

12
34

Class 8 Algebraic Expressions & Identities

By Thinking Juggernaut

Name: _____

Date: _____

Score: ____/24

Algebraic Expressions & Identities

In Class 8, we explore:

- Advanced multiplication and division of algebraic expressions
- Application of algebraic identities to simplify expressions
- Factorization using common factors and identities
- Working with expressions containing multiple variables and powers

Standard Algebraic Identities:

- $(a + b)^2 = a^2 + 2ab + b^2$
- $(a - b)^2 = a^2 - 2ab + b^2$
- $(a + b)(a - b) = a^2 - b^2$
- $(x + a)(x + b) = x^2 + (a + b)x + ab$
- $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$
- $(a + b)^3 = a^3 + b^3 + 3ab(a + b)$
- $(a - b)^3 = a^3 - b^3 - 3ab(a - b)$
- $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$
- $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

Factorization Methods:

- Common Factor Method:** $6x + 9 = 3(2x + 3)$
- Regrouping Method:** $ax + bx + ay + by = x(a + b) + y(a + b) = (a + b)(x + y)$
- Using Identities:** $x^2 - 9 = (x + 3)(x - 3)$
- Middle Term Splitting:** For $x^2 + bx + c$

Sample Problem

Problem: Factorize using identity: $4x^2 - 12xy + 9y^2$

Step 1: Recognize the pattern

Compare with: $a^2 - 2ab + b^2 = (a - b)^2$

Step 2: Identify a and b

$$a^2 = 4x^2 \rightarrow a = 2x$$

$$b^2 = 9y^2 \rightarrow b = 3y$$

Step 3: Verify middle term

$$2ab = 2(2x)(3y) = 12xy \checkmark$$

Step 4: Write factored form

$$4x^2 - 12xy + 9y^2 = (2x - 3y)^2$$

 Remember: Always verify by expanding the factored form to check your answer!

Part A: Warm-up Questions

 Easy Level

1. Expand using identity: $(3x + 4)^2$

Hint: Use $(a + b)^2 = a^2 + 2ab + b^2$

2. Simplify: $(x + 5)(x - 5)$

3. Factorize by taking out common factor: $12x^2 + 18x$

4. Expand: $(2a - 3b)^2$

5. Multiply: $(x + 7)(x + 3)$

6. Factorize using identity: $x^2 - 16$

7. Find the product: $(3m + 2n)(3m - 2n)$

8. If $a + b = 7$ and $ab = 12$, find $a^2 + b^2$

Part B: Practice Questions

★★ Medium Level

9. Factorize: $x^2 + 10x + 25$

10. Expand using identity: $(2x + 3y + 4z)^2$

11. Factorize by regrouping: $ax + ay + bx + by$

THINKING

12. Evaluate using identity: 103^2

JUGGERNAUT

13. Factorize: $9a^2 - 24ab + 16b^2$

14. Match the Following:

Column A (Expression)	Column B (Factored Form)
1. $x^2 - 25$	a. $(x + 9)(x - 9)$
2. $x^2 + 12x + 36$	b. $(x - 5)(x + 5)$

3. $x^2 - 81$

c. $(x + 6)^2$

4. $4x^2 - 9$

d. $(2x - 3)(2x + 3)$

15. If $x - y = 3$ and $xy = 10$, find $x^2 + y^2$

16. Simplify: $(x + 2)^2 - (x - 2)^2$

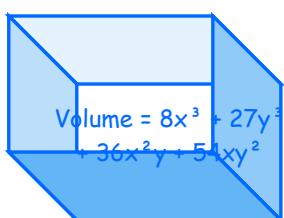
17. Word Problem: The area of a square is $(4x^2 + 12x + 9)$ cm². Find the length of its side.

$$\text{Area} = 4x^2 + 12x + 9$$

Side = ?

18. Evaluate: 98×102 using identity

Part C: Challenge Questions


★★★ Hard Level

19. Factorize completely: $x^3 - 27$

20. If $a + b + c = 12$ and $ab + bc + ca = 47$, find $a^2 + b^2 + c^2$

21. Expand: $(2x - 3y)^3$

22. **Word Problem:** The volume of a cube is $(8x^3 + 27y^3 + 36x^2y + 54xy^2)$ cubic units. Find the length of its edge by factorizing the expression.

