

◆ Class 7 Geometry Worksheet by Thinking Juggernaut◆

Triangles, Congruence, Parallel Lines & Constructions

⌚ Time: 90 minutes

📊 Total: 24 Questions

💯 Marks: 48

📋 Instructions for Students

- Read each question carefully before solving
- Show all your work and steps clearly
- Use a ruler and compass for construction problems
- Draw neat diagrams where required
- Write units in your final answers
- Check your answers after completing all questions

🎯 Essential Formulas & Properties

Triangle Properties:

- Sum of angles = 180°
- Exterior angle = Sum of two opposite interior angles
- Sum of any two sides > Third side

Congruence Criteria:

- SSS: Side-Side-Side
- SAS: Side-Angle-Side
- ASA: Angle-Side-Angle
- RHS: Right angle-Hypotenuse-Side

Parallel Lines:

- Corresponding angles are equal
- Alternate interior angles are equal

- Co-interior angles sum to 180°

Section A: Angles and Triangle Properties (8 Questions - 2 marks each)

Easy Level

Q1. In a triangle ABC , $\angle A = 65^\circ$ and $\angle B = 45^\circ$. Find $\angle C$.

Q2. The angles of a triangle are in the ratio 2:3:4. Find all three angles.

Q3. In triangle PQR , the exterior angle at Q is 125° . If $\angle P = 60^\circ$, find $\angle R$.

Q4. Two angles of a triangle are 70° and 80° . Is this triangle acute, obtuse, or right-angled? Justify your answer.

Q5. If two parallel lines are cut by a transversal, and one of the corresponding angles is 115° , find the other corresponding angle.

Q6. Two parallel lines are cut by a transversal. If one of the alternate interior angles is 68° , what is the value of the other alternate interior angle?

Q7. The sides of a triangle are 7 cm, 24 cm, and 25 cm. Check if this forms a right-angled triangle using Pythagoras theorem.

Q8. In triangle DEF, $DE = 8 \text{ cm}$, $EF = 6 \text{ cm}$. What is the range of possible values for the third side DF?

Section B: Congruence of Triangles (8 Questions - 2 marks each)

Medium Level

Q9. In triangles ABC and DEF, $AB = DE = 5 \text{ cm}$, $BC = EF = 6 \text{ cm}$, and $AC = DF = 7 \text{ cm}$. Are the triangles congruent? If yes, by which criterion?

Q10. In triangles PQR and XYZ , $PQ = XY$, $\angle Q = \angle Y$, and $QR = YZ$. State the congruence criterion that proves $\triangle PQR \cong \triangle XYZ$.

Q11. Two right triangles have equal hypotenuses and one equal side. Are they congruent? Name the criterion.

Q12. In triangle ABC , $AB = AC$. If $\angle B = 55^\circ$, find $\angle C$. What type of triangle is this?

Q13. In the given figure (imagine), AD is the median of triangle ABC . If $AB = AC$, prove that $AD \perp BC$. Which congruence criterion would you use?

Q14. State whether the following pairs of triangles are congruent. Give reasons:

$\triangle ABC$: $AB = 4 \text{ cm}$, $\angle A = 60^\circ$, $AC = 5 \text{ cm}$

$\triangle PQR$: $PQ = 4 \text{ cm}$, $\angle P = 60^\circ$, $PR = 5 \text{ cm}$

Q15. In triangles ABC and DEF , $\angle A = \angle D = 90^\circ$, $AB = DE$, and $BC = EF$. Are the triangles congruent? State the criterion.

Q16. If in triangle ABC , $AB = AC$ and the altitude from A to BC bisects BC at D , prove that $\triangle ABD \cong \triangle ACD$.

Section C: Advanced Problems (8 Questions - 2 marks each)

Challenge Level

Q17. Two parallel lines l and m are cut by a transversal t . If the co-interior angles are $(3x + 20)^\circ$ and $(2x + 10)^\circ$, find the value of x and both angles.

Q18. In triangle ABC , the bisector of $\angle A$ meets BC at D . If $\angle B = 60^\circ$ and $\angle C = 50^\circ$, find $\angle BAD$ and $\angle CAD$.

Q19. The angles of a quadrilateral are in the ratio 3:4:5:6. Find all four angles.
(Hint: Sum of angles in quadrilateral = 360°)

Q20. In an isosceles triangle, if the vertex angle is 40° , find the base angles.

Q21. A ladder 25 m long reaches a window 24 m above the ground. How far is the foot of the ladder from the base of the wall? (Use Pythagoras theorem)

Q22. In triangle PQR, $PQ = PR = 10$ cm and $QR = 12$ cm. Find the altitude from P to QR.

Q23. Two lines AB and CD intersect at O. If $\angle AOC = 3x + 20^\circ$ and $\angle BOD = 5x - 40^\circ$, find x and all four angles. (Remember: Vertically opposite angles are equal)

Q24. In a triangle ABC, $\angle A = 90^\circ$, $AB = 12$ cm, and $AC = 5$ cm. A perpendicular from A meets BC at D. If $BD = 9.6$ cm, find the length of AD.

