

Class 7 Geometric Twins Worksheet by Thinking Juggernaut

Mastering Congruence - Finding Triangle Twins!

⌚ Time: 60 minutes

📊 Total: 15 Questions

💯 Marks: 30

📋 What are Geometric Twins?

Just like human twins look identical, **geometric twins** are triangles that are exactly the same in shape and size - we call them **CONGRUENT TRIANGLES!** 🤝

In this worksheet, you'll become a detective 🔎 who identifies which triangles are twins (congruent) and proves why they're twins using special criteria!

Instructions:

- Read each problem carefully - look for matching sides and angles
- Draw neat diagrams and label them properly
- State which congruence criterion you're using (SSS, SAS, ASA, or RHS)
- Write the congruence statement correctly (order matters!)
- Show all your reasoning clearly

⌚ The 4 Ways to Prove Triangles are Twins

1 SSS (Side-Side-Side)

All three sides of one triangle equal the three sides of another triangle.

$$AB = DE, BC = EF, CA = FD$$

2 SAS (Side-Angle-Side)

Two sides and the angle between them in one triangle equal the corresponding parts in another.

$$AB = DE, \angle B = \angle E, BC = EF$$

3 ASA (Angle-Side-Angle)

Two angles and the side between them in one triangle equal the corresponding parts in another.

$$\angle A = \angle D, AB = DE, \angle B = \angle E$$

4 RHS (Right-Hypotenuse-Side)

In right triangles, if the hypotenuse and one other side are equal, they're congruent!

$$\angle B = \angle E = 90^\circ, AC = DF, AB = DE$$

Section A: Basic Twin Detection (5 Questions - 2 marks each)

Easy Level - Spot the Twins!

Q1. Are these triangles twins?

Triangle ABC: AB = 5 cm, BC = 6 cm, CA = 7 cm

Triangle PQR: PQ = 5 cm, QR = 6 cm, RP = 7 cm

Task: State whether they are congruent and name the criterion. Write the congruence statement.

Q2. Twin Check!

Triangle DEF: DE = 8 cm, $\angle E = 70^\circ$, EF = 9 cm

Triangle XYZ: XY = 8 cm, $\angle Y = 70^\circ$, YZ = 9 cm

Task: Are they congruent? Which criterion proves it? Write $\triangle DEF \cong \triangle \underline{\hspace{2cm}}$

Q3. Right Triangle Twins!

Triangle ABC: $\angle B = 90^\circ$, AC (hypotenuse) = 13 cm, AB = 5 cm

Triangle PQR: $\angle Q = 90^\circ$, PR (hypotenuse) = 13 cm, PQ = 5 cm

Task: Prove they are congruent using RHS criterion.

Q4. Angle-Side-Angle Match!

Triangle KLM: $\angle K = 45^\circ$, KL = 10 cm, $\angle L = 60^\circ$

Triangle STU: $\angle S = 45^\circ$, ST = 10 cm, $\angle T = 60^\circ$

Task: Use ASA criterion to prove congruence. Write the statement.

Q5. NOT Twins - Explain Why!

Triangle ABC: AB = 6 cm, $\angle A = 50^\circ$, $\angle B = 60^\circ$

Triangle PQR: PQ = 6 cm, $\angle P = 50^\circ$, $\angle R = 70^\circ$

Task: These are NOT congruent. Explain why none of the four criteria apply.

Section B: Intermediate Twin Challenges (5 Questions - 2 marks each)

Medium Level - Think Deeper!

Q6. Isosceles Triangle Twins!

In triangle ABC , $AB = AC = 8$ cm and $\angle A = 50^\circ$.

In triangle DEF , $DE = DF = 8$ cm and $\angle D = 50^\circ$.

Task: Prove $\triangle ABC \cong \triangle DEF$. Which criterion applies? (Hint: Use the property that base angles of isosceles triangles are equal)

Q7. Hidden Twin Information!

