

# Class 8 Rational Numbers Worksheet

By Thinking Juggernaut

Class: 8th Standard

Subject: Mathematics

Total Questions: 24

Total Marks: 24

## 🎯 Understanding Rational Numbers

### What are Rational Numbers?

A rational number is any number that can be expressed in the form  $p/q$ , where  $p$  and  $q$  are integers and  $q \neq 0$ .

Examples:  $3/4$ ,  $-5/7$ ,  $2$  (can be written as  $2/1$ ),  $0$  (can be written as  $0/1$ ),  $-3$ ,  $0.5$  ( $= 1/2$ )

### Important Concepts:

#### 1. Closure Property

The sum, difference, and product of two rational numbers is always a rational number.

Example:  $1/2 + 1/3 = 5/6$  (rational)

#### 2. Commutative Property

Addition:  $a + b = b + a$

Multiplication:  $a \times b = b \times a$

Example:  $2/3 + 1/4 = 1/4 + 2/3$

#### 3. Associative Property

Addition:  $(a + b) + c = a + (b + c)$

Multiplication:  $(a \times b) \times c = a \times (b \times c)$

#### 4. Additive Identity

$a + 0 = a$  (Zero is the additive identity)

Example:  $3/5 + 0 = 3/5$

**5. Multiplicative Identity**

$a \times 1 = a$  (One is the multiplicative identity)

Example:  $4/7 \times 1 = 4/7$

**6. Additive Inverse**

For every rational number  $a/b$ , there exists  $-(a/b)$  such that  $a/b + (-a/b) = 0$

Example:  $3/4 + (-3/4) = 0$

**7. Multiplicative Inverse (Reciprocal)**

For every non-zero rational number  $a/b$ , there exists  $b/a$  such that  $a/b \times b/a = 1$

Example:  $2/3 \times 3/2 = 1$

**8. Distributive Property**

$a \times (b + c) = (a \times b) + (a \times c)$

Example:  $2 \times (1/3 + 1/4) = (2 \times 1/3) + (2 \times 1/4)$

**Operations on Rational Numbers:**

- **Addition/Subtraction:** Find LCM of denominators, convert to like fractions, then add/subtract numerators
- **Multiplication:** Multiply numerators and multiply denominators:  $(a/b) \times (c/d) = (a \times c) / (b \times d)$
- **Division:** Multiply by reciprocal:  $(a/b) \div (c/d) = (a/b) \times (d/c)$

**Rational Numbers on Number Line:**

Every rational number can be represented on a number line. Between any two rational numbers, there are infinitely many rational numbers.

**Sample Problem with Visual Explanation**

**Problem:** Find:  $-2/3 + 5/6 - 1/2$

### Step-by-Step Solution

**Step 1: Find LCM of denominators (3, 6, 2)**

$$\text{LCM}(3, 6, 2) = 6$$

We need to convert all fractions to have denominator 6

**Step 2: Convert to equivalent fractions with denominator 6**

$$-\frac{2}{3} = (-2 \times 2)/(3 \times 2) = -\frac{4}{6}$$

$$\frac{5}{6} = 5/6 \text{ (already has denominator 6)}$$

$$-\frac{1}{2} = (-1 \times 3)/(2 \times 3) = -\frac{3}{6}$$

**Step 3: Add/Subtract numerators (keep same denominator)**

$$-\frac{4}{6} + \frac{5}{6} - \frac{3}{6} = (-4 + 5 - 3)/6$$

$$= -\frac{2}{6}$$

**Step 4: Simplify to lowest terms**

$$\textcolor{blue}{-\frac{2}{6} = -\frac{1}{3}}$$

**Key Points to Remember:**

- Always find LCM of denominators first when adding/subtracting
- Convert each fraction to equivalent fraction with LCM as denominator
- Add or subtract only the numerators, keep the denominator same
- Always simplify your answer to the lowest terms
- Verification:  $-\frac{1}{3} = -\frac{2}{6} = (-4 + 5 - 3)/6 \checkmark$

