

Class 7 Ratio & Proportion Worksheet

Thinking Juggernaut

Name: _____

Date: _____

Total Marks: 24

Advanced Ratio & Proportion Concepts

COMPOUND RATIOS: The ratio of the product of antecedents to the product of consequents.

Compound ratio of $a:b$ and $c:d$ = $(a \times c) : (b \times d)$

Example: Compound ratio of $2:3$ and $4:5$ = $(2 \times 4) : (3 \times 5) = 8:15$

DIRECT PROPORTION: When one quantity increases, the other also increases (or both decrease together).

Symbol: \propto

If $x \propto y$, then $x/y = \text{constant (k)}$

Examples: Distance \propto Time (at constant speed), Cost \propto Quantity

INVERSE PROPORTION: When one quantity increases, the other decreases.

Formula: $x \times y = \text{constant (k)}$

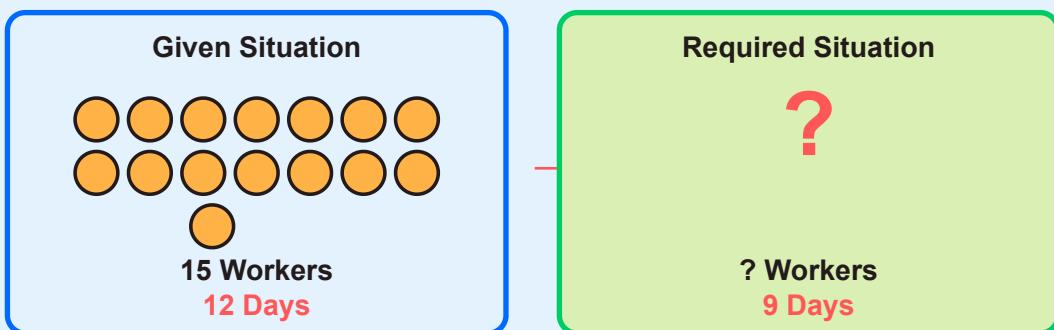
Examples: Speed \times Time = Distance (constant), Workers \times Days = Work (constant)

CONTINUED PROPORTION: Three quantities a, b, c are in continued proportion if $a:b = b:c$

If $a:b = b:c$, then $b^2 = ac$ (b is the mean proportional)

Example: $4:6 = 6:9 \rightarrow 6^2 = 36$ and $4 \times 9 = 36 \checkmark$

KEY PROPERTIES:


- Invertendo:** If $a:b = c:d$, then $b:a = d:c$
- Alternendo:** If $a:b = c:d$, then $a:c = b:d$
- Componendo:** If $a:b = c:d$, then $(a+b):b = (c+d):d$
- Dividendo:** If $a:b = c:d$, then $(a-b):b = (c-d):d$

Sample Problem

Problem: 15 workers can build a wall in 12 days. How many workers are needed to build the same wall in 9 days?

Inverse Proportion: Workers \propto 1/Days

Less time → More workers needed (Inverse Proportion)

Solution:

This is **inverse proportion** because fewer days require more workers.

Method 1: Using the formula $W_1 \times D_1 = W_2 \times D_2$

$$15 \times 12 = W_2 \times 9$$

$$180 = 9W_2$$

$$W_2 = 20 \text{ workers}$$

Method 2: Using proportion

Workers are inversely proportional to days

$$15:W_2 = 9:12 \text{ (inverse ratio)}$$

$$15 \times 12 = W_2 \times 9$$

$$W_2 = 20 \text{ workers}$$

Answer: 20 workers are needed to complete the wall in 9 days

Part A: Fundamental Concepts

★ Foundation Level

1. Find the compound ratio of 3:4 and 5:6

2. Check if 4, 6, 9 are in continued proportion.

For continued proportion: 4:6 should equal 6:9

Verify: 4×9 _____ 6×6

THINKING

3. If $a:b = 2:3$ and $b:c = 4:5$, find $a:b:c$

Hint: Make b equal in both ratios

JUGGERNAUT

4. Identify if the following is direct or inverse proportion: "The number of pages typed increases with time."

Answer: _____

5. Find the mean proportional between 4 and 16.

If x is mean proportional: $4:x = x:16$

$x^2 =$ _____

$x = \underline{\hspace{2cm}}$

6. Three numbers are in the ratio 2:3:4. If their sum is 27, find the numbers.

Let numbers be $2x, 3x, 4x$

7. If 5 pens cost ₹125, how much will 8 pens cost? (Direct proportion)

THINKING

8. Divide ₹2400 in the ratio 3:5

First part: $\underline{\hspace{2cm}}$

Second part: $\underline{\hspace{2cm}}$

JUGGERNAUT

Part B: Applied Problem Solving

★★ Intermediate Level

9. A car travels 240 km in 4 hours. At the same speed, how far will it travel in 6.5 hours?

Direct Proportion: Distance \propto Time

Given

240 km in 4 hours

Find

? km in 6.5 hours

10. 20 men can complete a work in 15 days. How many days will 25 men take?

