

# Class 4 Factors and Multiples Worksheet

Thinking Juggernaut

Name: \_\_\_\_\_

Date: \_\_\_\_\_

Total Marks: 24

## 🎯 Understanding Factors and Multiples

### What are Factors?

Factors are numbers that divide another number exactly without leaving any remainder.

**Example:** Factors of 12 are: 1, 2, 3, 4, 6, 12

Because:  $12 \div 1 = 12$ ,  $12 \div 2 = 6$ ,  $12 \div 3 = 4$ ,  $12 \div 4 = 3$ ,  $12 \div 6 = 2$ ,  $12 \div 12 = 1$

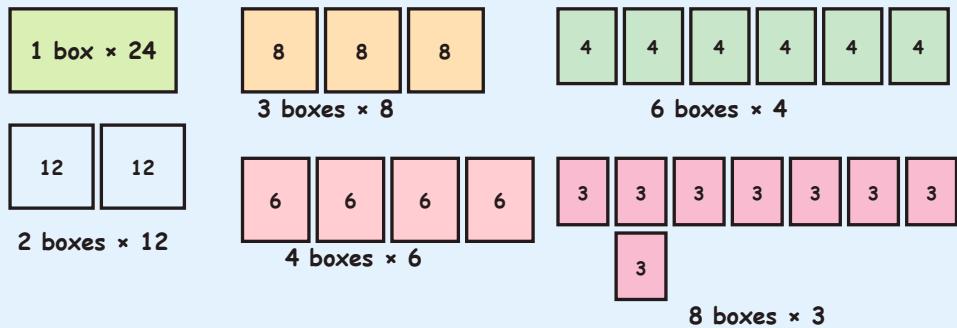
### What are Multiples?

Multiples are numbers we get when we multiply a number by 1, 2, 3, 4, and so on.

**Example:** Multiples of 5 are: 5, 10, 15, 20, 25, 30...

Because:  $5 \times 1 = 5$ ,  $5 \times 2 = 10$ ,  $5 \times 3 = 15$ ,  $5 \times 4 = 20$ ,  $5 \times 5 = 25$ ...




### Key Differences:

- Factors are smaller or equal to the number
- Multiples are larger or equal to the number
- Factors are LIMITED (finite)
- Multiples are UNLIMITED (infinite)

## 📝 Sample Problem

**Problem:** Priya has 24 chocolates. She wants to pack them equally into boxes. In how many different ways can she pack them? (Each box should have the same number of chocolates)

## 24 Chocolates - Different Packing Options



### Solution:

We need to find all the factors of 24 (numbers that divide 24 exactly)

Let's check:

- $24 \div 1 = 24 \checkmark$  (1 box of 24 chocolates)
- $24 \div 2 = 12 \checkmark$  (2 boxes of 12 chocolates)
- $24 \div 3 = 8 \checkmark$  (3 boxes of 8 chocolates)
- $24 \div 4 = 6 \checkmark$  (4 boxes of 6 chocolates)
- $24 \div 6 = 4 \checkmark$  (6 boxes of 4 chocolates)
- $24 \div 8 = 3 \checkmark$  (8 boxes of 3 chocolates)
- $24 \div 12 = 2 \checkmark$  (12 boxes of 2 chocolates)
- $24 \div 24 = 1 \checkmark$  (24 boxes of 1 chocolate)

**Answer: Factors of 24 are: 1, 2, 3, 4, 6, 8, 12, 24**

She can pack them in 8 different ways! 

## Part A: Warm-up Questions

 Easy Level

1. Write all factors of 6.

Factors of 6: \_\_\_\_\_

2. Write the first 5 multiples of 3.

Multiples of 3: \_\_\_\_\_, \_\_\_\_\_, \_\_\_\_\_, \_\_\_\_\_, \_\_\_\_\_

3. True or False: 4 is a factor of 12.

- True
- False

4. Is 20 a multiple of 5?

Answer: \_\_\_\_\_

# THINKING JUGGERNAUT

5. Fill in the blank: All numbers have \_\_\_\_\_ and itself as factors.

Answer: \_\_\_\_\_

6. Circle the factors of 10 from the numbers below:

1    2    3    5    10

Circle the correct numbers above

7. Match the numbers with their factors:

| Column A (Number) | Column B (Factors) |
|-------------------|--------------------|
| a) 8              | i) 1, 3, 9         |
| b) 9              | ii) 1, 2, 3, 6     |
| c) 6              | iii) 1, 2, 4, 8    |

Write your answers: a-\_\_\_\_, b-\_\_\_\_, c-\_\_\_\_

8. Which of these is a multiple of 4?

a) 14   b) 16   c) 18   d) 19

Answer: \_\_\_\_\_

THINKING  
JUGGERNAUT

## Part B: Practice Questions

★★ Medium Level

9. Write all factors of 15.

Hint: Which numbers divide 15 exactly?