## Part A: Warm-up Practice

★ Easy Level - 8 Questions

**Q1.** Write three rational numbers between 1 and 2.

**Q2.** Find:  $\frac{1}{4} + \frac{1}{4}$

**Q3.** What is the additive inverse of  $-3/7$ ?

**Q4.** Find the multiplicative inverse (reciprocal) of  $5/8$ .

**Q5.** Fill in the blank:  $-2/5 \times \underline{\hspace{2cm}} = 1$

 THINKING

**Q6.** Simplify:  $3/4 - 1/4$

 JUGGERNAUT

**Q7.** True or False: Between any two rational numbers, there are infinitely many rational numbers.

**Q8.** Find:  $2/3 \times 3/2$

## Part B: Practice Zone

★★ Medium Level - 10 Questions

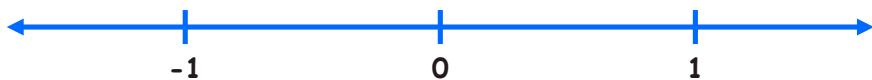
**Q9.** Find:  $3/5 + (-2/3)$

**Q10.** Simplify:  $-5/6 - 7/9$

**Q11.** Find:  $(-2/5) \times (3/7) \times (-5/6)$

**Q12.** Match the properties with their examples:

| Column A                      | Column B                                    |
|-------------------------------|---------------------------------------------|
| (i) Commutative Property      | (a) $2/3 \times 1 = 2/3$                    |
| (ii) Associative Property     | (b) $1/2 + 1/3 = 1/3 + 1/2$                 |
| (iii) Multiplicative Identity | (c) $(1/4 + 1/5) + 1/6 = 1/4 + (1/5 + 1/6)$ |


Write your answers: (i) → \_\_\_, (ii) → \_\_\_, (iii) → \_\_\_

**Q13. Word Problem:** Rani ate  $1/4$  of a pizza and Raj ate  $1/3$  of the same pizza. What fraction of the pizza did they eat together?

**Q14.** Divide:  $5/6 \div (-2/3)$

**Q15. Picture-based Problem:** Represent  $-3/4$  and  $1/2$  on the number line below.

Mark  $-3/4$  and  $1/2$  on this number line



**Q16.** Find five rational numbers between  $-1/2$  and  $-1/3$ .

**Q17.** Simplify:  $(2/3 + 1/6) - (3/4 - 1/2)$

**Q18. Real-life Problem:** A water tank is  $3/4$  full. If  $1/6$  of the water is used, what fraction of the tank is still filled?

## Part C: Challenge Yourself!

★★★ Hard Level - 6 Questions

**Q19.** Simplify using distributive property:  $-3/5 \times (7/2 - 2/3)$

**Q20.** The sum of two rational numbers is  $-3/5$ . If one of them is  $2/3$ , find the other.

**Q21.** Find the value of:  $[(2/3 + 3/4) \div (5/6 - 1/2)] \times 2/5$

**Q22. Complex Problem:** A rectangular field is  $7/4$  km long and  $3/2$  km wide. Find its area in square kilometers. If the cost of fencing is ₹150 per km, what is the total cost of fencing the field?

**Q23.** Verify the distributive property for:  $a = 1/2$ ,  $b = -2/3$ ,  $c = 3/4$   
Show that:  $a \times (b + c) = (a \times b) + (a \times c)$

**Q24. Challenge Problem:** Three friends Amit, Priya, and Kabir shared a cake. Amit ate  $\frac{2}{5}$  of the cake, Priya ate  $\frac{1}{4}$  of the remaining cake, and Kabir ate  $\frac{1}{2}$  of what was left after Priya. What fraction of the original cake is still remaining?



