
#BHUSA @BlackHatEvents

AI Agents for Offsec with Zero
False Positives

Brendan Dolan-Gavitt, AI Researcher, XBOW

#BHUSA @BlackHatEvents

Prof at NYU doing software security for 10 years

Now building AI agents for offsec at XBOW !

You might know me from:
• Volatility (core contributor, 2007-2010)
• Asleep at the Keyboard (GitHub Copilot security, BH USA 2022)
• FauxPilot (locally hosted AI code completions)

 moyix@localhost – Terminal

$ id
uid=1000(moyix), gid=500(xbow),
 groups=501(nyu),502(messlab),...

!

#BHUSA @BlackHatEvents

A Specter is Haunting AI Security

#BHUSA @BlackHatEvents

Maybe LLM false positives like these come from static
analysis of the code, and will go away if we let them
run commands and try to confirm vulns?
No:

Do “Agents” Help?

#BHUSA @BlackHatEvents

Maybe LLM false positives like these come from static
analysis of the code, and will go away if we let them
run commands and try to confirm vulns?
No:

Do “Agents” Help?

Quoting mistake!
Reading its own
password file...

#BHUSA @BlackHatEvents

• Consider a medical test that is 99% accurate:
• When testing individuals who have the disease,

returns TRUE 99% of the time
• When testing individuals who don't, returns FALSE

99% of the time
• The disease is rare; only 1/10,000 people have it
• You have just tested positive – what is the probability

you have the disease?

Why? Pop Quiz!

#BHUSA @BlackHatEvents

• Name the relevant events A and B
A: you have the disease
B: the test returns positive

• We can use Bayes’ Theorem:
• [Calculation omitted so you stay awake]
• Surprisingly, even if the test is positive, only 1%

chance you really have the disease!

The Bayesian Base Rate Fallacy

P (A|B) =
P (B|A)P (A)

P (B)

1

#BHUSA @BlackHatEvents

• Name the relevant events A and B
A: you have the disease
B: the test returns positive

• We can use Bayes’ Theorem:
• [Calculation omitted so you stay awake]
• Surprisingly, even if the test is positive, only 1%

chance you really have the disease!

The Bayesian Base Rate Fallacy

P (A|B) =
P (B|A)P (A)

P (B)

1

Moral of the Story

When testing for something very rare, the test must be
extremely accurate, or else almost every result will be a false

positive.

Vulnerabilities are rare!

#BHUSA @BlackHatEvents

• Currently, simply asking an LLM to say whether it thinks
a vulnerability is real gives very high FP rates

• Instead, we do deterministic validation: ask the LLM to
provide evidence, which we validate using non-AI code

• This may change in the future!
• Google and OpenAI's recent IMO Gold wins were

accomplished through LLM self-verification

Our Solution: Non-AI Exploit Validation

#BHUSA @BlackHatEvents

• Canaries / CTF Flags
• Hard-to-guess string, e.g. flag{UUID}
• Planted anywhere an attacker should not be able to

access (server FS, DB, admin pages, ...)
• If agent can find the flag, you found a vulnerability!

• Deterministic validation from evidence
• Agent provides evidence, non-AI code checks it

Validation Toolbox
"

#BHUSA @BlackHatEvents

A Taxonomy of Validators

No Target Cooperation

Requires Target Cooperation

Manual
Intervention

Fully
Automated

User <> User
Canaries

Admin
Canaries

Good for targeted
vuln-hunting

#BHUSA @BlackHatEvents

A Taxonomy of Validators

No Target Cooperation

Requires Target Cooperation

Manual
Intervention

Fully
Automated

Plant
/flag.txt

Internal Web
Server w/flag

Add flag
to SQL DB

User <> User
Canaries

Admin
Canaries

Good for large-scale
scans of OSS targets

#BHUSA @BlackHatEvents

A Taxonomy of Validators

No Target Cooperation

Requires Target Cooperation

Manual
Intervention

Fully
Automated

XSS

Plant
/flag.txt

Internal Web
Server w/flag

Add flag
to SQL DB

User <> User
Canaries

Open
Redirect

Cache
Poisoning

Admin
Canaries

Good for bug
bounties

#BHUSA @BlackHatEvents

A Taxonomy of Validators

No Target Cooperation

Requires Target Cooperation

Manual
Intervention

Fully
Automated

XSS

Plant
/flag.txt

Internal Web
Server w/flag

Add flag
to SQL DB

User <> User
Canaries

Open
Redirect

Cache
Poisoning

Admin
Canaries

Heuristic
File Read / RCE

Heuristic
SQLi

Heuristic
SSRF

Good for bug
bounties,
somewhat
higher FPs

#BHUSA @BlackHatEvents

• File read, RCE: Plant a flag/canary at
/flag.txt on the server's filesystem
(outside webroot)