23. Factorize: $x^4 - 16$

24. Prove that: $(a + b)^2 + (a - b)^2 = 2(a^2 + b^2)$

Answer Key

Part A: Warm-up (Easy)

1. $9x^2 + 24x + 16$

3. $6x(2x + 3)$

5. $x^2 + 10x + 21$

7. $9m^2 - 4n^2$

2. $x^2 - 25$

4. $4a^2 - 12ab + 9b^2$

6. $(x + 4)(x - 4)$

8. $(a+b)^2 = a^2 + 2ab + b^2; 49 = a^2 + b^2 + 24; a^2 + b^2 = 25$

Part B: Practice (Medium)

9. $(x + 5)^2$

11. $a(x + y) + b(x + y) = (a + b)(x + y)$

10. $4x^2 + 9y^2 + 16z^2 + 12xy + 24xz + 24yz$

12. $(100 + 3)^2 = 10000 + 600 + 9 = 10609$

13. $(3a - 4b)^2$	14. 1-b, 2-c, 3-a, 4-d
15. $(x-y)^2 = x^2 - 2xy + y^2; 9 = x^2 + y^2 - 20; x^2 + y^2 = 29$	16. $x^2 + 4x + 4 - x^2 + 4x - 4 = 8x$
17. $4x^2 + 12x + 9 = (2x + 3)^2$; Side = $2x + 3$ cm	18. $(100-2)(100+2) = 10000 - 4 = 9996$

Part C: Challenge (Hard)

19. $(x - 3)(x^2 + 3x + 9)$	20. $(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca); 144 = a^2 + b^2 + c^2 + 94; a^2 + b^2 + c^2 = 50$
21. $8x^3 - 27y^3 - 36x^2y + 54xy^2$	22. Recognize $(a+b)^3$ form: $(2x + 3y)^3$; Edge = $2x + 3y$ units
23. $(x^2)^2 - 4^2 = (x^2 - 4)(x^2 + 4) = (x-2)(x+2)(x^2 + 4)$	24. LHS = $a^2 + 2ab + b^2 + a^2 - 2ab + b^2 = 2a^2 + 2b^2 = 2(a^2 + b^2)$ = RHS

Scoring Guide

Total Questions: 24 | Total Marks: 24

Score Range	Performance Level	What to Do Next
20-24	 Excellent!	Outstanding! You've mastered algebraic identities and factorization. Move on to quadratic equations and advanced polynomial division.
15-19	 Very Good!	Great work! Practice more on cubic identities and complex factorization problems to strengthen your skills.

10-14

★ Good Effort!

Keep practicing! Focus on memorizing all identities and recognizing patterns in expressions for factorization.

0-9

Keep Trying!

Review the identities section thoroughly. Practice basic expansions and simple factorizations daily before tackling word problems.

Tips for Improvement:

- **Memorize all identities:** Create flashcards for each identity and practice daily
- **Recognize patterns:** Look for perfect squares, difference of squares, sum/difference of cubes
- **Verify by expansion:** Always expand your factored form to check correctness
- **Practice mental math:** Use identities to calculate squares and products quickly
- **Work systematically:** For complex expressions, try different methods (common factor, regrouping, identities)
- **Visual representation:** Draw area models for $(a+b)^2$ to understand geometrically

Common Mistakes to Avoid:

- **Confusing $(a-b)^2$ with $a^2 - b^2$ (missing the $2ab$ term)**
- **Wrong signs in expansion: $(a-b)^2 = a^2 - 2ab + b^2$ (not $-2ab - b^2$)**
- **Not taking out common factors first before applying identities**
- **Incomplete factorization: $x^4 - 16 = (x^2 - 4)(x^2 + 4)$ but $(x^2 - 4)$ can be factored further!**
- **Forgetting to verify the middle term when using perfect square identities**

★ Great Job Completing This Worksheet! ★

Keep practicing algebraic identities and factorization!

🔥 Download more worksheets like this

🌐 Visit: <https://thinkingjuggernaut.in/>

NEP-aligned, hands-on experiential kits

NEP-2020 aligned hands-on kits and workbooks that help kids think independently, solve problems, and explore experiential learning.

[Explore Kits](#)

Founded by NIT & IIT Alumni

THINKING
JUGGERNAUT

NEP-aligned, hands-on experiential kits

Applied Maths Kit (Age 7+)

Applied Maths Kit (Age 10+)

Interdisciplinary STEM Kit (Age 7+)

Interdisciplinary STEM Kit (Age 10+)

Entrepreneurship Kit

Finance Literacy Kit

Chess Starter Kit

Explore Sanskrit Kit

Founded by IIT & NIT Alumni, Thinking Juggernaut is a NEP-2020 aligned experiential learning platform that builds 21st-century skills, connects subjects, and links classroom concepts to real-life challenges.

[View All Kits Online →](#)