$$15 \div 1 = ?$$

$$15 \div 3 = ?$$

$$15 \div 5 = ?$$

$$15 \div 15 = ?$$

Factors: \_\_\_\_\_

10. Which is the smallest multiple of any number?

Answer: \_\_\_\_\_

11. Raj has 18 pencils. He wants to arrange them equally in rows. How many different ways can he arrange them?

Factors of 18: \_\_\_\_\_

Number of ways: \_\_\_\_\_

# THINKING

12. Fill in the missing multiples of 7:

7, 14, \_\_\_\_\_, 28, \_\_\_\_\_, 42, \_\_\_\_\_

# JUGGERNAUT

13. True or False: Every number is a multiple of itself.

- True
- False

14. A teacher has 20 students. She wants to divide them into equal groups. List all the possible group sizes.

**20 Students**

Find all factors of 20

Possible group sizes: \_\_\_\_\_

15. Which numbers between 10 and 20 are multiples of both 2 and 3?

Answer: \_\_\_\_\_

16. Write the factors of 12 in ascending order.

Factors: \_\_\_\_\_

# THINKING

17. A number has only two factors: 1 and itself. What is such a number called?

Answer: \_\_\_\_\_

# JUGGERNAUT

18. Circle the common multiples of 2 and 5 from the numbers below:

5    10    12    15    20    25

Circle the correct numbers above

## Part C: Challenge Questions

★★★ Hard Level

19. A shopkeeper has 36 apples. He wants to pack them in boxes with equal numbers in each box. How many different packing options does he have? (List all factors)

### 36 Apples

Find all factors of 36

Think: What numbers divide 36 exactly?

All factors of 36: \_\_\_\_\_

Total packing options: \_\_\_\_\_

20. Find the smallest number that is a multiple of both 4 and 6.

Multiples of 4: 4, 8, 12, 16, 20, 24...

Multiples of 6: 6, 12, 18, 24, 30...

Common smallest multiple: \_\_\_\_\_

21. A number between 20 and 30 has exactly 4 factors. What is the number?

Hint: Check each number's factors

Answer: \_\_\_\_\_

22. Meera is thinking of a number. It is a multiple of 5 and a factor of 30. What could the number be? (List all possibilities)

Multiple of 5

5, 10, 15, 20, 25, 30...

Factor of 30

1, 2, 3, 5, 6, 10, 15, 30

Answer: \_\_\_\_\_

23. A farmer has 48 eggs. He wants to arrange them in trays where each tray has the same number of eggs (more than 2 but less than 10). How many different ways can he arrange them?

Factors of 48 (between 2 and 10): \_\_\_\_\_

Number of ways: \_\_\_\_\_

24. Which two-digit number has the most factors?

**THINKING**  
Hint: Check numbers like 12, 18, 24, 30, 36, 48, 60, 72, 84, 90, 96...

Number: \_\_\_\_\_

Total number of factors: \_\_\_\_\_

List all factors: \_\_\_\_\_



## Answer Key

### Part A: Warm-up Questions

1. 1, 2, 3, 6

2. 3, 6, 9, 12, 15

3. True ( $12 \div 4 = 3$ , no remainder)

4. Yes ( $5 \times 4 = 20$ )
5. 1 (Every number has 1 and itself as factors)
6. Circle: 1, 2, 5, 10 (All factors of 10)
7. a-iii, b-i, c-ii
8. b) 16 ( $4 \times 4 = 16$ )

## Part B: Practice Questions

9. 1, 3, 5, 15
10. The number itself (e.g., smallest multiple of 5 is 5)
11. Factors of 18: 1, 2, 3, 6, 9, 18 | Number of ways: 6
12. 21, 35, 49
13. True (e.g.,  $5 \times 1 = 5$ )
14. 1, 2, 4, 5, 10, 20 (All factors of 20)
15. 12, 18 (Multiples of 6 are multiples of both 2 and 3)
16. 1, 2, 3, 4, 6, 12
17. Prime number
18. Circle: 10, 20 (Numbers divisible by both 2 and 5)

## Part C: Challenge Questions

19. All factors: 1, 2, 3, 4, 6, 9, 12, 18, 36 | Total: 9 packing options
20. 12 (LCM of 4 and 6)
21. 25 (Factors: 1, 5, 25) or 27 (Factors: 1, 3, 9, 27) - Accept either answer

22. 5, 10, 15, 30 (Must be in both lists)