Worked Example: Congruence Problem

Problem: In triangles ABC and PQR, $AB = PQ = 7$ cm, $\angle B = \angle Q = 70^\circ$, and $BC = QR = 8$ cm. Prove that the triangles are congruent.

Solution:

Given:

- $AB = PQ = 7 \text{ cm}$
- $\angle B = \angle Q = 70^\circ$
- $BC = QR = 8 \text{ cm}$

In $\triangle ABC$ and $\triangle PQR$:

- $AB = PQ$ (given)
- $\angle B = \angle Q$ (given)
- $BC = QR$ (given)

Therefore, $\triangle ABC \cong \triangle PQR$ by **SAS (Side-Angle-Side)** criterion.

Scoring Guide

Total Marks: 48

- Excellent: 40-48 marks (Outstanding understanding!)
- Very Good: 32-39 marks (Keep up the great work!)
- Good: 24-31 marks (You're doing well!)
- Need Practice: Below 24 marks (Review concepts and try again!)

Answer Key with Detailed Solutions

Section A: Angles and Triangle Properties

A1. $\angle C = 70^\circ$

Solution: Sum of angles in a triangle = 180°

$$\angle A + \angle B + \angle C = 180^\circ$$

$$65^\circ + 45^\circ + \angle C = 180^\circ$$

$$\angle C = 180^\circ - 110^\circ = 70^\circ$$

A2. Angles are 40° , 60° , and 80°

Solution: Let angles be $2x$, $3x$, and $4x$

$$2x + 3x + 4x = 180^\circ$$

$$9x = 180^\circ$$

$x = 20^\circ$

Therefore: $2x = 40^\circ$, $3x = 60^\circ$, $4x = 80^\circ$

A3. $\angle R = 65^\circ$

Solution: Exterior angle = Sum of opposite interior angles

$$125^\circ = \angle P + \angle R$$

$$125^\circ = 60^\circ + \angle R$$

$$\angle R = 65^\circ$$

A4. Acute triangle

Solution: Third angle = $180^\circ - (70^\circ + 80^\circ) = 30^\circ$

All three angles (70° , 80° , 30°) are less than 90° , so it's an acute triangle.

A5. 115°

Solution: Corresponding angles are equal when parallel lines are cut by a transversal.

A6. 68°

Solution: Alternate interior angles are equal when parallel lines are cut by a transversal.

A7. Yes, it's a right-angled triangle

Solution: Check if $7^2 + 24^2 = 25^2$

$$49 + 576 = 625$$

$$625 = 625 \checkmark$$

Since Pythagoras theorem is satisfied, it's a right-angled triangle.

A8. $2 \text{ cm} < DF < 14 \text{ cm}$

Solution: Triangle inequality: Difference of two sides < Third side < Sum of two sides

$$8 - 6 < DF < 8 + 6$$

$$2 < DF < 14$$

Section B: Congruence of Triangles

A9. Yes, congruent by SSS criterion

Solution: All three sides are equal ($AB = DE$, $BC = EF$, $AC = DF$), so triangles are congruent by SSS.

A10. SAS (Side-Angle-Side) criterion

Solution: Two sides and the included angle are equal.

A11. Yes, by RHS criterion

Solution: In right triangles, if hypotenuse and one side are equal, they're congruent by RHS (Right angle-Hypotenuse-Side).

A12. $\angle C = 55^\circ$; Isosceles triangle

Solution: Since $AB = AC$, angles opposite to equal sides are equal.

Therefore, $\angle B = \angle C = 55^\circ$

This is an isosceles triangle.

A13. Use SAS criterion

Solution: In $\triangle ABD$ and $\triangle ACD$:

$AB = AC$ (given)

$BD = CD$ (AD is median)

$AD = AD$ (common)

Therefore $\triangle ABD \cong \triangle ACD$ by SSS

So $\angle ADB = \angle ADC$, and since they're supplementary, each = 90°

A14. Yes, congruent by SAS criterion

Solution: $AB = PQ = 4$ cm, $\angle A = \angle P = 60^\circ$, $AC = PR = 5$ cm

Two sides and included angle are equal.

A15. Yes, by RHS criterion

Solution: Both triangles are right-angled ($\angle A = \angle D = 90^\circ$)

Hypotenuse $BC = EF$

One side $AB = DE$

Therefore, congruent by RHS.

A16. Proof using SAS:

Solution: In $\triangle ABD$ and $\triangle ACD$:

$AB = AC$ (given)

$AD = AD$ (common)

$\angle ADB = \angle ADC = 90^\circ$ (altitude)

Therefore $\triangle ABD \cong \triangle ACD$ by RHS or SAS.