Type of proportion: _____

11. The ratio of boys to girls in a school is 7:5. If there are 84 boys, find:

a) Number of girls: _____

b) Total students: _____

c) Ratio of girls to total students: _____

THINKING

12. If $a:b = 3:4$ and $b:c = 8:9$, find $a:c$

JUGGERNAUT

Make b equal: $a:b = 6:8$ and $b:c = 8:9$

13. A recipe for 4 people uses 300g flour and 200g sugar. Adjust quantities for 10 people.

Flour: _____ g

Sugar: _____ g

14. The monthly salaries of A and B are in the ratio 5:6. If A's salary increases by 20% and B's by 10%, find the new ratio.

A's original salary: $5x$, New: _____

B's original salary: $6x$, New: _____

New ratio: _____

15. A cistern can be filled by pipe A in 6 hours and by pipe B in 8 hours. If both pipes are opened together, in how many hours will the cistern be filled?

Part filled by A in 1 hour: _____

Part filled by B in 1 hour: _____

Combined in 1 hour: _____

Time to fill: _____

16. Two numbers are in the ratio 5:7. If each number is increased by 10, the ratio becomes 3:4. Find the numbers.

Let numbers be $5x$ and $7x$

THINKING
JUGGERNAUT

17. Divide ₹5600 among A, B, and C such that A gets half of what B gets, and B gets half of what C gets.

Find ratio A:B:C first

18. The cost of 12 books is ₹420. What will be the cost of 18 such books?

Part C: Complex Applications

★★★ Challenge Level

19. A sum of money is divided among A, B, and C in the ratio 2:3:5. If C receives ₹3000 more than A, find the total amount and individual shares.

Difference in parts between C and A: _____

Value of 1 part: _____

Total amount: _____

A gets: _____, B gets: _____, C gets: _____

20. The ratio of the ages of a father and son is 5:2. Five years ago, the ratio was 3:1. Find their present ages.

THINKING

Present: $5x$ and $2x$

5 years ago: $(5x-5):(2x-5) = 3:1$

JUGGERNAUT

21. A mixture contains milk and water in 7:5. If 9 liters of mixture is removed and replaced with water, the new ratio becomes 7:9. Find the original quantity of mixture.

Let original quantity = x liters

22. The incomes of A and B are in 5:4 and their expenditures are in 7:5. If each saves ₹9000, find their incomes.

Income of A: $5x$, B: $4x$

Expenditure of A: $7y$, B: $5y$

Savings: $5x - 7y = 9000$, $4x - 5y = 9000$

23. If 36 men can do a piece of work in 25 days, in how many days will 15 men do it?

Total work in man-days: _____

Days required: _____

24. A car covers a certain distance at 60 km/h in 8 hours. At what speed should it travel to cover the same distance in 6 hours?

Inverse Proportion: Speed × Time = Constant

Given Journey

Speed: 60 km/h

Time: 8 hours

Required Journey

Speed: ?

Time: 6 hours

Same Distance → Speed × 1/Time

Distance = Speed × Time = _____

Required speed = _____

Answer Key

Part A: Fundamental Concepts

1. 15:24 or 5:8 (Compound ratio = $(3 \times 5):(4 \times 6) = 15:24 = 5:8$)
2. No ($4 \times 9 = 36$, $6 \times 6 = 36$... wait, $36 = 36$, so YES they are in continued proportion)
3. $a:b:c = 8:12:15$ (Make $b = 12$: $a:b = 8:12$ and $b:c = 12:15$)

4. Direct proportion (More time → More pages)
5. $8 (x^2 = 4 \times 16 = 64, x = 8)$
6. 6, 9, 12 ($2x+3x+4x = 27, 9x = 27, x = 3$)
7. ₹200 (Cost of 1 pen = ₹25, 8 pens = ₹200)
8. First part: ₹900, Second part: ₹1500 (Total parts = 8, $3/8 \times 2400 = 900, 5/8 \times 2400 = 1500$)

Part B: Applied Problem Solving

9. 390 km (Speed = 60 km/h, Distance = $60 \times 6.5 = 390$ km)
10. 12 days (Inverse proportion: $20 \times 15 = 25 \times x, 300 = 25x, x = 12$)
11. a) 60 girls ($7:5 = 84:x, x = 60$), b) 144 students, c) 5:12
12. 2:3 ($a:b:c = 6:8:9$, so $a:c = 6:9 = 2:3$)
13. Flour: 750g, Sugar: 500g (Multiply by $10/4 = 2.5$)
14. 10:11 (A's new = $5x \times 1.2 = 6x$, B's new = $6x \times 1.1 = 6.6x$, Ratio = $6:6.6 = 10:11$)
15. 3 3/7 hours or 24/7 hours (Combined rate = $1/6 + 1/8 = 7/24$ per hour, Time = $24/7$ hours)
16. 25 and 35 (Set up: $(5x+10):(7x+10) = 3:4$, solve: $20x+40 = 21x+30, x = 5$)
17. A: ₹800, B: ₹1600, C: ₹3200 (If A = x, B = 2x, C = 4x. Ratio = 1:2:4, Total = 7 parts)
18. ₹630 (Cost of 1 book = ₹35, 18 books = ₹630)