## Answer Key

### Part A: Warm-up Practice (Easy)

**Q1.** Any three rational numbers like:  $\frac{3}{2}, \frac{4}{3}, \frac{5}{4}$  (or 1.1, 1.2, 1.5, etc.)

**Q2.**  $\frac{1}{4} + \frac{1}{4} = \frac{2}{4} = \frac{1}{2}$

**Q3.** Additive inverse of  $-\frac{3}{7}$  is  $\frac{3}{7}$

**Q4.** Multiplicative inverse of  $\frac{5}{8}$  is  $\frac{8}{5}$

**Q5.**  $-\frac{2}{5} \times (-\frac{5}{2}) = 1$ , so answer is  $-\frac{5}{2}$

**Q6.**  $\frac{3}{4} - \frac{1}{4} = \frac{2}{4} = \frac{1}{2}$

**Q7.** True

**Q8.**  $\frac{2}{3} \times \frac{3}{2} = \frac{6}{6} = 1$

### Part B: Practice Zone (Medium)

**Q9.**  $\frac{3}{5} + (-\frac{2}{3}) = \frac{9}{15} - \frac{10}{15} = -\frac{1}{15}$

**Q10.**  $-\frac{5}{6} - \frac{7}{9}$

$LCM(6,9) = 18$

$= -\frac{15}{18} - \frac{14}{18} = -\frac{29}{18}$

**Q11.**  $(-2/5) \times (3/7) \times (-5/6) = ((-2) \times 3 \times (-5))/(5 \times 7 \times 6) = 30/210 = 1/7$

**Q12.** (i) → (b), (ii) → (c), (iii) → (a)

**Q13.**  $1/4 + 1/3 = 3/12 + 4/12 = 7/12$  of the pizza

**Q14.**  $5/6 \div (-2/3) = 5/6 \times (-3/2) = -15/12 = -5/4$

**Q15.**  $-3/4$  is at  $-0.75$  (between  $-1$  and  $0$ , closer to  $-1$ )

$1/2$  is at  $0.5$  (between  $0$  and  $1$ , exactly in the middle)

**Q16.** Method: Convert to like denominators or use mean

$$-1/2 = -15/30, -1/3 = -10/30$$

Five numbers:  $-14/30, -13/30, -12/30, -11/30, -11/31$  (or any equivalent fractions)

$$\mathbf{Q17.} (2/3 + 1/6) - (3/4 - 1/2)$$

$$= (4/6 + 1/6) - (3/4 - 2/4)$$

$$= 5/6 - 1/4 = 10/12 - 3/12 = 7/12$$

**Q18.** Water used =  $1/6$  of full tank

Water remaining =  $3/4 - 1/6 = 9/12 - 2/12 = 7/12$  of the tank

### Part C: Challenge Questions (Hard)

$$\mathbf{Q19.} -3/5 \times (7/2 - 2/3)$$

$$= (-3/5 \times 7/2) - (-3/5 \times 2/3)$$

$$= -21/10 + 6/15 = -63/30 + 12/30 = -51/30 = -17/10$$

**Q20.** Let the other number be  $x$

$$2/3 + x = -3/5$$

$$x = -3/5 - 2/3 = -9/15 - 10/15 = -19/15$$

$$\mathbf{Q21.} [(2/3 + 3/4) \div (5/6 - 1/2)] \times 2/5$$

$$= [(8/12 + 9/12) \div (5/6 - 3/6)] \times 2/5$$

$$= [17/12 \div 2/6] \times 2/5$$

$$= [17/12 \times 6/2] \times 2/5$$

$$= (17/4) \times 2/5 = 34/20 = 17/10$$

**Q22.** Area = length × width =  $7/4 \times 3/2 = 21/8 \text{ km}^2$

Perimeter =  $2(\text{length} + \text{width}) = 2(7/4 + 3/2) = 2(7/4 + 6/4) = 2 \times 13/4 = 13/2 \text{ km}$