In triangles PQR and XYZ :

$PQ = XY$, $QR = YZ$, and $\angle Q = \angle Y = 90^\circ$

Task: Find PR and XZ using Pythagoras theorem if $PQ = 3$ cm and $QR = 4$ cm.

Then prove the triangles are congruent.

Q8. Overlapping Twins!

In the figure (imagine), AC and BD intersect at O . We know:

$AO = CO$ and $BO = DO$

Task: Prove that $\triangle AOB \cong \triangle COD$ using the information given. Which criterion?

Q9. Complete the Twin Information!

$\triangle ABC \cong \triangle PQR$ by ASA criterion.

Given: $\angle A = 40^\circ$, $AB = 7 \text{ cm}$, $\angle B = 65^\circ$

Task: Find $\angle P$, PQ , and $\angle Q$. Also find the third angle in both triangles.

Q10. Median Creates Twins!

In triangle ABC , $AB = AC$ (isosceles). D is the midpoint of BC .

AD is the median.

Task: Prove that $\triangle ABD \cong \triangle ACD$. What does this tell you about $\angle ADB$ and $\angle ADC$?

Section C: Advanced Twin Problems (5 Questions - 2 marks each)

Challenge Level - Master Detective!

Q11. Parallel Lines Create Twins!

In the figure (imagine), $AB \parallel CD$. A line segment PQ intersects them at M and N .

If $AM = CN$ and $\angle AMP = \angle CNQ$ (alternate angles are equal)

Task: Given that $MP = NQ$, prove $\triangle AMP \cong \triangle CNQ$. What can you conclude about AP and CQ ?

Q12. Equilateral Triangle Division!

Triangle ABC is equilateral with side 12 cm. Points D, E, F are midpoints of AB, BC, CA respectively.

Task: Prove that $\triangle AEF \cong \triangle BFD \cong \triangle CDE$. What is the length of each side of these smaller triangles?

Q13. Square's Hidden Twins!

$ABCD$ is a square with side 10 cm. Diagonals AC and BD intersect at O .

Task: Prove that $\triangle AOB \cong \triangle BOC \cong \triangle COD \cong \triangle DOA$. Name all four congruent triangles and the criteria used.

Q14. Altitude Creates Twin Triangles!

In triangle ABC , $\angle B = 90^\circ$. BD is drawn perpendicular to AC .

Given: $AB = 12 \text{ cm}$, $BC = 9 \text{ cm}$

Task: First find AC using Pythagoras theorem. Then prove that $\triangle ABD$ and $\triangle CBA$ share a special relationship (similar, not congruent). Why aren't they twins?

Q15. Twin Detective Challenge!

You have 6 sticks: two of 5 cm, two of 7 cm, and two of 9 cm.

Task: (a) How many different triangles can you make using these sticks? (b) If you make two triangles using all 6 sticks, will they be congruent? (c) Which criterion proves it?

💡 Worked Example: Finding Geometric Twins

Problem: In triangles ABC and XYZ , $AB = 6 \text{ cm}$, $BC = 8 \text{ cm}$, $\angle B = 90^\circ$, $XY = 6 \text{ cm}$, $YZ = 8 \text{ cm}$, and $\angle Y = 90^\circ$. Are they twins (congruent)?

Solution:

Step 1: Identify what we know

- Both triangles are right-angled ($\angle B = \angle Y = 90^\circ$)
- $AB = XY = 6 \text{ cm}$
- $BC = YZ = 8 \text{ cm}$

Step 2: Find the hypotenuse using Pythagoras theorem

$$AC^2 = AB^2 + BC^2 = 6^2 + 8^2 = 36 + 64 = 100$$

$$AC = 10 \text{ cm}$$

Similarly, $XZ = 10 \text{ cm}$

Step 3: Apply congruence criterion

Since both are right triangles with equal hypotenuse and one equal side:

$$\triangle ABC \cong \triangle XYZ \text{ by RHS criterion}$$

Answer: Yes, they are geometric twins! 🎉

📊 Scoring Guide - How Good a Twin Detective Are You?