Part C: Complex Applications

19. Difference = 3 parts (5-2), 1 part = ₹1000, Total = ₹10,000, A: ₹2000, B: ₹3000, C: ₹5000
20. Father: 50 years, Son: 20 years ($(5x-5):(2x-5) = 3:1, 5x-5 = 6x-15, x = 10$)

21. 36 liters (Original milk = $7x/12$, After removal = $7x/12 - 9 \times 7/12$. Set up equation with new ratio)

22. A: ₹45,000, B: ₹36,000 (From $5x-7y = 9000$ and $4x-5y = 9000$, solve: $x = 9000$, $y = 5400$)

23. 60 days (Total work = $36 \times 25 = 900$ man-days, Days = $900 \div 15 = 60$)

24. 80 km/h (Distance = $60 \times 8 = 480$ km, Speed = $480 \div 6 = 80$ km/h)

Performance Analysis & Learning Path

Total Questions: 24 | Total Marks: 24

Score Range	Performance Level	Recommended Action Plan
20-24	★★★★ Excellent	Advanced Mastery Achieved: <ul style="list-style-type: none"> Explore partnership problems and profit sharing Practice time and work problems with multiple variables Study percentage applications with ratios Solve competitive exam-level proportion problems Master mixture and alligation concepts
15-19	★★ Very Good	Strengthen Advanced Concepts: <ul style="list-style-type: none"> Practice compound ratios and continued proportions Master inverse proportion problems thoroughly Work on multi-step word problems daily Review properties of proportion (componendo, dividendo) Solve 10 mixed problems daily for 2 weeks
10-14	★ Good Effort	Build Core Understanding: <ul style="list-style-type: none"> Clearly understand difference between direct and inverse proportion Practice basic ratio simplification daily Master unitary method completely Work through 15 basic proportion problems daily

		<ul style="list-style-type: none"> • Create visual representations for word problems • Review Class 6 ratio concepts if needed
0-9	Needs Improvement	<p>Fundamental Revision Required:</p> <ul style="list-style-type: none"> • Start with basic ratio concepts from Class 6 • Understand what proportion means with examples • Practice cross multiplication method extensively • Work with teacher/tutor for personalized help • Do 20 simple ratio problems daily • Use real-life examples (cooking, shopping, speed) • Watch educational videos on proportion concepts

🔍 Problem-Solving Framework

1. **Read & Identify:** What type of problem? Direct or inverse proportion? Ratio division?
2. **Extract Data:** List all given values and what needs to be found
3. **Check Units:** Convert everything to same units if needed
4. **Set Up Equation:** Use appropriate formula based on problem type
5. **Solve Step-by-Step:** Show all working clearly
6. **Verify Logic:** Does the answer make sense? If workers increase, should time decrease?
7. **Simplify:** Always express ratios in simplest form

⚠ Common Mistakes to Avoid

- ✗ **Confusing Direct & Inverse:** Always ask: "If one doubles, what happens to the other?"
- ✗ **Wrong Formula Application:** Don't use $x_1/y_1 = x_2/y_2$ for inverse proportion
- ✗ **Forgetting to Simplify:** 12:18 should be written as 2:3
- ✗ **Unit Mismatch:** Can't compare 5 hours to 300 minutes without conversion
- ✗ **Order Confusion:** 3:5 is not the same as 5:3 - order matters!
- ✗ **Compound Ratio Error:** Don't add ratios: $(2:3) + (4:5) \neq 6:8$
- ✗ **Not Finding LCM:** When combining ratios, make middle term equal
- ✅ **Best Practice:** Always write your reasoning - why is it direct/inverse?

✨ Excellent Work Completing This Worksheet! ✨

Ratio and proportion are everywhere - from cooking to construction to calculating discounts!

- 🔥 Download more Class 7 worksheets at thinkingjuggernaut.in
- 💻 Practice identifying direct vs inverse proportion in daily life
- 📚 Master these concepts - they're the foundation of advanced mathematics!

NEP-aligned, hands-on experiential kits

NEP-2020 aligned hands-on kits and workbooks that help kids think independently, solve problems, and explore experiential learning.

[Explore Kits](#)

Founded by NIT & IIT Alumni

NEP-aligned, hands-on experiential kits

Applied Maths Kit (Age 7+)

Applied Maths Kit (Age 10+)

Interdisciplinary STEM Kit (Age 7+)

Interdisciplinary STEM Kit (Age 10+)

Entrepreneurship Kit

Finance Literacy Kit

Chess Starter Kit

Explore Sanskrit Kit

Founded by IIT & NIT Alumni, Thinking Juggernaut is a NEP-2020 aligned experiential learning platform that builds 21st-century skills, connects subjects, and links classroom concepts to real-life challenges.

[View All Kits Online →](#)