• SSRF: Create web server hosting flag
attached to target's internal network

• SQLi: Plant a flag in the target app's
database

Requires Cooperation: Auto Flag Planting

#$
%

%
#$ &

&

&
%

#$

#BHUSA @BlackHatEvents

• To search for higher-level vulnerabilities in a target, we can
manually plant canaries within the app

• Plant them anywhere that attacker should not be able to view
• Private profile fields of other users, hidden resources,

admin-only areas, ...
• Rule of thumb: this applies to vulnerabilities that result in a

violation of confidentiality

Manual Flag-Planting (Business Logic)

#BHUSA @BlackHatEvents

• Evidence: a URL, optionally w/browser state (for post-
auth XSS)

• Visit URL in a headless browser
• Check for alert([message]), and validate that the

dialog is triggered on the expected target host
• To help bypass WAFs, we also allowed
console.log([message])

No Cooperation Needed: XSS

#BHUSA @BlackHatEvents

• Evidence: a URL, optionally w/browser state
• Visit URL in a headless browser
• Check:
• Initial URL is on expected target host
• Final URL is on specified domain (evil.xbow.ltd)

• Very similar to XSS validator!

No Cooperation Needed: Open Redirect

#BHUSA @BlackHatEvents

• Evidence: base HTTP request, unkeyed field, alternate value for
unkeyed field

• Validation:
1. Send base request 10x to get baseline, discard variable responses
2. Send base+alternate value: should return error status
3. Cross-check: storing error in the cache & retrieving without unkeyed

field should still return the error page
• Note: make requests using randomized cache-buster to avoid

accidental DoS!

No Cooperation Needed: Cache Poisoning (DoS)

#BHUSA @BlackHatEvents

#BHUSA @BlackHatEvents

#BHUSA @BlackHatEvents

#BHUSA @BlackHatEvents

• Unlike classical scanners, LLM agents are flexible
• We can ask for specific kinds of evidence to prove a vuln is real;

agent will figure out how to provide it for specific cases
• Example:

• Agent claims it found an SQL injection vulnerability
• We ask it to give us two HTTP requests that exec SLEEP(1)

and SLEEP(5), replay & measure the timing diff ourselves
• Agent can adapt to situations like needing base64 encoding on

the payload!

Why Validation Works

#BHUSA @BlackHatEvents

• Validator design decisions allow you to make tradeoffs
between false positives and missing real vulnerabilities

• Example: Arbitrary File Read
• Higher FPs: ask for an HTTP request that returns

server’s /etc/passwd
• Higher FNs: ask for a Python script that takes a

filename and returns content of that file from server

Tradeoffs: False Positives vs False Negatives

#BHUSA @BlackHatEvents

• LLMs are weird little gremlins that delight in finding
ways to “solve” the problem

• Cheating is easier than finding 0day!
• Canary-based validators are fairly robust to this

(it's hard to predict a UUID)
• More difficult for fully automated + no target

cooperation validators...

Pitfalls of Writing Robust Validators
 ...or, Three Times an LLM Outsmarted Me

#BHUSA @BlackHatEvents

• We forgot to check the URL scheme → agent figured
out it could “validate” javascript:alert("XSS")

XSS Validator Cheat #1

#BHUSA @BlackHatEvents

• We disabled same-origin policy in the validator (oops)
• Model realized it could rewrite history!

XSS Validator Cheat #2

#BHUSA @BlackHatEvents

• We disabled same-origin policy in the validator (oops)
• Model realized it could rewrite history!

XSS Validator Cheat #2

#BHUSA @BlackHatEvents

• We allowed console.log("666") as evidence of XSS

XSS Validator Cheat #3

#BHUSA @BlackHatEvents

• We allowed console.log("666") as evidence of XSS

XSS Validator Cheat #3

#BHUSA @BlackHatEvents

• Scraped Docker Hub → ~25M repositories
• Basic features:
• Pull count
• Stars
• Last updated
• Image size

• Rank by likelihood of being realistic web app

Scaling Vuln Discovery with Validators

• LLM (Claude 3.5 Sonnet) features:
• Contents look like a web app?
• Mature project?
• Threat model makes sense for

attacks we want to try?