Total Marks: 30

- 🏆 Master Detective: 26-30 marks (You've mastered congruence!)
- ⭐ Expert Detective: 21-25 marks (Excellent understanding!)
- 👍 Good Detective: 16-20 marks (You're getting there!)
- 📚 Junior Detective: 11-15 marks (Keep practicing!)
- 🔍 Apprentice Detective: Below 11 marks (Review the concepts and try again!)

Answer Key with Detailed Solutions

Section A: Basic Twin Detection

A1. Yes, they are congruent by SSS criterion

$$\triangle ABC \cong \triangle PQR$$

Solution: All three corresponding sides are equal:

- $AB = PQ = 5 \text{ cm}$
- $BC = QR = 6 \text{ cm}$
- $CA = RP = 7 \text{ cm}$

Therefore, by SSS (Side-Side-Side) criterion, the triangles are congruent twins!

A2. Yes, congruent by SAS criterion

$$\triangle DEF \cong \triangle XYZ$$

Solution: Two sides and the included angle are equal:

- $DE = XY = 8 \text{ cm}$ (side)
- $\angle E = \angle Y = 70^\circ$ (included angle)
- $EF = YZ = 9 \text{ cm}$ (side)

Therefore, by SAS (Side-Angle-Side) criterion, they are geometric twins!

A3. $\triangle ABC \cong \triangle PQR$ by RHS criterion

Solution:

In $\triangle ABC$ and $\triangle PQR$:

- $\angle B = \angle Q = 90^\circ$ (both right angles)
- $AC = PR = 13 \text{ cm}$ (hypotenuse)
- $AB = PQ = 5 \text{ cm}$ (one side)

Therefore, by RHS (Right angle-Hypotenuse-Side) criterion, the right triangles are congruent.

A4. $\triangle KLM \cong \triangle STU$ by ASA criterion

Solution: Two angles and the included side are equal:

- $\angle K = \angle S = 45^\circ$ (angle)
- $KL = ST = 10 \text{ cm}$ (included side)
- $\angle L = \angle T = 60^\circ$ (angle)

Therefore, by ASA (Angle-Side-Angle) criterion, they are congruent twins!

A5. NOT congruent - criteria not satisfied

Explanation:

- We have one side ($AB = PQ = 6 \text{ cm}$) and two angles in each triangle
- However, $\angle B = 60^\circ$ but we don't know $\angle Q$
- We know $\angle A = \angle P = 50^\circ$, but $\angle B \neq \angle R$ ($60^\circ \neq 70^\circ$)
- The angles given are not in the right positions for ASA or AAS

- We don't have information about other sides for SSS or SAS

Therefore, none of the four congruence criteria can be applied. Not twins! **✗**

Section B: Intermediate Twin Challenges

A6. $\triangle ABC \cong \triangle DEF$ by SAS criterion

Solution:

Since both are isosceles triangles with equal sides from the vertex:

- $AB = DE = 8 \text{ cm}$ (side)
- $\angle A = \angle D = 50^\circ$ (included angle)
- $AC = DF = 8 \text{ cm}$ (side)

Therefore, by SAS criterion, they are congruent.

Bonus: The base angles in $\triangle ABC$ are equal, and same for $\triangle DEF$. Each base angle = $(180^\circ - 50^\circ)/2 = 65^\circ$

A7. $PR = XZ = 5 \text{ cm}$; Triangles are congruent by RHS

Solution:

Step 1: Find hypotenuse using Pythagoras theorem

$$PR^2 = PQ^2 + QR^2 = 3^2 + 4^2 = 9 + 16 = 25$$

$$PR = 5 \text{ cm}$$

$$\text{Similarly, } XZ^2 = XY^2 + YZ^2 = 3^2 + 4^2 = 25$$

$$XZ = 5 \text{ cm}$$

Step 2: Apply RHS criterion

- $\angle Q = \angle Y = 90^\circ$ (right angles)
- $PR = XZ = 5 \text{ cm}$ (hypotenuse)
- $PQ = XY = 3 \text{ cm}$ (one side)