Cost =  $13/2 \times 150 = ₹975$

**Q23.** LHS:  $a \times (b + c) = 1/2 \times (-2/3 + 3/4) = 1/2 \times (-8/12 + 9/12) = 1/2 \times 1/12 = 1/24$

RHS:  $(a \times b) + (a \times c) = (1/2 \times -2/3) + (1/2 \times 3/4) = -2/6 + 3/8 = -8/24 + 9/24 = 1/24$

LHS = RHS, hence verified ✓

**Q24.** Amit ate:  $2/5$

Remaining after Amit:  $1 - 2/5 = 3/5$

Priya ate:  $1/4$  of  $3/5 = 3/20$

Remaining after Priya:  $3/5 - 3/20 = 12/20 - 3/20 = 9/20$

Kabir ate:  $1/2$  of  $9/20 = 9/40$

Final remaining:  $9/20 - 9/40 = 18/40 - 9/40 = 9/40$  of the cake

THINKING

## Scoring Guide

Total Questions: 24 | Total Marks: 24

| Score Range | Performance Level | What to Do Next                                                                                                                                                         |
|-------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20-24       | ★★★<br>Excellent! | Outstanding! You've mastered rational numbers. Move on to linear equations in one variable, algebraic expressions, and advanced fraction problems.                      |
| 15-19       | ★★ Very Good!     | Great work! Practice more complex word problems and mixed operations. Focus on problems requiring multiple steps and property verification.                             |
| 10-14       | ★ Good Effort!    | Keep practicing! Memorize all properties with examples. Practice finding LCM for addition/subtraction and converting to reciprocals for division. Do 15 problems daily. |

0-9      Keep Trying!

Review the concept section carefully. Start with addition of simple fractions with same denominators, then different denominators. Master one operation before moving to the next.

 **Tips for Improvement:**

- **Master LCM:** Quick LCM finding is essential for adding/subtracting rational numbers
- **Remember reciprocals:** Division means multiply by reciprocal (flip the second fraction)
- **Simplify always:** Always reduce your answer to the lowest terms (divide by HCF)
- **Sign rules:** Negative  $\times$  Negative = Positive; Negative  $\times$  Positive = Negative
- **Property cards:** Create flashcards for all 8 properties with examples
- **Number line practice:** Draw number lines and mark fractions to visualize better
- **Word problems:** Identify the operation needed (together = add, left = subtract, of = multiply, per/each = divide)

 **Common Mistakes to Avoid:**

-  Adding/subtracting numerators AND denominators (WRONG:  $1/2 + 1/3 \neq 2/5$ )
-  Forgetting to find LCM before adding/subtracting unlike fractions
-  Not simplifying the final answer to lowest terms
-  Confusing additive inverse with multiplicative inverse (reciprocal)
-  Wrong signs: forgetting that  $-(-a) = +a$
-  In division, multiplying by the same fraction instead of its reciprocal
-  In word problems: "of" means multiply, not add!
-  Thinking 0 has a multiplicative inverse (it doesn't - can't divide by 0!)

✨ **Great Job Completing This Worksheet!** ✨

Keep practicing rational numbers and you'll master it in no time!

 Download more worksheets like this  
 Visit: <https://thinkingjuggernaut.in/>



## NEP-aligned, hands-on experiential kits

NEP-2020 aligned hands-on kits and workbooks that help kids think independently, solve problems, and explore experiential learning.

[Explore Kits](#)

Founded by NIT & IIT Alumni

THINKING  
JUGGERNAUT



## NEP-aligned, hands-on experiential kits



Applied Maths Kit (Age 7+)



Applied Maths Kit (Age 10+)



Interdisciplinary STEM Kit (Age 7+)



Interdisciplinary STEM Kit (Age 10+)



Entrepreneurship Kit



Finance Literacy Kit



Chess Starter Kit



Explore Sanskrit Kit

Founded by IIT & NIT Alumni, Thinking Juggernaut is a NEP-2020 aligned experiential learning platform that builds 21st-century skills, connects subjects, and links classroom concepts to real-life challenges.

[View All Kits Online →](#)