#BHUSA @BlackHatEvents

• Use the Source, Luke!
• Agents do better at finding vulns with source → provide

docker image FS to find the webapp code!
• Don't forget to change default credentials

• Otherwise, lots of "solves" from logging in as admin
• Only expose necessary ports

• Models are good at exploiting stuff like exposed FastCGI

Docker Hub Target Tips & Tricks

#BHUSA @BlackHatEvents

Ranking Docker Hub Images

17,151

39,096

4,244

2,804

Docker Hub Synthesis Pipeline

Planted canaries & attacked each
image 100 times with each of:
- File read / RCE
- SQL injection [if db used]
- XSS
- SSRF

#BHUSA @BlackHatEvents

• 174 vulnerabilities reported
• 22 CVEs issued, 154 pending

• Sampler: GeoServer (XXE), Apache HugeGraph (RCE),
PuppyGraph (RCE), PDFTron (Path traversal), JSPWiki (XSS),
Apache TomCat (XSS), Scoold (Auth bypass), ...

• Additional reporting backlog of ~650 issues
• Turns out the hardest part to automate is tracking down

maintainers and sending reports!

Docker Hub Results By the Numbers

#BHUSA @BlackHatEvents

Docker Hub Results By the Numbers

XXE
6.9%
Stored XSS
5.7%
SSTI
1.1%
SSRF
8.0%
SQLi
0.6%

Reflected XSS
46.0%

File Read
3.4%

Open Redirect
9.2%

Path Traversal
10.3%

RCE
6.3%

Vulnerabilities Reported by Class

#BHUSA @BlackHatEvents

• Agent found an authorization bypass in Redmine, a Ruby on Rails
project management system

• We used manual canary planting to look for business logic
vulnerabilities

' Trophy Case: AuthZ Bypass in Redmine '

#BHUSA @BlackHatEvents

#BHUSA @BlackHatEvents

Agent Prompting (Partial)

#BHUSA @BlackHatEvents

The Benefits of Source

#BHUSA @BlackHatEvents

The Benefits of Source

#BHUSA @BlackHatEvents

#BHUSA @BlackHatEvents

#BHUSA @BlackHatEvents

• Agent discovered CVE-2025-27888, an SSRF in Apache
Druid

• Root cause: URL built through string concatenation
http://druid/proxy/coordinator@internal-web/flag.txt

• Found using automatically planted SSRF canary:

' Trophy Case: SSRF in Apache Druid '

#$
Attack Agent

%

Target Internal
Web Server

https://www.cve.org/CVERecord?id=CVE-2025-27888
http://druid/proxy/coordinator@internal-web/flag.txt

#BHUSA @BlackHatEvents

' Trophy Case: SSRF in Apache Druid '

#BHUSA @BlackHatEvents

' Trophy Case: SSRF in Apache Druid '

#BHUSA @BlackHatEvents

' Trophy Case: File Read in MapProxy '

• Agent discovered arbitrary file read in MapProxy
demo app (using kartoza/mapproxy image)
• But exposed on real hosts in the wild!

• The vuln: set X-Forwarded-Proto to file:// and
X-Forwarded-Host to ///flag.txt#.xml

• Unfortunately, no response from maintainers after 90
days...

#BHUSA @BlackHatEvents

' Trophy Case: File Read in MapProxy '

#BHUSA @BlackHatEvents

' Trophy Case: File Read in MapProxy '

#BHUSA @BlackHatEvents

' Trophy Case: File Read in MapProxy '

#BHUSA @BlackHatEvents

• Even with canaries, we can still get a certain kind of
"false positive" – intended behavior
• E.g., many home NAS webapps deliberately allow

arbitrary file reads for the whole server
• Some vulnerability classes are inherently difficult to

validate automatically (IDOR, business logic)
• Future work: business logic flag-planting agents?

Limitations of Validators

#BHUSA @BlackHatEvents

• LLMs cannot (yet) be trusted to validate
their own findings!

• But for many vulnerability classes we can
still verify them without AI assistance

• This enables large-scale vulnerability
discovery

• Enormous thanks to my colleagues at
XBOW – this was a large group effort and
all deserve credit!

Takeaways & Thanks