Therefore, $\triangle PQR \cong \triangle XYZ$ by RHS criterion! **KK**

A8. $\triangle AOB \cong \triangle COD$ by SAS criterion

Solution:

In $\triangle AOB$ and $\triangle COD$:

- $AO = CO$ (given)

- $\angle AOB = \angle COD$ (vertically opposite angles are equal)

- $BO = DO$ (given)

Therefore, by SAS criterion, $\triangle AOB \cong \triangle COD$

This proves that $AB = CD$ and $\angle A = \angle C$ (corresponding parts of congruent triangles)

A9. $\angle P = 40^\circ$, $PQ = 7 \text{ cm}$, $\angle Q = 65^\circ$; Third angle = 75° in both

Solution:

Since $\triangle ABC \cong \triangle PQR$, corresponding parts are equal:

- $\angle A = \angle P = 40^\circ$
- $AB = PQ = 7 \text{ cm}$
- $\angle B = \angle Q = 65^\circ$

Finding the third angle:

$$\angle C = 180^\circ - (\angle A + \angle B) = 180^\circ - (40^\circ + 65^\circ) = 75^\circ$$

$\angle R = \angle C = 75^\circ$ (corresponding angles)

A10. $\triangle ABD \cong \triangle ACD$ by SSS; $\angle ADB = \angle ADC = 90^\circ$

Solution:

In $\triangle ABD$ and $\triangle ACD$:

- $AB = AC$ (given - isosceles triangle)
- $BD = DC$ (D is midpoint of BC)
- $AD = AD$ (common side)

Therefore, $\triangle ABD \cong \triangle ACD$ by SSS criterion

Since the triangles are congruent:

$\angle ADB = \angle ADC$ (corresponding angles)

But $\angle ADB + \angle ADC = 180^\circ$ (linear pair)

Therefore, $\angle ADB = \angle ADC = 90^\circ$

Conclusion: The median from vertex angle of isosceles triangle is perpendicular to the base!

Section C: Advanced Twin Problems

A11. $\triangle AMP \cong \triangle CNQ$ by SAS; Therefore $AP = CQ$

Solution:

In $\triangle AMP$ and $\triangle CNQ$:

- $AM = CN$ (given)
- $\angle AMP = \angle CNQ$ (given - alternate angles)
- $MP = NQ$ (given)

Therefore, $\triangle AMP \cong \triangle CNQ$ by SAS criterion

Conclusion: Since corresponding parts of congruent triangles are equal:

$AP = CQ$ (corresponding sides)

This shows that parallel lines create congruent triangles!

A12. All three triangles are congruent by SSS; Each side = 6 cm

Solution:

Since ABC is equilateral with side 12 cm, and D, E, F are midpoints:

- $AD = DB = BE = EC = CF = FA = 6$ cm (half of 12 cm)
- $AE = 6$ cm, $AF = 6$ cm (midpoint property)
- Similarly, all segments from vertices to opposite midpoints = 6 cm

For $\triangle AEF$, $\triangle BFD$, and $\triangle CDE$:

All three sides of each triangle = 6 cm

Therefore, $\triangle AEF \cong \triangle BFD \cong \triangle CDE$ by SSS criterion

Bonus: These three small triangles are also equilateral! Each is an exact replica (twin) of the others.

A13. All four triangles congruent by SAS criterion

Solution:

In a square, diagonals bisect each other at right angles.

Therefore: $AO = BO = CO = DO$ (diagonals bisect each other)

Proving $\triangle AOB \cong \triangle BOC$:

- $AO = BO$ (half diagonal)
- $\angle AOB = \angle BOC = 90^\circ$ (diagonals perpendicular)
- $BO = CO$ (half diagonal)

Therefore, $\triangle AOB \cong \triangle BOC$ by SAS

Similarly:

- $\triangle BOC \cong \triangle COD$ by SAS
- $\triangle COD \cong \triangle DOA$ by SAS
- $\triangle DOA \cong \triangle AOB$ by SAS

Conclusion: All four triangles are congruent twins!