Section C: Advanced Problems

A17. $x = 30^\circ$; Angles are 110° and 70°

Solution: Co-interior angles sum to 180°

$$(3x + 20^\circ) + (2x + 10^\circ) = 180^\circ$$

$$5x + 30^\circ = 180^\circ$$

$$5x = 150^\circ$$

$$x = 30^\circ$$

$$\text{First angle} = 3(30) + 20 = 110^\circ$$

$$\text{Second angle} = 2(30) + 10 = 70^\circ$$

A18. $\angle BAD = 35^\circ$ and $\angle CAD = 35^\circ$

Solution: $\angle A = 180^\circ - (60^\circ + 50^\circ) = 70^\circ$

Since AD bisects $\angle A$:

$$\angle BAD = \angle CAD = 70^\circ/2 = 35^\circ$$

A19. Angles are 60° , 80° , 100° , and 120°

Solution: Let angles be $3x$, $4x$, $5x$, and $6x$

$$3x + 4x + 5x + 6x = 360^\circ$$

$$18x = 360^\circ$$

$$x = 20^\circ$$

Angles: 60° , 80° , 100° , 120°

A20. Base angles = 70° each

Solution: In isosceles triangle, base angles are equal

$$\text{Vertex angle} + 2(\text{base angle}) = 180^\circ$$

$$40^\circ + 2(\text{base angle}) = 180^\circ$$

$$\text{Base angle} = 140^\circ/2 = 70^\circ$$

A21. 7 m

Solution: Using Pythagoras theorem:

$$\text{Ladder}^2 = \text{Height}^2 + \text{Distance}^2$$

$$25^2 = 24^2 + \text{Distance}^2$$

$$625 = 576 + \text{Distance}^2$$

$$\text{Distance}^2 = 49$$

$$\text{Distance} = 7 \text{ m}$$

A22. Altitude = 8 cm

Solution: In isosceles triangle, altitude bisects the base

Base is divided into two parts of 6 cm each

Using Pythagoras theorem in one half:

$$10^2 = h^2 + 6^2$$

$$100 = h^2 + 36$$

$$h^2 = 64$$

$$h = 8 \text{ cm}$$

A23. $x = 30^\circ$; Angles are $110^\circ, 70^\circ, 110^\circ, 70^\circ$

Solution: Vertically opposite angles are equal

$$\angle AOC = \angle BOD$$

$$3x + 20^\circ = 5x - 40^\circ$$

$$60^\circ = 2x$$

$$x = 30^\circ$$

$$\angle AOC = \angle BOD = 3(30) + 20 = 110^\circ$$

$$\angle AOD = \angle BOC = 180^\circ - 110^\circ = 70^\circ$$

A24. $AD = 7.2 \text{ cm}$

Solution: First find BC using Pythagoras:

$$BC^2 = AB^2 + AC^2 = 12^2 + 5^2 = 144 + 25 = 169$$

$$BC = 13 \text{ cm}$$

$$\text{Area of triangle} = \frac{1}{2} \times AB \times AC = \frac{1}{2} \times 12 \times 5 = 30 \text{ cm}^2$$

$$\text{Also, Area} = \frac{1}{2} \times BC \times AD$$

$$30 = \frac{1}{2} \times 13 \times AD$$

$$AD = 60/13 \approx 4.62 \text{ cm}$$

Or using similar triangles: $AD = (AB \times AC)/BC = (12 \times 5)/13 = 60/13 \approx 4.62 \text{ cm}$

Study Tips for Geometry Success

- **Master the Basics:** Understand all angle properties and triangle properties thoroughly before moving to advanced topics
- **Practice Constructions:** Regular practice with compass and ruler improves accuracy and understanding
- **Draw Diagrams:** Always draw neat, labeled diagrams - they make problems much easier
- **Learn Congruence Criteria:** Memorize SSS, SAS, ASA, and RHS - know when to use each one
- **Understand Proofs:** Don't just memorize steps - understand the logical flow of geometric proofs
- **Common Pitfalls:**
 - Don't confuse corresponding angles with alternate angles

- Remember that exterior angle equals sum of opposite interior angles, not all angles
- In congruence, order of vertices matters
- Check triangle inequality before assuming three sides can form a triangle
- **Problem-Solving Tips:**
 - For parallel lines: Look for corresponding, alternate, or co-interior angles
 - For triangles: Start by finding the sum of angles = 180°
 - For isosceles triangles: Remember base angles are equal
 - For word problems: Draw and label the diagram first
 - Use Pythagoras theorem when you see right angles
- **Real-World Applications:** Look for triangular structures, parallel lines in architecture, and geometric patterns around you

✨ Excellent Work Completing This Worksheet! ✨

Keep exploring geometry and master the art of logical thinking!

- 👉 Download more worksheets like this
- 🌐 Visit: <https://thinkingjuggernaut.in/>

NEP-aligned, hands-on experiential kits

NEP-2020 aligned hands-on kits and workbooks that help kids think independently, solve problems, and explore experiential learning.

[Explore Kits](#)

Founded by NIT & IIT Alumni

NEP-aligned, hands-on experiential kits

Applied Maths Kit (Age 7+)

Applied Maths Kit (Age 10+)

Interdisciplinary STEM Kit (Age 7+)

Interdisciplinary STEM Kit (Age 10+)

Entrepreneurship Kit

Finance Literacy Kit

Chess Starter Kit

Explore Sanskrit Kit

Founded by IIT & NIT Alumni, Thinking Juggernaut is a NEP-2020 aligned experiential learning platform that builds 21st-century skills, connects subjects, and links classroom concepts to real-life challenges.

[View All Kits Online →](#)