position estimation along the heading direction 
for each estimator, while Fig. A7 compares the integrity risk; gray areas indicate when the robots observed 
each other. 

Fig. A7.  Integrity risk results of the experiment. The alert limit 𝑙 = 0.5	𝑚 and 𝛼 = 0.1 are selected 
for both robots. 

Fig. A5.  Vehicles used to collect experimental data. Each vehicle is equipped with NOVATEL GNSS receiver, OS1-64 LiDAR, 
and STIM 300 tac:cal grade IMU. Rela:ve pose measurements are obtained by detec:ng retroreflec:ve tape aXached on 
each sensor suit mounted on each vehicle. 

Fig. A6.  3𝜎 envelope of robots' state of interest, with the robots' heading direc:on selected. Gray 
shaded areas indicate the :mes when each robot received rela:ve measurement and 
collabora:vely localized. 



 

 

The experimental results align with the simulation results. The CEKF demonstrates better estimation 
accuracy and lower integrity risk than both the EKF and the DMV. Although the DMV did not improve 
estimation accuracy, it still exhibited better integrity risk than the non-collaborative EKF. Overall, the 
experimental findings confirm that collaborative localization can improve estimation accuracy and reduce 
integrity risk. 

In both experiments and simulations, although the CEKF shows superior estimation accuracy to the DMV, 
its improvement in integrity risk is marginal. This is because the landmark measurements from other robots 
are nearly uncorrelated with the ego robot's state estimate, diminishing the performance of the common 
fault detector.  

 

A-7. Conclusions 

Both simulation and experimental results demonstrate that the CEKF has a lower integrity risk than the 
non-collaborative EKF. This is due to the CEKF's enhanced estimation accuracy, and the additional 
measurements provided by collaborating robots, which improve fault detection performance, though there 
is still room for further improvement. While the DMV does not improve estimation accuracy, its integrity 
risk is lower than that of the EKF in both simulations and experiments. This is because the DMV fault 
detector performs better than the EKF by utilizing relative measurements that are not available in the EKF. 
In summary, collaborative localization enhances integrity risk performance and provides safer navigation 
compared to standalone robots. 
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