Each is a right isosceles triangle with two sides = $5\sqrt{2}$ cm (half the diagonal)

A14. $AC = 15$ cm; NOT congruent - different sizes

Solution:

Step 1: Find AC using Pythagoras theorem

$$AC^2 = AB^2 + BC^2 = 12^2 + 9^2 = 144 + 81 = 225$$

$$AC = 15 \text{ cm}$$

Step 2: Why aren't $\triangle ABD$ and $\triangle CBA$ congruent?

Compare the triangles:

- $\triangle ABD$: sides are $AB = 12$ cm, $BD = 9$ cm, $AD = 15$ cm
- $\triangle CBA$: sides are $CB = 9$ cm, $BA = 12$ cm, $AC = 15$ cm

Although both are right triangles:

- They have different dimensions
- $\triangle CBA$ is larger than $\triangle ABD$
- They are **SIMILAR** (same shape) but not **CONGRUENT** (different size)

Answer: They are NOT geometric twins because congruent means same shape

AND same size. These triangles have the same shape but different sizes, so they're similar, not congruent.

A15. (a) Only 1 type of triangle; (b) Yes, congruent; (c) SSS criterion

Solution:

(a) Different triangles possible:

With sides 5 cm, 7 cm, and 9 cm, there is only ONE type of triangle possible. (All scalene triangles with these dimensions are identical)

(b) Making two triangles:

- Triangle 1: sides 5 cm, 7 cm, 9 cm
- Triangle 2: sides 5 cm, 7 cm, 9 cm

Yes, they WILL be congruent!

(c) Criterion:

SSS (Side-Side-Side) criterion proves congruence

All three corresponding sides are equal ($5 = 5, 7 = 7, 9 = 9$)

Conclusion: When you have two sets of identical sticks, you'll always create geometric twins!

Tips to Become a Master Twin Detective!

- **Remember the 4 Criteria:** Memorize SSS, SAS, ASA, and RHS - these are your detective tools!
- **Draw and Label:** Always draw neat diagrams with proper labels - visual representation helps identify twins
- **Order Matters:** When writing $\triangle ABC \cong \triangle DEF$, corresponding vertices must be in matching order
- **Look for Right Angles:** If you see 90° , think RHS for right triangles!
- **Check Given Information:** Count what you know - 3 sides? SSS. 2 sides + included angle? SAS
- **Common Mistakes to Avoid:**
 - Don't use AAA (three angles) - it proves similarity, not congruence!
 - For SAS, the angle must be BETWEEN the two sides
 - For ASA, the side must be BETWEEN the two angles
 - RHS only works for RIGHT triangles
 - Corresponding vertices must match in congruence statements
- **Real-World Twin Hunting:** Look for congruent triangles in bridges, roofs, kites, and geometric art!

- **Practice Proof Writing:** Always state: "In \triangle ___ and \triangle ___: ... Therefore, \triangle ___ \cong \triangle ___ by ___ criterion"

 Congratulations, Twin Detective!

You've mastered the art of finding geometric twins through congruence!

- Download more worksheets like this
- Visit: <https://thinkingjuggernaut.in/>

NEP-aligned, hands-on experiential kits

NEP-2020 aligned hands-on kits and workbooks that help kids think independently, solve problems, and explore experiential learning.

[Explore Kits](#)

Founded by NIT & IIT Alumni

NEP-aligned, hands-on experiential kits

Applied Maths Kit (Age 7+)

Applied Maths Kit (Age 10+)

Interdisciplinary STEM Kit (Age 7+)

Interdisciplinary STEM Kit (Age 10+)

Entrepreneurship Kit

Finance Literacy Kit

Chess Starter Kit

Explore Sanskrit Kit

Founded by IIT & NIT Alumni, Thinking Juggernaut is a NEP-2020 aligned experiential learning platform that builds 21st-century skills, connects subjects, and links classroom concepts to real-life challenges.

[View All Kits Online →](#)