23. Factors between 2 and 10: 3, 4, 6, 8 | Number of ways: 4

24. 96 has 12 factors (1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96) - Most among common two-digit numbers. Other acceptable answers: 72, 84, 90 (all have many factors)

## Scoring Guide & Next Steps

Total Questions: 24 | Total Marks: 24

| Score Range | Performance Level | What to Practice Next                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20-24       | ★★★ Excellent!    | <b>You're ready for:</b> <ul style="list-style-type: none"> <li>Prime and Composite numbers</li> <li>Finding HCF (Highest Common Factor) and LCM (Lowest Common Multiple)</li> <li>Factor trees and prime factorization</li> <li>Class 5 advanced number theory concepts</li> </ul>                                                                                                                   |
| 15-19       | ★★ Very Good!     | <b>Focus on:</b> <ul style="list-style-type: none"> <li>Practice finding factors of larger numbers (30, 40, 50)</li> <li>Work on identifying common multiples of two numbers</li> <li>Practice more word problems involving factors and multiples</li> <li>Create factor pairs (e.g., for 24: 1×24, 2×12, 3×8, 4×6)</li> </ul>                                                                        |
| 10-14       | ★ Good Effort!    | <b>Practice these skills:</b> <ul style="list-style-type: none"> <li>Make a factor chart for numbers 1-20 on paper</li> <li>Write multiplication tables 1-10 to understand multiples better</li> <li>Practice division facts to identify factors quickly</li> <li>Use objects: group 12 stones in different ways (1×12, 2×6, 3×4)</li> <li>Do 5 factor-finding exercises daily for 2 weeks</li> </ul> |
| 0-9         | Keep Trying!      | <b>Start with basics:</b> <ul style="list-style-type: none"> <li>Master multiplication tables 1-10 first</li> <li>Understand division: <math>12 \div 3 = 4</math> means 3 is a factor of 12</li> <li>Start with small numbers (6, 8, 10) to find factors</li> <li>Use real objects to group and understand factors visually</li> </ul>                                                                |

|  |  |                                                                                                                                                                       |
|--|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  |  | <ul style="list-style-type: none"><li>• Practice only multiplication and division for one week</li><li>• Ask your teacher to explain with concrete examples</li></ul> |
|--|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## Detailed Learning Path by Topic

### If you struggled with Questions 1-8 (Basic Factors & Multiples):

-  Write multiplication tables 2-10 daily and recite them
-  Practice division: For any number, divide by 1, 2, 3, 4... to find factors
-  Make a "Factor Finder Chart" for numbers 6, 8, 10, 12, 15, 18, 20
-  Remember: Factor  $\times$  Factor = Number | Number  $\div$  Factor = Another Factor
-  Daily exercise: Pick 3 numbers and list all their factors

### If you struggled with Questions 9-18 (Understanding & Application):

-  Practice finding factors systematically: Start from 1, go up to the number
-  Use factor pairs: For 20  $\rightarrow$  (1,20), (2,10), (4,5)
-  Find common multiples by listing: Multiples of 3 (3,6,9,12...) and 4 (4,8,12...)
-  Solve 5 word problems daily using real-life examples
-  Key trick: To check if A is a factor of B, see if B  $\div$  A gives no remainder

### If you struggled with Questions 19-24 (Advanced Concepts):

-  Practice finding ALL factors of larger numbers (24, 30, 36, 48)
-  Make a comparison chart: List multiples of two numbers side by side
-  Learn to find LCM: List multiples until you find the smallest common one
-  Practice factor counting: How many factors does 12 have? (1,2,3,4,6,12 = 6 factors)
-  Challenge yourself: Find numbers with exactly 3, 4, or 5 factors

## ★ Great Job Completing This Worksheet! ★

Practice multiplication tables daily - they're the key to mastering factors and multiples!

 Download more worksheets at [thinkingjuggernaut.in](http://thinkingjuggernaut.in)  
 Share your score with your teacher or parents!



## NEP-aligned, hands-on experiential kits

NEP-2020 aligned hands-on kits and workbooks that help kids think independently, solve problems, and explore experiential learning.

[Explore Kits](#)

Founded by NIT & IIT Alumni

# THINKING JUGGERNAUT



## NEP-aligned, hands-on experiential kits



Applied Maths Kit (Age 7+)



Applied Maths Kit (Age 10+)

Interdisciplinary STEM Kit  
(Age 7+)Interdisciplinary STEM Kit  
(Age 10+)

Entrepreneurship Kit



Finance Literacy Kit



Chess Starter Kit



Explore Sanskrit Kit

Founded by IIT & NIT Alumni, Thinking Juggernaut is a NEP-2020 aligned experiential learning platform that builds 21st-century skills, connects subjects, and links classroom concepts to real-life challenges.

[View All Kits Online →](#)